
AN433: CP2110/4 HID-to-UART API
Specification

The Silicon Labs HID-to-UART interface library provides a simple
API to configure and operate CP2110 and CP2114 devices.
The library provides interface abstraction so that users can develop their application
without writing any USB HID code. Silicon Labs provides dynamic libraries implement-
ing the CP2110 and CP2114 Interface Specification for Windows, Mac OS X, and Li-
nux. Similarly, various include files are provided to import library functions into C#.NET
and Visual Basic.NET.

KEY POINTS

• The HID-to-UART interface library enables
key functionality with the CP2110 and
CP2114 devices.

• Careful planning should be used when
writing software using the HID-to-UART
interface library in multiple threads.

• Surprise removal should be added to any
software interfacing with the CP2110 or
CP2114.

PC

User Application

HID to UART Library

HID Driver
(provided by OS)

USB Root Hub

CP2110 HID-to-UART
Bridge

CP2114 USB Audio-I2S
Digital Audio Bridge

External RS-232 Transceiver
or UART Circuitry

External RS-232 Transceiver
or UART Circuitry/DAC/

CODEC Hardware

USB

silabs.com | Building a more connected world. Copyright © 2021 by Silicon Laboratories Rev. 0.7

1. Include Files

The include files required for each supported operating system are outlined in the table below.

Table 1.1. HID-to-UART Include Files

Operating System Library Include Files

Windows SLABHIDtoUART.dll SLABHIDtoUART.h (C/C++)

SLABHIDtoUART.cs (C#.NET)

SLABHIDtoUART.vb (VB.NET)

SLABCP2110.h (C/C++)

SLABCP2110.cs (C#.NET)

SLABCP2110.vb (VB.NET)

SLABCP2114.h (C/C++)

CP2114_Common.h (C/C++)

Mac OS X libSLABHIDtoUART.dylib SLABHIDtoUART.h (C, C++, Obj-C)

SLABCP2110.h (C, C++, Obj-C)

SLABCP2114.h (C, C++, Obj-C)

CP2114_Common.h (C, C++, Obj-C)

Types.h (C, C++, Obj-C)

Linux libslabhidtouart.so SLABHIDtoUART.h (C/C++)

SLABCP2110.h (C/C++)

SLABCP2114.h (C/C++)

CP2114_Common.h (C/C++)

Types.h (C/C++)

AN433: CP2110/4 HID-to-UART API Specification
Include Files

silabs.com | Building a more connected world. Rev. 0.7 | 2

2. API Functions

The following API functions apply to both the CP2110 and CP2114 devices.

Table 2.1. CP2110 and CP2114 API Functions

Definition Description

HidUart_GetNumDevices() Returns the number of devices connected

HidUart_GetString() Returns a string for a device by index

HidUart_GetOpenedString() Returns a string for a device by device object pointer

HidUart_GetIndexedString() Returns an indexed USB string descriptor by index (Windows/Linux only)

HidUart_GetOpenedIndexedString() Returns an indexed USB string descriptor by device object pointer (Windows/
Linux only)

HidUart_GetAttributes() Returns the VID, PID, and release number for a device by index.

HidUart_GetOpenedAttributes() Returns the VID, PID, and release number for a device by device object pointer.

HidUart_Open() Opens a device and returns a device object pointer

HidUart_Close() Cancels pending IO and closes a device

HidUart_IsOpened() Returns the device opened status

HidUart_SetUartEnable() Enables/disables the UART

HidUart_GetUartEnable() Gets UART status

HidUart_Read() Reads a block of data from a device

HidUart_Write() Writes a block of data to a device

HidUart_FlushBuffers() Flushes the TX and RX buffers for a device

HidUart_CancelIo() Cancels pending HID reads and writes (Windows only)

HidUart_SetTimeouts() Sets read and write block timeouts for a device

HidUart_GetTimeouts() Gets read and write block timeouts for a device

HidUart_GetUartStatus() Returns the number of bytes in the device transmit and receive FIFOs and pari-
ty/overrun errors

HidUart_SetUartConfig() Sets baud rate, parity, flow control, data bits, and stop bits

HidUart_GetUartConfig() Gets baud rate, parity, flow control, data bits, and stop bits

HidUart_StartBreak() Starts transmission of the line break for the specified duration

HidUart_StopBreak() Stops transmission of the line break

HidUart_Reset() Resets the device with re-enumeration

HidUart_ReadLatch() Gets the port latch value from a device

HidUart_WriteLatch() Sets the port latch value on a device

HidUart_GetPartNumber() Gets the device part number and version

HidUart_GetLibraryVersion() Gets the DLL Library version

HidUart_GetHidLibraryVersion() Gets the HID Device Interface Library version

HidUart_GetHidGuid() Gets the HID GUID (Windows only)

AN433: CP2110/4 HID-to-UART API Specification
API Functions

silabs.com | Building a more connected world. Rev. 0.7 | 3

2.1 HidUart_GetNumDevices

Description : This function returns the number of devices connected to the host with matching vendor and product
ID (VID, PID).

Prototype : HID_UART_STATUS HidUart_GetNumDevices (DWORD* numDevices, WORD vid,

WORD pid)

Parameters : 1. numDevices—Returns the number of devices connected on return.
2. vid—Filter device results by vendor ID. If both vid and pid are set to 0x0000, then HID devices

will not be filtered by VID/PID.
3. pid—Filter device results by product ID. If both vid and pid are set to 0x0000, then HID devices

will not be filtered by VID/PID.

Return Value : HID_UART_STATUS

• HID_UART_SUCCESS

• HID_UART_INVALID_PARAMETER

2.2 HidUart_GetString

Description : This function returns a null-terminated vendor ID string, product ID string, serial string, device path
string, manufacturer string, or product string for the device specified by an index passed in device-
Num. The index for the first device is 0 and the last device is the value returned by
HidUart_GetNumDevices() – 1.

Prototype : HID_UART_STATUS HidUart_GetString (DWORD deviceNum, WORD vid,

WORD pid, char* deviceString, DWORD options)

Parameters : 1. deviceNum—Index of the device for which the string is desired.
2. vid—Filter device results by vendor ID. If both vid and pid are set to 0x0000, then HID devices

will not be filtered by VID/PID.
3. pid—Filter device results by product ID. If both vid and pid are set to 0x0000, then HID devices

will not be filtered by VID/PID.
4. deviceString—Variable of type HID_UART_DEVICE_STRING which will contain a NULL termi-

nated ASCII device string on return. The string is 260 bytes on Windows and 512 bytes on Mac
OS X and Linux.

5. options—Determines if deviceString contains a vendor ID string, product ID string, serial string,
device path string, manufacturer string, or product string.

Definition Value Length Description

HID_UART_GET_VID_STR 0x01 5 Vendor ID

HID_UART_GET_PID_STR 0x02 5 Product ID

HID_UART_GET_PATH_STR 0x03 260/512 Device path

HID_UART_GET_SERIAL_STR 0x04 256 Serial string

HID_UART_GET_MANUFACTURER_STR 0x05 256 Manufacturer string

HID_UART_GET_PRODUCT_STR 0x06 256 Product string

Return Value : HID_UART_STATUS

• HID_UART_SUCCESS

• HID_UART_DEVICE_NOT_FOUND

• HID_UART_INVALID_PARAMETER

• HID_UART_DEVICE_ACCESS_ERROR

AN433: CP2110/4 HID-to-UART API Specification
API Functions

silabs.com | Building a more connected world. Rev. 0.7 | 4

2.3 HidUart_GetOpenedString

Description : This function returns a null-terminated vendor ID string, product ID string, serial string, device path
string, manufacturer string, or product string for the device specified by device.

Prototype : HID_UART_STATUS HidUart_GetOpenedString (HID_UART_DEVICE device,

char* deviceString, DWORD options)

Parameters : 1. device—Device object pointer as returned by HidUart_Open().
2. deviceString—Variable of type HID_UART_DEVICE_STRING which will contain a NULL termi-

nated ASCII device string on return. The string is 260 bytes on Windows and 512 bytes on Mac
OS X and Linux.

3. options—Determines if deviceString contains a vendor ID string, product ID string, serial string,
device path string, manufacturer string, or product string.

Definition Value Length Description

HID_UART_GET_VID_STR 0x01 5 Vendor ID

HID_UART_GET_PID_STR 0x02 5 Product ID

HID_UART_GET_PATH_STR 0x03 260/512 Device path

HID_UART_GET_SERIAL_STR 0x04 256 Serial string

HID_UART_GET_MANUFACTURER_STR 0x05 256 Manufacturer string

HID_UART_GET_PRODUCT_STR 0x06 256 Product string

Return Value : HID_UART_STATUS

• HID_UART_SUCCESS

• HID_UART_INVALID_DEVICE_OBJECT

• HID_UART_INVALID_PARAMETER

• HID_UART_DEVICE_ACCESS_ERROR

2.4 HidUart_GetIndexedString

Description : This function returns a null-terminated USB string descriptor for the device specified by an index
passed in deviceNum. (Windows/Linux only)

Prototype : HID_UART_STATUS HidUart_GetIndexedString (DWORD deviceNum, WORD vid,

WORD pid, DWORD stringIndex, char* deviceString)

Parameters : 1. deviceNum—Index of the device for which the string is desired.
2. vid—Filter device results by vendor ID. If both vid and pid are set to 0x0000, then HID devices

will not be filtered by VID/PID.
3. pid—Filter device results by product ID. If both vid and pid are set to 0x0000, then HID devices

will not be filtered by VID/PID.
4. stringIndex—Specifies the device-specific index of the USB string descriptor to return.
5. deviceString—Variable of type HID_UART_DEVICE_STRING which will contain a NULL termi-

nated device descriptor string on return. The string is 260 bytes on Windows and 512 bytes on
Linux.

Return Value : HID_UART_STATUS

• HID_UART_SUCCESS

• HID_UART_DEVICE_NOT_FOUND

• HID_UART_INVALID_PARAMETER

• HID_UART_DEVICE_ACCESS_ERROR

AN433: CP2110/4 HID-to-UART API Specification
API Functions

silabs.com | Building a more connected world. Rev. 0.7 | 5

2.5 HidUart_GetOpenedIndexedString

Description : This function returns a null-terminated USB string descriptor for the device specified by device. (Win-
dows/Linux only)

Prototype : HID_UART_STATUS HidUart_GetOpenedIndexedString (HID_UART_DEVICE device,

DWORD stringIndex, char* deviceString)

Parameters : 1. deviceNum—Device object pointer as returned by HidUart_Open().
2. stringIndex—Specifies the device-specific index of the USB string descriptor to return.
3. deviceString—Variable of type HID_UART_DEVICE_STRING which will contain a NULL termi-

nated device descriptor string on return. The string is 260 bytes on Windows and 512 bytes on
Linux.

Return Value : HID_UART_STATUS

• HID_UART_SUCCESS

• HID_UART_INVALID_DEVICE_OBJECT

• HID_UART_INVALID_PARAMETER

• HID_UART_DEVICE_ACCESS_ERROR

2.6 HidUart_GetAttributes

Description : This function returns the device vendor ID, product ID, and release number for the device specified
by an index passed in deviceNum.

Prototype : HID_UART_STATUS HidUart_GetAttributes (DWORD deviceNum, WORD vid,

WORD pid, WORD* deviceVid, WORD* devicePid,

WORD* deviceReleaseNumber)

Parameters : 1. deviceNum—Index of the device for which the string is desired.
2. vid—Filter device results by vendor ID. If both vid and pid are set to 0x0000, then HID devices

will not be filtered by VID/PID.
3. pid—Filter device results by product ID. If both vid and pid are set to 0x0000, then HID devices

will not be filtered by VID/PID.
4. deviceVid—Returns the device vendor ID.
5. devicePid—Returns the device product ID.
6. deviceReleaseNumber—Returns the USB device release number in binary-coded decimal.

Return Value : HID_UART_STATUS

• HID_UART_SUCCESS

• HID_UART_DEVICE_NOT_FOUND

• HID_UART_INVALID_PARAMETER

• HID_UART_DEVICE_ACCESS_ERROR

AN433: CP2110/4 HID-to-UART API Specification
API Functions

silabs.com | Building a more connected world. Rev. 0.7 | 6

2.7 HidUart_GetOpenedAttributes

Description : This function returns the device vendor ID, product ID, and release number for the device specified
by device.

Prototype : HID_UART_STATUS HidUart_GetOpenedAttributes (HID_UART_DEVICE device,

WORD* deviceVid, WORD* devicePid, WORD* deviceReleaseNumber)

Parameters : 1. device—Device object pointer as returned by HidUart_Open().
2. deviceVid—Returns the device vendor ID.
3. devicePid—Returns the device product ID.
4. deviceReleaseNumber—Returns the USB device release number in binary-coded decimal.

Return Value : HID_UART_STATUS

• HID_UART_SUCCESS

• HID_UART_INVALID_DEVICE_OBJECT

• HID_UART_INVALID_PARAMETER

• HID_UART_DEVICE_ACCESS_ERROR

2.8 HidUart_Open

Description : Opens a device using a device number between 0 and HidUart_GetNumDevices()–1, enables the
UART, and returns a device object pointer which will be used for subsequent accesses.

Prototype : HID_UART_STATUS HidUart_Open (HID_UART_DEVICE* device,

DWORD deviceNum, WORD vid, WORD pid)

Parameters : 1. device—Returns a pointer to a HID-to-UART device objectsubsequent accesses to the device.
2. deviceNum—Zero-based device index, between 0 and (HidUart_GetNumDevices() – 1).
3. vid—Filter device results by vendor ID. If both vid and pid are set to 0x0000, then HID devices

will not be filtered by VID/PID.
4. pid—Filter device results by product ID. If both vid and pid are set to 0x0000, then HID devices

will not be filtered by VID/PID.

Return Value : HID_UART_STATUS

• HID_UART_SUCCESS

• HID_UART_INVALID_DEVICE_OBJECT

• HID_UART_DEVICE_NOT_FOUND

• HID_UART_INVALID_PARAMETER

• HID_UART_DEVICE_IO_FAILED

• HID_UART_DEVICE_ACCESS_ERROR

• HID_UART_DEVICE_NOT_SUPPORTED

Remarks : Be careful when opening a device. Any HID device may be opened by this library. However, if the
device is not actually a CP211x, use of this library will cause undesirable results. The best course of
action would be to designate a unique VID/PID for CP211x devices only. The application should then
filter devices using this VID/PID.

AN433: CP2110/4 HID-to-UART API Specification
API Functions

silabs.com | Building a more connected world. Rev. 0.7 | 7

2.9 HidUart_Close

Description : Closes an opened device using the device object pointer provided by HidUart_Open().

Prototype : HID_UART_STATUS HidUart_Close (HID_UART_DEVICE device)

Parameters : 1. device—Device object pointer as returned by HidUart_Open().

Return Value : HID_UART_STATUS

• HID_UART_SUCCESS

• HID_UART_INVALID_DEVICE_OBJECT

• HID_UART_INVALID_HANDLE

• HID_UART_DEVICE_ACCESS_ERROR

Remarks : The device parameter is invalid after calling HidUart_Close(). Set device to NULL.

2.10 HidUart_IsOpened

Description : Returns the device opened status.

Prototype : HID_UART_STATUS HidUart_IsOpened (HID_UART_DEVICE device, BOOL* opened)

Parameters : 1. device—Device object pointer as returned by HidUart_Open().
2. opened—Returns TRUE if the device object pointer is valid and the device has been opened us-

ing HidUart_Open().

Return Value : HID_UART_STATUS

• HID_UART_SUCCESS

• HID_UART_INVALID_DEVICE_OBJECT

• HID_UART_INVALID_PARAMETER

2.11 HidUart_SetUartEnable

Description : Enables or disables the UART.

Prototype : HID_UART_STATUS HidUart_SetUartEnable (HID_UART_DEVICE, BOOL enable)

Parameters : 1. device—Device object pointer as returned by HidUart_Open().
2. enable—Set to TRUE to enable the UART

Return Value : HID_UART_STATUS

• HID_UART_SUCCESS

• HID_UART_INVALID_DEVICE_OBJECT

• HID_UART_DEVICE_IO_FAILED

Remarks : Enabling or disabling the UART will flush the UART FIFOs if the flushBuffers parameter is enabled by
calling HidUart_SetUsbConfig().

2.12 HidUart_GetUartEnable

Description : Returns the UART enable status.

Prototype : HID_UART_STATUS HidUart_GetUartEnable (HID_UART_DEVICE, BOOL* enable)

Parameters : 1. device—Device object pointer as returned by HidUart_Open().
2. enable—Returns TRUE if the UART is enabled

Return Value : HID_UART_STATUS

• HID_UART_SUCCESSHID_UART_INVALID_DEVICE_OBJECT

• HID_UART_DEVICE_IO_FAILED

• HID_UART_INVALID_PARAMETER

AN433: CP2110/4 HID-to-UART API Specification
API Functions

silabs.com | Building a more connected world. Rev. 0.7 | 8

2.13 HidUart_Read

Description : Reads the available number of bytes into the supplied buffer and returns the number of bytes read
which can be less than the number of bytes requested. This function returns synchronously after
reading the requested number of bytes or after the timeout duration has elapsed. Read and write
timeouts can be set using HidUart_SetTimeouts() described in 2.17 HidUart_SetTimeouts.

Prototype : HID_UART_STATUS HidUart_Read (HID_UART_DEVICE device, BYTE* buffer,

DWORD numBytesToRead, DWORD* numBytesRead)

Parameters : 1. device—Device object pointer as returned by HidUart_Open().
2. buffer—Address of a buffer to be filled with read data.
3. numBytesToRead—Number of bytes to read from the device into the buffer (1–32768) value

must be less than or equal to the size of buffer.
4. numBytesRead—Returns the number of bytes actually read into the buffer on completion.

Return Value : HID_UART_STATUS

• HID_UART_SUCCESS

• HID_UART_READ_ERROR

• HID_UART_INVALID_PARAMETER

• HID_UART_INVALID_DEVICE_OBJECT

• HID_UART_READ_TIMED_OUT

• HID_UART_INVALID_REQUEST_LENGTH

Remarks : HidUart_Read() returns HID_UART_READ_TIMED_OUT if the number of bytes read is less than the
number of bytes requested. This will only occur after the read timeout has elapsed. If the number of
bytes read matches the number of bytes requested, this function will return HID_UART_SUCCESS.

2.14 HidUart_Write

Description : Write the specified number of bytes from the supplied buffer to the device. This function returns syn-
chronously after writing the requested number of bytes or after the timeout duration has elapsed.
Read and write timeouts can be set using HidUart_SetTimeouts() described in 2.17 HidUart_SetTi-
meouts.

Prototype : HID_UART_STATUS HidUart_Write (HID_UART_DEVICE device, BYTE* buffer,

DWORD numBytesToWrite, DWORD* numBytesWritten)

Parameters : 1. device—Device object pointer as returned by HidUart_Open().
2. buffer—Address of a buffer to be sent to the device.
3. numBytesToWrite—Number of bytes to write to the device (1–4096 bytes) less than or equal to

the size of buffer.
4. numBytesWritten—Returns the number of bytes actually written to the device.

Return Value : HID_UART_STATUS

• HID_UART_SUCCESS

• HID_UART_WRITE_ERROR

• HID_UART_INVALID_PARAMETER

• HID_UART_INVALID_DEVICE_OBJECT

• HID_UART_WRITE_TIMED_OUT

• HID_UART_INVALID_REQUEST_LENGTH

Remarks : HidUart_Write() returns HID_UART_WRITE_TIMED_OUT if the number of bytes written is less than
the number of bytes requested. Data is broken down into HID interrupt reports between 1 – 63 bytes
in size and transmitted. Each report will be given a specific amount of time to complete. This report
timeout is determined by writeTimeout in HidUart_SetTimeouts(). Each interrupt report is given the
max timeout to complete because a timeout at the interrupt report level is considered an unrecovera-
ble error (the IO is canceled in an unknown state). If the HID set interrupt report times out, Hi-
dUart_Write() returns HID_UART_WRITE_ERROR. The HidUart_Write() timeout may take up to
twice as long as the timeout specified to allow each interrupt report to complete.

AN433: CP2110/4 HID-to-UART API Specification
API Functions

silabs.com | Building a more connected world. Rev. 0.7 | 9

2.15 HidUart_FlushBuffers

Description : This function flushes the receive buffer in the device and the HID driver and/or the transmit buffer in
the device.

Prototype : HID_UART_STATUS HidUart_FlushBuffers (HID_UART_DEVICE device,

BOOL flushTransmit, BOOL flushReceive)

Parameters : 1. device—Device object pointer as returned by HidUart_Open().
2. flushTransmit—Set to TRUE to flush the device transmit buffer.
3. flushReceive—Set to TRUE to flush the device receive buffer and HID receive buffer.

Return Value : HID_UART_STATUS

• HID_UART_SUCCESS

• HID_UART_INVALID_DEVICE_OBJECT

• HID_UART_DEVICE_IO_FAILED

2.16 HidUart_Cancello

Description : This function cancels any pending HID reads and writes. (Windows only)

Prototype : HID_UART_STATUS HidUart_CancelIo (HID_UART_DEVICE device)

Parameters : 1. device—Device object pointer as returned by HidUart_Open().

Return Value : HID_UART_STATUS

• HID_UART_SUCCESS

• HID_UART_INVALID_DEVICE_OBJECT

• HID_UART_DEVICE_IO_FAILED

2.17 HidUart_SetTimeouts

Description : Sets the read and write timeouts. Timeouts are used for HidUart_Read() and HidUart_Write(). The
default value for timeouts is 1000 ms, but timeouts can be set to wait for any number of milliseconds
between 0 and 0xFFFFFFFF.

Prototype : HID_UART_STATUS HidUart_SetTimeouts (HID_UART_DEVICE device,

DWORD readTimeout, DWORD writeTimeout)

Parameters : 1. device—Device object pointer as returned by HidUart_Open().
2. readTimeout—HidUart_Read() operation timeout in milliseconds.
3. writeTimeout—HidUart_Write() operation timeout in milliseconds.

Return Value : HID_UART_STATUS

• HID_UART_SUCCESS

• HID_UART_INVALID_DEVICE_OBJECT

Remarks : If read timeouts are set to a large value and no data is received, then the application may appear
unresponsive. It is recommended to set timeouts appropriately before using the device.

AN433: CP2110/4 HID-to-UART API Specification
API Functions

silabs.com | Building a more connected world. Rev. 0.7 | 10

2.18 HidUart_GetTimeouts

Description : Returns the current read and write timeouts specified in milliseconds.

Prototype : HID_UART_STATUS HidUart_GetTimeouts (HID_UART_DEVICE device,

DWORD* readTimeout, DWORD* writeTimeout)

Parameters : 1. device—Device object pointer as returned by HidUart_Open().
2. readTimeout—HidUart_Read() operation timeout in milliseconds.
3. writeTimeout—HidUart_Write() operation timeout in milliseconds.

Return Value : HID_UART_STATUS

• HID_UART_SUCCESS

• HID_UART_INVALID_PARAMETER

• HID_UART_INVALID_DEVICE_OBJECT

Remarks : Read and write timeouts are maintained for each device but are not persistent across Hi-
dUart_Open()/HidUart_Close().

2.19 HidUart_GetUartStatus

Description : Returns the number of bytes held in the device receive and transmit FIFO. Returns the parity/error
status and line break status.

Prototype : HID_UART_STATUS HidUart_GetUartStatus (HID_UART_DEVICE device,

WORD* transmitFifoSize, WORD* receiveFifoSize, BYTE* errorStatus,

BYTE* lineBreakStatus)

Parameters : 1. device—Device object pointer as returned by HidUart_Open().
2. transmitFifoSize—Returns the number of bytes currently held in the device transmit FIFO.
3. receiveFifoSize—Returns the number of bytes currently held in the device receive FIFO.
4. errorStatus—Returns an error status bitmap describing parity and overrun errorsfunction clears

the errors.

Definition Value Description

HID_UART_MASK_PARITY_ERROR 0x01 Parity error

HID_UART_MASK_OVERRUN_ERROR 0x02 Overrun error

5. lineBreakStatus—Returns 0x01 if line break is currently active and 0x00 otherwise.

Definition Value Description

HID_UART_LINE_BREAK_INACTIVE 0x00 Line break inactive

HID_UART_LINE_BREAK_ACTIVE 0x01 Line break active

Return Value : HID_UART_STATUS

• HID_UART_SUCCESS

• HID_UART_INVALID_PARAMETER

• HID_UART_INVALID_DEVICE_OBJECT

• HID_UART_DEVICE_IO_FAILED

Remarks : The transmitFifoSize and receiveFifoSize only apply to data held in the device FIFOs; they do not in-
clude data queued in the HID driver or interface library.

AN433: CP2110/4 HID-to-UART API Specification
API Functions

silabs.com | Building a more connected world. Rev. 0.7 | 11

2.20 HidUart_SetUartConfig

Description : Sets the baud rate, data bits, parity, stop bits, and flow control. Refer to the device data sheet for a
list of supported configuration settings.

Prototype : HID_UART_STATUS HidUart_SetUartConfig (HID_UART_DEVICE device,

DWORD baudRate, BYTE dataBits, BYTE parity, BYTE stopBits,

BYTE flowControl)

Parameters : 1. device—Device object pointer as returned by HidUart_Open()
2. baudRate—The baud rate for UART communication
3. dataBits—The number of data bits for UART communication

Definition Value Description

HID_UART_FIVE_DATA_BITS 0x00 5 data bits

HID_UART_SIX_DATA_BITS 0x01 6 data bits

HID_UART_SEVEN_DATA_BITS 0x02 7 data bits

HID_UART_EIGHT_DATA_BITS 0x03 8 data bits

4. parity—The parity for UART communication

Definition Value Description

HID_UART_NO_PARITY 0x00 No parity

HID_UART_ODD_PARITY 0x01 Odd parity (sum of data
bits is odd)

HID_UART_EVEN_PARITY 0x02 Even parity (sum of data
bits is even)

HID_UART_MARK_PARITY 0x03 Mark parity (always 1)

HID_UART_SPACE_PARITY 0x04 Space parity (always 0)

5. stopBits—The number of stop bits for UART communication

Definition Value Description

HID_UART_SHORT_STOP_BIT 0x00 1 stop bit

HID_UART_LONG_STOP_BIT 0x01 5 data bits: 1.5 stop bits

6-8 data bits: 2 stop bits

6. flowControl—The type of flow control for UART communication

Definition Value Description

HID_UART_NO_FLOW_CONTROL 0x00 No flow control

HID_UART_RTS_CTS_FLOW_CONTROL 0x01 RTS/CTS hardware flow
control

Return Value : HID_UART_STATUS

• HID_UART_SUCCESS

• HID_UART_INVALID_PARAMETER

• HID_UART_INVALID_DEVICE_OBJECT

• HID_UART_DEVICE_IO_FAILED

AN433: CP2110/4 HID-to-UART API Specification
API Functions

silabs.com | Building a more connected world. Rev. 0.7 | 12

2.21 HidUart_GetUartConfig

Description : Gets the baud rate, data bits, parity, stop bits, and flow control. Refer to the device data sheet for a
list of supported baud rates. See 2.20 HidUart_SetUartConfig.

Prototype : HID_UART_STATUS HidUart_GetUartConfig (HID_UART_DEVICE device,

DWORD* baudRate, BYTE* dataBits, BYTE* parity, BYTE* stopBits,

BYTE* flowControl)

Parameters : 1. device—Device object pointer as returned by HidUart_Open().
2. baudRate—Returns the baud rate for UART communication.
3. dataBits—Returns the number of data bits for UART communication.
4. parity—Returns the parity for UART communication.
5. stopBits—Returns the number of stop bits for UART communication.
6. flowControl—Returns the type of flow control for UART communication.

Return Value : HID_UART_STATUS

• HID_UART_SUCCESS

• HID_UART_INVALID_PARAMETER

• HID_UART_INVALID_DEVICE_OBJECT

• HID_UART_DEVICE_IO_FAILED

2.22 HidUart_StartBreak

Description : Causes the device to transmit a line break, holding the TX pin low, for the specified duration in milli-
seconds.

Prototype : HID_UART_STATUS HidUart_StartBreak (HID_UART_DEVICE device,

BYTE duration)

Parameters : 1. device—Device object pointer as returned by HidUart_Open().
2. duration—The length of time in milliseconds to transmit the line break (1–125 ms)

Return Value : HID_UART_STATUS

• HID_UART_SUCCESS

• HID_UART_INVALID_PARAMETER

• HID_UART_INVALID_DEVICE_OBJECT

• HID_UART_DEVICE_IO_FAILED

• HID_UART_DEVICE_NOT_SUPPORTED

2.23 HidUart_StopBreak

Description : Stops the device from transmitting a line break.

Prototype : HID_UART_STATUS HidUart_StopBreak (HID_UART_DEVICE device)

Parameters : 1. device—Device object pointer as returned by HidUart_Open().

Return Value : HID_UART_STATUS

• HID_UART_SUCCESS

• HID_UART_INVALID_DEVICE_OBJECT

• HID_UART_DEVICE_IO_FAILED

• HID_UART_DEVICE_NOT_SUPPORTED

Remarks : This function is ignored if the device is not transmitting a line break.

AN433: CP2110/4 HID-to-UART API Specification
API Functions

silabs.com | Building a more connected world. Rev. 0.7 | 13

2.24 HidUart_Reset

Description : Initiates a full device reset. Transmit and receive FIFOs will be cleared, UART settings will be reset to
default values, and the device will re-enumerate.

Prototype : HID_UART_STATUS HidUart_Reset (HID_UART_DEVICE device)

Parameters : 1. device—Device object pointer as returned by HidUart_Open().

Return Value : HID_UART_STATUS

• HID_UART_SUCCESS

• HID_UART_INVALID_DEVICE_OBJECT

• HID_UART_DEVICE_IO_FAILED

Remarks : Resetting the device will make the device’s handle stale. Users must close the device using the old
handle before proceeding to reconnect to the device. See more information on surprise removal. De-
fault UART settings are as follows: 115200 8N1, no flow control.

2.25 HidUart_ReadLatch

Description : Gets the current port latch value from the device.

Prototype : HID_UART_STATUS HidUart_ReadLatch (HID_UART_DEVICE device,

WORD* latchValue)

Parameters : 1. device—Device object pointer as returned by HidUart_Open().
2. latchValue—Returns the port latch value (Logic High = 1, Logic Low = 0) as a GPIO input or flow

control pin that is an input, then the corresponding bit represents the input value. If a pin is con-
figured as a GPIO output pin or a flow control pin that is an output, then the corresponding bit
represents the logic level driven on the pin.

Return Value : HID_UART_STATUS

• HID_UART_SUCCESS

• HID_UART_INVALID_DEVICE_OBJECT

• HID_UART_INVALID_PARAMETER

• HID_UART_DEVICE_IO_FAILED

• HID_UART_DEVICE_NOT_SUPPORTED

Remarks : See 6. Port Latch Pin Definition for more information on configuring GPIO and flow control pins. Bits
9 and 15 of latchValue are ignored.

AN433: CP2110/4 HID-to-UART API Specification
API Functions

silabs.com | Building a more connected world. Rev. 0.7 | 14

2.26 HidUart_WriteLatch

Description : Sets the current port latch value to the device.

Prototype : HID_UART_STATUS HidUart_WriteLatch (HID_UART_DEVICE device,

WORD latchValue, WORD latchMask)

Parameters : 1. device—Device object pointer as returned by HidUart_Open().
2. latchValue—Value to write to the port latch (Logic High = 1, Logic Low = 0)used to set the values

for GPIO pins or flow control pins that are configured as outputs. This function will not affect any
pins that are not configured as outputs.

3. latchMask—Determines which pins to change (Change = 1, Leave = 0).

Return Value : HID_UART_STATUS

• HID_UART_SUCCESS

• HID_UART_INVALID_DEVICE_OBJECT

• HID_UART_DEVICE_IO_FAILED

• HID_UART_DEVICE_NOT_SUPPORTED

Remarks : See 6. Port Latch Pin Definition for more information on configuring GPIO and flow control pins. Bits
9 and 15 or latchValue and latchMask are ignored. Pins TX, RX, Suspend, and /Suspend cannot be
written to using this function.

2.27 HidUart_GetPartNumber

Description : Retrieves the part number and version of the CP211x device.

Prototype : HID_UART_STATUS HidUart_GetPartNumber (HID_UART_DEVICE device,

BYTE* partNumber, BYTE* version)

Parameters : 1. device—Device object pointer as returned by HidUart_Open().
2. partNumber—Returns the device part number.

Definition Value Description

HID_UART_PART_CP2110 0x0A CP2110

HID_UART_PART_CP2114 0x0E CP2114

3. version—Returns the version

Return Value : HID_UART_STATUS

• HID_UART_SUCCESS

• HID_UART_INVALID_DEVICE_OBJECT

• HID_UART_INVALID_PARAMETER

• HID_UART_DEVICE_IO_FAILED

2.28 HidUart_GetLibraryVersion

Description : Returns the HID-to-UART Interface Library version.

Prototype : HID_UART_STATUS HidUart_GetLibraryVersion (BYTE* major, BYTE* minor,

BOOL* release)

Parameters : 1. major—Returns the major library version number
2. minor—Returns the minor library version number
3. release—Returns TRUE if the library is a release build, otherwise the library is a Debug build.

Return Value : HID_UART_STATUS

• HID_UART_SUCCESS

• HID_UART_INVALID_PARAMETER

AN433: CP2110/4 HID-to-UART API Specification
API Functions

silabs.com | Building a more connected world. Rev. 0.7 | 15

2.29 HidUart_GetHidLibraryVersion

Description : Returns the version of the HID Device Interface Library that is currently in use.

Prototype : HID_UART_STATUS HidUart_GetHidLibraryVersion (BYTE* major,

BYTE* minor, BOOL* release)

Parameters : 1. major—Returns the major library version number
2. minor—Returns the minor library version number
3. release—Returns TRUE if the library is a release build, otherwise the library is a Debug build.

Return Value : HID_UART_STATUS

• HID_UART_SUCCESS

• HID_UART_INVALID_PARAMETER

2.30 HidUart_GetHidGuid

Description : Obtains the HID GUID. This can be used to register for surprise removal notifications. (Windows only)

Prototype : HID_UART_STATUS HidUart_GetHidGuid (void* guid)

Parameters : 1. guid—Returns the HID GUID.

Return Value : HID_UART_STATUS

• HID_UART_SUCCESS

• HID_UART_INVALID_PARAMETER

AN433: CP2110/4 HID-to-UART API Specification
API Functions

silabs.com | Building a more connected world. Rev. 0.7 | 16

3. User Customization API Functions

The following parameters are programmable on the device. Different functions are provided to program these parameters. Each of
these functions can only be called once for each device and apply to the CP2110 and CP2114.

Table 3.1. CP2110 and CP2114 User Customizable Fields

Name Size

(Bytes)

Description

VID 2 USB Vendor ID

PID 2 USB Product ID

Power 1 Power request in mA/2

Power Mode 1 Bus Powered

Self Powered

Release Version 2 Major and Minor release version

Flush Buffers 1 Purge FIFOs on enable/disable

Manufacturer String 126 Product Manufacturer (English Unicode)

Product Description String 126 Product Description (English Unicode)

Serial String 62 Serialization String (English Unicode)

The following API functions are provided to allow user customization / one-time programming:

Table 3.2. User Customization API Functions

Definition Description

HidUart_SetLock() Prevents further OTP programming/customization

HidUart_GetLock() Gets the OTP lock status

HidUart_SetUsbConfig() Sets VID, PID, power, power mode, release version, and flush buffers settings

HidUart_GetUsbConfig() Gets VID, PID, power, power mode, release version, and flush buffers settings

HidUart_SetManufacturingString() Sets the USB manufacturing string

HidUart_GetManufacturingString() Gets the USB manufacturing string

HidUart_SetProductString() Sets the USB product string

HidUart_GetProductString() Gets the USB product string

HidUart_SetSerialString() Sets the USB serial string

HidUart_GetSerialString() Gets the USB serial string

AN433: CP2110/4 HID-to-UART API Specification
User Customization API Functions

silabs.com | Building a more connected world. Rev. 0.7 | 17

3.1 HidUart_SetLock

Description : Permanently locks/disables device customization.

Prototype : HID_UART_STATUS HidUart_SetLock (HID_UART_DEVICE device, WORD lock)

Parameters : 1. device—Device object pointer as returned by HidUart_Open().
2. lock—Bitmask specifying which fields can be customized/programmed and which fields are al-

ready customized.

Bit Definition Mask Description

0 HID_UART_LOCK_PRODUCT_STR_1 0x0001 Product String

1 HID_UART_LOCK_PRODUCT_STR_2 0x0002 Product String

2 HID_UART_LOCK_SERIAL_STR 0x0004 Serial String

3 HID_UART_LOCK_PIN_CONFIG 0x0008 Pin Config

4 N/A

5 N/A

6 N/A

7 N/A

8 HID_UART_LOCK_VID 0x0100 VID

9 HID_UART_LOCK_PID 0x0200 PID

10 HID_UART_LOCK_POWER 0x0400 Power

11 HID_UART_LOCK_POWER_MODE 0x0800 Power Mode

12 HID_UART_LOCK_RELEASE_VERSION 0x1000 Release Version

13 HID_UART_LOCK_FLUSH_BUFFERS 0x2000 Flush Buffers

14 HID_UART_LOCK_MFG_STR_1 0x4000 Manufacturing String

15 HID_UART_LOCK_MFG_STR_2 0x8000 Manufacturing String

Definition Bit Value Description

HID_UART_LOCK_UNLOCKED 1 Field can be customized

HID_UART_LOCK_LOCKED 0 Field has already been
customized or has been
locked

Return Value : HID_UART_STATUS

• HID_UART_SUCCESS

• HID_UART_INVALID_DEVICE_OBJECT

• HID_UART_DEVICE_IO_FAILED

Remarks : When this function is successfully called, the specified fields are fully locked and cannot be further
customized. The user customization functions can be called and may return HID_UART_SUCCESS
even though the device was not programmed. Call the function’s corresponding get function to verify
that customization was successful. Each field is stored in one time programmable memory (OTP) and
can only be customized once. After a field is customized, the corresponding lock bits are set to 0.

AN433: CP2110/4 HID-to-UART API Specification
User Customization API Functions

silabs.com | Building a more connected world. Rev. 0.7 | 18

3.2 HidUart_GetLock

Description : Returns the device customization lock status.

Prototype : HID_UART_STATUS HidUart_GetLock (HID_UART_DEVICE device, WORD* lock)

Parameters : 1. device—Device object pointer as returned by HidUart_Open().
2. lock—Returns a bitmask specifying which fields are locked.

Bit Definition Mask Description

0 HID_UART_LOCK_PRODUCT_STR_1 0x0001 Product String

1 HID_UART_LOCK_PRODUCT_STR_2 0x0002 Product String

2 HID_UART_LOCK_SERIAL_STR 0x0004 Serial String

3 HID_UART_LOCK_PIN_CONFIG 0x0008 Pin Config

4 N/A

5 N/A

6 N/A

7 N/A

8 HID_UART_LOCK_VID 0x0100 VID

9 HID_UART_LOCK_PID 0x0200 PID

10 HID_UART_LOCK_POWER 0x0400 Power

11 HID_UART_LOCK_POWER_MODE 0x0800 Power Mode

12 HID_UART_LOCK_RELEASE_VERSION 0x1000 Release Version

13 HID_UART_LOCK_FLUSH_BUFFERS 0x2000 Flush Buffers

14 HID_UART_LOCK_MFG_STR_1 0x4000 Manufacturing String

15 HID_UART_LOCK_MFG_STR_2 0x8000 Manufacturing String

Definition Bit Value Description

HID_UART_LOCK_UNLOCKED 1 Field can be customized

HID_UART_LOCK_LOCKED 0 Field has already been
customized or has been
locked

Return Value : HID_UART_STATUS

• HID_UART_SUCCESS

• HID_UART_INVALID_DEVICE_OBJECT

• HID_UART_INVALID_PARAMETER

• HID_UART_DEVICE_IO_FAILED

AN433: CP2110/4 HID-to-UART API Specification
User Customization API Functions

silabs.com | Building a more connected world. Rev. 0.7 | 19

3.3 HidUart_SetUsbConfig

Description : Allows one-time customization of the USB configuration, which includes vendor ID, product ID, pow-
er, power mode, release version, and flush buffers setting. Each field can be independently program-
med one time each via the mask field.

Prototype : HID_UART_STATUS HidUart_SetUsbConfig (HID_UART_DEVICE device,

WORD vid, WORD pid, BYTE power, BYTE powerMode, WORD releaseVersion,

BYTE flushBuffers, BYTE mask)

AN433: CP2110/4 HID-to-UART API Specification
User Customization API Functions

silabs.com | Building a more connected world. Rev. 0.7 | 20

Parameters : 1. device—Device object pointer as returned by HidUart_Open().
2. vid—Vendor ID.
3. pid—Product ID.
4. power—Specifies the current requested by the device in milliamps/2setting is 500 mA or 250

(0xFA). This value only applies when the device is configured to be bus powered.
5. powerMode—Configures the device as bus powered or self powered.

Definition Value Description

HID_UART_BUS_POWER 0x01 Device is bus powered

HID_UART_SELF_POWER_VREG_DIS 0x02 Device is self-powered
and voltage regulator is
disabled

HID_UART_SELF_POWER_VREG_EN 0x03 Device is self-powered
and voltage regulator is
enabled

6. releaseVersion—The release versionrevision. Both revisions can be programmed to any value
from 0 to 255.

7. flushBuffers—Bitmask specifying whether the RX and/or TX FIFOs are purged upon a device
open and/or close.

Bit Definition Value Description

0 HID_UART_FLUSH_TX_OPEN 0x01 Flush TX on Open

1 HID_UART_FLUSH_TX_CLOSE 0x02 Flush TX on Close

2 HID_UART_FLUSH_RX_OPEN 0x04 Flush RX on Open

3 HID_UART_FLUSH_RX_CLOSE 0x08 Flush RX on Close

8. mask—Bitmask specifying which fields to customize.
Bit Definition Value Description

0 HID_UART_SET_VID 0x01 VID

1 HID_UART_SET_PID 0x02 PID

2 HID_UART_SET_POWER 0x04 Power

3 HID_UART_SET_POWER_MODE 0x08 Power Mode

4 HID_UART_SET_RELEASE_VERSION 0x10 Release Version

5 HID_UART_SET_FLUSH_BUFFERS 0x20 Flush Buffers

6 N/A

7 N/A

Definition Bit Value Description

HID_UART_SET_IGNORE 0 Field will be unchanged

HID_UART_SET_PROGRAM 1 Field will be program-
med

Return Value : HID_UART_STATUS

• HID_UART_SUCCESS

• HID_UART_INVALID_DEVICE_OBJECT

• HID_UART_INVALID_PARAMETER

• HID_UART_DEVICE_IO_FAILED

AN433: CP2110/4 HID-to-UART API Specification
User Customization API Functions

silabs.com | Building a more connected world. Rev. 0.7 | 21

3.4 HidUart_GetUsbConfig

Description : Retrieves USB configuration, which includes vendor ID, product ID, power, power mode, release ver-
sion, and flush buffers setting.

Prototype : HID_UART_STATUS HidUart_GetUsbConfig (HID_UART_DEVICE device,

WORD* vid, WORD* pid, BYTE* power, BYTE* powerMode,

WORD* releaseVersion, BYTE* flushBuffers)

Parameters : 1. device—Device object pointer as returned by HidUart_Open().
2. vid—Returns the vendor ID.
3. pid—Returns the product ID.
4. power—Returns the current requested by the device in milliamps/2when the device is bus pow-

ered.
5. powerMode—Returns the device power mode.

Definition Value Description

HID_UART_BUS_POWER 0x01 Device is bus powered

HID_UART_SELF_POWER_VREG_DIS 0x02 Device is self-powered
and voltage regulator is
disabled

HID_UART_SELF_POWER_VREG_EN 0x03 Device is self-powered
and voltage regulator is
enabled

6. releaseVersion—Returns the release versionthe minor revision. Both revisions can be program-
med to any value from 0 to 255.

7. flushBuffers—Returns a bitmask specifying whether the RX and/or TX FIFOs are purged upon a
device open and/or close.

Bit Definition Value Description

0 HID_UART_FLUSH_TX_OPEN 0x01 Flush TX on Open

1 HID_UART_FLUSH_TX_CLOSE 0x02 Flush TX on Close

2 HID_UART_FLUSH_RX_OPEN 0x04 Flush RX on Open

3 HID_UART_FLUSH_RX_CLOSE 0x08 Flush RX on Close

Return Value : HID_UART_STATUS

• HID_UART_SUCCESS

• HID_UART_INVALID_DEVICE_OBJECT

• HID_UART_INVALID_PARAMETER

• HID_UART_DEVICE_IO_FAILED

AN433: CP2110/4 HID-to-UART API Specification
User Customization API Functions

silabs.com | Building a more connected world. Rev. 0.7 | 22

3.5 HidUart_SetManufacturingString

Description : Allows one-time customization of the USB manufacturing string.

Prototype : HID_UART_STATUS HidUart_SetManufacturingString (HID_UART_DEVICE device,

char* manufacturingString, BYTE strlen)

Parameters : 1. device—Device object pointer as returned by HidUart_Open().
2. manufacturingString—Variable of type HID_UART_CP2110/4_MFG_STR, a 62-byte character

buffer containing the ASCII manufacturing string.
3. strlen—The length of manufacturingString in bytes

Return Value : HID_UART_STATUS

• HID_UART_SUCCESS

• HID_UART_INVALID_DEVICE_OBJECT

• HID_UART_INVALID_PARAMETER

• HID_UART_DEVICE_IO_FAILED

3.6 HidUart_GetManufacturingString

Description : Retrieves the USB manufacturing string.

Prototype : HID_UART_STATUS HidUart_GetManufacturingString (HID_UART_DEVICE device,

char* manufacturingString, BYTE* strlen)

Parameters : 1. device—Device object pointer as returned by HidUart_Open().
2. manufacturingString—Variable of type HID_UART_CP2110/4_MFG_STR, a 62-byte character

buffer that will contain the ASCII manufacturing string.
3. strlen—Returns the length of the string in bytes.

Return Value : HID_UART_STATUS

• HID_UART_SUCCESS

• HID_UART_INVALID_DEVICE_OBJECT

• HID_UART_INVALID_PARAMETER

• HID_UART_DEVICE_IO_FAILED

3.7 HidUart_SetProductString

Description : Allows one-time customization of the USB product string.

Prototype : HID_UART_STATUS HidUart_SetProductString (HID_UART_DEVICE device,

char* productString, BYTE strlen)

Parameters : 1. device—Device object pointer as returned by HidUart_Open().
2. productString—Variable of type HID_UART_CP2110/4_PRODUCT_STR, a 62-byte character

buffer containing the ASCII product string.
3. strlen—The length of productString in bytes

Return Value : HID_UART_STATUS

• HID_UART_SUCCESS

• HID_UART_INVALID_DEVICE_OBJECT

• HID_UART_INVALID_PARAMETER

• HID_UART_DEVICE_IO_FAILED

AN433: CP2110/4 HID-to-UART API Specification
User Customization API Functions

silabs.com | Building a more connected world. Rev. 0.7 | 23

3.8 HidUart_GetProductString

Description : Retrieves the USB product string.

Prototype : HID_UART_STATUS HidUart_GetProductString (HID_UART_DEVICE device,

char* productString, BYTE* strlen)

Parameters : 1. device—Device object pointer as returned by HidUart_Open().
2. productString—Variable of type HID_UART_CP2110/4_PRODUCT_STR, a 62-byte character

buffer that will contain the ASCII product string.
3. strlen—Returns the length of the string in bytes.

Return Value : HID_UART_STATUS

• HID_UART_SUCCESS

• HID_UART_INVALID_DEVICE_OBJECT

• HID_UART_INVALID_PARAMETER

• HID_UART_DEVICE_IO_FAILED

3.9 HidUart_SetSerialString

Description : Allows one-time customization of the USB serial string.

Prototype : HID_UART_STATUS HidUart_SetSerialString (HID_UART_DEVICE device,

char* serialString, BYTE strlen)

Parameters : 1. device—Device object pointer as returned by HidUart_Open().
2. serialString—Variable of type HID_UART_CP2110/4_SERIAL_STR, a 30-byte character buffer

containing the ASCII serial string.
3. strlen—The length of serialString in bytes

Return Value : HID_UART_STATUS

• HID_UART_SUCCESS

• HID_UART_INVALID_DEVICE_OBJECT

• HID_UART_INVALID_PARAMETER

• HID_UART_DEVICE_IO_FAILED

3.10 HidUart_GetSerialString

Description : Retrieves the USB product string.

Prototype : HID_UART_STATUS HidUart_GetSerialString (HID_UART_DEVICE device,

char* serialString, BYTE* strlen)

Parameters : 1. device—Device object pointer as returned by HidUart_Open().
2. serialString—Variable of type HID_UART_CP2110/4_SERIAL_STR, a 30-byte character buffer

that will contain the Unicode product string.
3. strlen—Returns the length of the string in bytes.

Return Value : HID_UART_STATUS

• HID_UART_SUCCESS

• HID_UART_INVALID_DEVICE_OBJECT

• HID_UART_INVALID_PARAMETER

• HID_UART_DEVICE_IO_FAILED

AN433: CP2110/4 HID-to-UART API Specification
User Customization API Functions

silabs.com | Building a more connected world. Rev. 0.7 | 24

4. CP2110 User Customization API Functions

The following parameters are programmable on the CP2110. Different functions are provided to program these parameters. Each of
these functions can only be called once for each device.

Table 4.1. CP2110 User Customizable Fields

Name Size

(Bytes)

Description

Pin Configuration 18 All pins configuration

The following API functions are provided to allow user customization / one-time programming:

Table 4.2. CP2110 User Customization API Functions

Definition Description

HidUart_SetPinConfig() Configures the pin behavior

HidUart_GetPinConfig() Gets pin configuration

AN433: CP2110/4 HID-to-UART API Specification
CP2110 User Customization API Functions

silabs.com | Building a more connected world. Rev. 0.7 | 25

4.1 HidUart_SetPinConfig

Description : Allows one-time configuration of the GPIO mode for each pin.

Prototype : HID_UART_STATUS HidUart_SetPinConfig(HID_UART_DEVICE device,

BYTE* pinConfig, BOOL useSuspendValues, WORD suspendValue,

WORD suspendMode, BYTE rs485Level, BYTE clkDiv);

Parameters : 1. device—Device object pointer as returned by HidUart_Open().
2. pinConfig—A pointer to a 13-byte array that configures the GPIO mode for each of the 13 pins.

The RX pin is not configurable.

See Table 4.3 CP2110 Pin Configurations on page 27 for the available pin configurations.

Definition Bit Value Description

HID_UART_GPIO_MODE_INPUT 0x00 GPIO Input

HID_UART_GPIO_MODE_OD 0x01 GPIO Output–Open
Drain

HID_UART_GPIO_MODE_PP 0x02 GPIO Output–Push Pull

HID_UART_GPIO_MODE_FUNCTION1 0x03 Pin specific function and
mode

3. useSuspendValues—Specifies if the device is to use suspendValue and suspendMode when de-
vice is in USB suspend. If set to 1, the device will use these values. If cleared to 0, the device's
GPIO pins will remain in the state they were in before entering USB suspend.

4. suspendValue—This is the latch value that will be driven on each GPIO pin when the device is in
a suspend state.

See Table 4.4 CP2110 Pin Masks for Suspend on page 28 for the mask values for each pin.

Definition Bit Value Description

HID_UART_VALUE_SUSPEND_LO 0 Latch = 0 in suspend

HID_UART_VALUE_SUSPEND_HI 1 Latch = 1 in suspend

5. suspendMode—Specifies the mode for each GPIO pin when the device is in a suspend state.

See Table 4.5 CP2110 Pin Mode Options in Suspend on page 29 for the available pin modes.

Definition Bit Value Description

HID_UART_MODE_SUSPEND_OD 0 Open Drain in suspend

HID_UART_MODE_SUSPEND_PP 1 Push Pull in suspend

6. rs485Level—Specifies the RS-485 pin level of GPIO.2 when configured in RS-485 mode.

Definition Bit Value Description

HID_UART_MODE_RS485_ACTIVE_LO 0x00 GPIO.2/RS485 pin is ac-
tive low

HID_UART_MODE_RS485_ACTIVE_HI 0x01 GPIO.2/RS485 pin is ac-
tive high

7. clkDiv—Divider applied to GPIO0_CLK clock outputFor 1–255, the output frequency is 24
MHz/(2 x clkDiv).

AN433: CP2110/4 HID-to-UART API Specification
CP2110 User Customization API Functions

silabs.com | Building a more connected world. Rev. 0.7 | 26

Return Value : HID_UART_STATUS

• HID_UART_SUCCESS

• HID_UART_INVALID_DEVICE_OBJECT

• HID_UART_INVALID_PARAMETER

• HID_UART_DEVICE_IO_FAILED

• HID_UART_DEVICE_NOT_SUPPORTED

Table 4.3. CP2110 Pin Configurations

Byte Definition Value Description

0 GPIO.0/CLK 0x00

0x01

0x02

0x03

GPIO Input

GPIO Output–Open Drain

GPIO Output–Push Pull

CLK Output–Push Pull

1 GPIO.1/RTS 0x00

0x01

0x02

0x03

GPIO Input

GPIO Output–Open Drain

GPIO Output–Push Pull

RTS Output–Open Drain

2 GPIO.2/CTS 0x00

0x01

0x02

0x03

GPIO Input

GPIO Output–Open Drain

GPIO Output–Push Pull

CTS Input

3 GPIO.3/RS485 0x00

0x01

0x02

0x03

GPIO Input

GPIO Output–Open Drain

GPIO Output–Push Pull

RS485 Output–Push Pull

4 GPIO.4/TX Toggle 0x00

0x01

0x02

0x03

GPIO Input

GPIO Output–Open Drain

GPIO Output–Push Pull

TX Toggle Output–Push Pull

5 GPIO.5/RX Toggle 0x00

0x01

0x02

0x03

GPIO Input

GPIO Output–Open Drain

GPIO Output–Push Pull

RX Toggle Output–Push Pull

6 GPIO.6 0x00

0x01

0x02

GPIO Input

GPIO Output–Open Drain

GPIO Output–Push Pull

AN433: CP2110/4 HID-to-UART API Specification
CP2110 User Customization API Functions

silabs.com | Building a more connected world. Rev. 0.7 | 27

Byte Definition Value Description

7 GPIO.7 0x00

0x01

0x02

GPIO Input

GPIO Output–Open Drain

GPIO Output–Push Pull

8 GPIO.8 0x00

0x01

0x02

GPIO Input

GPIO Output–Open Drain

GPIO Output–Push Pull

9 GPIO.9 0x00

0x01

0x02

GPIO Input

GPIO Output–Open Drain

GPIO Output–Push Pull

10 TX 0x01

0x02

TX–Open Drain

TX–Push Pull

11 Suspend 0x01

0x02

Suspend–Open Drain

Suspend–Push Pull

12 /Suspend 0x01

0x02

/Suspend–Open Drain

/Suspend–Push Pull

Table 4.4. CP2110 Pin Masks for Suspend

Byte Definition Bit Mask Description

0 CP2110_MASK_GPIO_0_CLK 0x0001 GPIO.0/CLK

1 CP2110_ MASK_GPIO_1_RTS 0x0002 GPIO.1/RTS

2 CP2110_ MASK_GPIO_2_CTS 0x0004 GPIO.2/CTS

3 CP2110_ MASK_GPIO_3_RS485 0x0008 GPIO.3/RS485

4 CP2110_ MASK_TX 0x0010 TX

5 CP2110_ MASK_RX 0x0020 RX

6 CP2110_ MASK_GPIO_4_TX_TOGGLE 0x0040 TX Toggle

7 CP2110_ MASK_GPIO_5_RX_TOGGLE 0x0080 RX Toggle

8 CP2110_MASK_SUSPEND_BAR 0x0100 /Suspend

9 N/A

10 CP2110_ MASK_GPIO_6 0x0400 GPIO.6

11 CP2110_ MASK_GPIO_7 0x0800 GPIO.7

12 CP2110_ MASK_GPIO_8 0x1000 GPIO.8

13 CP2110_ MASK_GPIO_9 0x2000 GPIO.9

14 CP2110_MASK_SUSPEND 0x4000 Suspend

15 N/A

AN433: CP2110/4 HID-to-UART API Specification
CP2110 User Customization API Functions

silabs.com | Building a more connected world. Rev. 0.7 | 28

Table 4.5. CP2110 Pin Mode Options in Suspend

Byte Definition Bit Mask Description

0 CP2110_MASK_GPIO_0_CLK 0x0001 GPIO.0/CLK

1 CP2110_ MASK_GPIO_1_RTS 0x0002 GPIO.1/RTS

2 CP2110_ MASK_GPIO_2_CTS 0x0004 GPIO.2/CTS

3 CP2110_ MASK_GPIO_3_RS485 0x0008 GPIO.3/RS485

4 CP2110_ MASK_TX 0x0010 TX

5 CP2110_ MASK_RX 0x0020 RX

6 CP2110_ MASK_GPIO_4_TX_TOGGLE 0x0040 TX Toggle

7 CP2110_ MASK_GPIO_5_RX_TOGGLE 0x0080 RX Toggle

8 CP2110_MASK_SUSPEND_BAR 0x0100 /Suspend

9 N/A

10 CP2110_ MASK_GPIO_6 0x0400 GPIO.6

11 CP2110_ MASK_GPIO_7 0x0800 GPIO.7

12 CP2110_ MASK_GPIO_8 0x1000 GPIO.8

13 CP2110_ MASK_GPIO_9 0x2000 GPIO.9

14 CP2110_MASK_SUSPEND 0x4000 Suspend

15 N/A

4.2 HidUart_GetPinConfig

Description : Retrieves the GPIO mode configuration for each pin.

Prototype : HID_UART_STATUS HidUart_GetPinConfig(HID_UART_DEVICE device,

BYTE* pinConfig, BOOL* useSuspendValues, WORD* suspendValue,

WORD* suspendMode, BYTE* rs485Level, BYTE* clkDiv);

Parameters : 1. device—Device object pointer as returned by HidUart_Open().
2. pinConfig—A pointer to a 13-byte array that will contain the GPIO mode configuration for each of

the 13 pins.
3. useSuspendValues—Returns the configuration for using the values in suspendValue and sus-

pendMode when in suspend mode. This bit is the same as bit 15 of suspendMode.
4. suspendValue—Returns the latch value that will be driven on each GPIO pin when the device is

in a suspend state.
5. suspendMode—Returns the mode for each GPIO pin when the device is in a suspend state.
6. rs485Level—Returns the RS-485 pin level of GPIO.2 when configured in RS–485 mode.
7. clkDiv—Divider applied to GPIO0_CLK clock outputFor 1–255, the output frequency is 24

MHz/(2 x clkDiv).

Return Value : HID_UART_STATUS

• HID_UART_SUCCESS

• HID_UART_INVALID_DEVICE_OBJECT

• HID_UART_INVALID_PARAMETER

• HID_UART_DEVICE_IO_FAILED

• HID_UART_DEVICE_NOT_SUPPORTED

AN433: CP2110/4 HID-to-UART API Specification
CP2110 User Customization API Functions

silabs.com | Building a more connected world. Rev. 0.7 | 29

5. CP2114 User Customization API Functions

The following API functions access customizable features of CP2114 devices.

Table 5.1. CP2114 User Customization API Functions

Definition Description

CP2114_GetVersions() Gets the API and firmware versions

CP2114_SetPinConfig() Configures the pin behavior

CP2114_GetPinConfig() Gets pin configuration

CP2114_GetDeviceStatus() Gets the CP2114 device status

CP2114_GetDeviceCaps() Gets the CP2114 device capabilities

CP2114_SetRamConfig() Sets the CP2114 configuration in RAM

CP2114_GetRamConfig() Gets the CP2114 device configuration from RAM

CP2114_SetDacRegisters() Sets the DAC configuration registers

CP2114_GetDacRegisters() Gets the DAC configuration registers

CP2114_GetOtpConfig() Gets the OTP configuration based on the current index

CP2114_CreateOtpConfig() Creates a new configuration block for the CP2114

CP2114_SetBootConfig() Sets the CP2114 boot configuration index

CP2114_ReadOTP() Reads OTP customization block

CP2114_WriteOTP() Writes OTP customization block

CP2114_I2cReadData() Reads data from I2C slave device (CP2114-B02 only)

CP2114_I2cWriteData() Writes data to I2C slave device (CP2114-B02 only)

AN433: CP2110/4 HID-to-UART API Specification
CP2114 User Customization API Functions

silabs.com | Building a more connected world. Rev. 0.7 | 30

5.1 CP2114_GetVersions

Description : Returns the CP2114 API and firmware versions.

Prototype : HID_UART_STATUS CP2114_GetVersions(HID_UART_DEVICE device,

BYTE* api_version, BYTE* fw_version, BYTE* config_version);

Parameters : 1. device—Device object pointer as returned by HidUart_Open().
2. api_version—Returns the API version of the device.
3. fw_version—Returns the firmware version of the device.
4. config_version—Returns whether the device is B01 or B02.

Returned Item Offset Size Value Description

API version 1 1 CP2114-B01: 0x05

CP2114-B02: 0x06

Device interface format
version number.

Firmware version 2 1 CP2114-B01: 0x07

CP2114-B02: 0x08

Firmware version num-
ber.

Config version 3 1 CP2114-B01: 0x01

CP2114-B02: 0x02

Configuration format
version number.

Return Value : HID_UART_STATUS

• HID_UART_SUCCESS

• HID_UART_INVALID_DEVICE_OBJECT

• HID_UART_INVALID_PARAMETER

• HID_UART_DEVICE_IO_FAILED

• HID_UART_DEVICE_NOT_SUPPORTED

AN433: CP2110/4 HID-to-UART API Specification
CP2114 User Customization API Functions

silabs.com | Building a more connected world. Rev. 0.7 | 31

5.2 CP2114_SetPinConfig

Description : Allows one-time configuration of the GPIO mode for each pin.

Prototype : HID_UART_STATUS CP2114_SetPinConfig(HID_UART_DEVICE device,

BYTE* pinConfig, BOOL useSuspendValues, WORD suspendValue,

WORD suspendMode, BYTE clkDiv)

Parameters : 1. device—Device object pointer as returned by HidUart_Open().
2. pinConfig—A pointer to a 14-byte array that configures the GPIO mode or dedicated function for

each of the 14 pins.

See Table 5.2 CP2114 Pin Configurations on page 32 for the available pin configurations.
3. useSuspendValues—Specifies if the device is to use suspendValue and suspendMode when de-

vice is in USB suspend
4. suspendValue—This is the latch value that will be driven on each GPIO pin except Suspend

and / Suspend when the device is in a suspend state.
5. suspendMode—Specifies the mode for each GPIO pin when the device is in a suspend state.

See Table 5.3 CP2114 Pin Mode Options in Suspend on page 34 for the available pin modes.
6. clkDiv—Divider applied to GPIO9./CLK clock output when the pin is configured to CLK Output-

Push Pull. When 0, the output frequency is SYSCLK/(2x256). For 1-255, the output frequency is
SYSCLK/(2 x clkDiv). SYSCLK can be either 48 MHz or 49.152 MHz depending on the configu-
ration.

Return Value : HID_UART_STATUS

• HID_UART_SUCCESS

• HID_UART_INVALID_DEVICE_OBJECT

• HID_UART_INVALID_PARAMETER

• HID_UART_DEVICE_IO_FAILED

• HID_UART_DEVICE_NOT_SUPPORTED

Table 5.2. CP2114 Pin Configurations

Byte Definition Value Description

0 GPIO.0_RMUTE 0x00

0x01

0x02

0x03

GPIO Input

GPIO Output–Open Drain

GPIO Output–Push Pull

Record Mute Input (default)

1 GPIO.1_PMUTE 0x00

0x01

0x02

0x03

GPIO Input

GPIO Output–Open Drain

GPIO Output–Push Pull

Play Back Mute Input (default)

2 GPIO.2_VOL– 0x00

0x01

0x02

0x03

GPIO Input

GPIO Output–Open Drain

GPIO Output–Push Pull

Volume Down Input (default)

AN433: CP2110/4 HID-to-UART API Specification
CP2114 User Customization API Functions

silabs.com | Building a more connected world. Rev. 0.7 | 32

Byte Definition Value Description

3 GPIO.3_VOL+ 0x00

0x01

0x02

0x03

GPIO Input

GPIO Output–Open Drain

GPIO Output–Push Pull

Volume Up Input (default)

4 GPIO.4_RMUTELED 0x00

0x01

0x02

0x03

GPIO Input

GPIO Output–Open Drain

GPIO Output–Push Pull

LED1 RMute Output (default)

5 GPIO.5_TXT_DACSEL0 0x00

0x01

0x02

0x03

0x04

GPIO Input

GPIO Output–Open Drain

GPIO Output–Push Pull

TX Toggle Output–Push Pull

DAC/Config Select 0 Input (de-
fault)

6 GPIO.6_RXT_DACSEL1 0x00

0x01

0x02

0x03

0x04

GPIO Input

GPIO Output–Open Drain

GPIO Output–Push Pull

RX Toggle Output–Push Pull

DAC/Config Select 1 Input (de-
fault)

7 GPIO.7_RTS_DACSEL2 0x00

0x01

0x02

0x03

0x04

GPIO Input

GPIO Output–Open Drain

GPIO Output–Push Pull

RTS Output–Push Pull

DAC/Config Select 2 Input (de-
fault)

8 GPIO.8_CTS_DACSEL3 0x00

0x01

0x02

0x03

0x04

GPIO Input

GPIO Output–Open Drain

GPIO Output–Push Pull

CTS Input

DAC/Config Select 3 Input (de-
fault)

9 GPIO.9_CLKOUT 0x00

0x01

0x02

0x03

GPIO Input

GPIO Output–Open Drain

GPIO Output–Push Pull

CLK Output–Push Pull (default)

AN433: CP2110/4 HID-to-UART API Specification
CP2114 User Customization API Functions

silabs.com | Building a more connected world. Rev. 0.7 | 33

Byte Definition Value Description

10 GPIO.10_TX 0x00

0x01

0x02

0x03

0x04

GPIO Input

GPIO Output–Open Drain

GPIO Output–Push Pull

TX Output–Open Drain

TX Output–Push Pull (default)

11 GPIO.11_RX 0x00

0x01

0x02

0x03

GPIO Input

GPIO Output–Open Drain

GPIO Output–Push Pull

RX Input (default)

12 Suspend 0x00

0x01

Suspend–Open Drain

Suspend–Push Pull (default)

13 /Suspend 0x00

0x01

/Suspend–Open Drain

/Suspend–Push Pull (default)

Table 5.3. CP2114 Pin Mode Options in Suspend

Byte Definition Bit Mask Description

0 CP2114_MASK_GPIO_0 0x0001 GPIO.0_RMUTE

1 CP2114_MASK_GPIO_1 0x0002 GPIO.1_PMUTE

2 CP2114_MASK_GPIO_2 0x0004 GPIO.2_VOL–

3 CP2114_MASK_GPIO_3 0x0008 GPIO.3_VOL+

4 CP2114_MASK_GPIO_4 0x0010 GPIO.4_RMUTELED

5 CP2114_MASK_GPIO_5 0x0020 GPIO.5_TXT_DACSEL0 (B01)

GPIO.5_TXT_CFGSEL0 (B02)

6 CP2114_MASK_GPIO_6 0x0040 GPIO.6_RXT_DACSEL1 (B01)

GPIO.6_RXT_CFGSEL1 (B02)

7 CP2114_MASK_GPIO_7 0x0080 GPIO.7_RTS_DACSEL2 (B01)

GPIO.7_RTS_CFGSEL2 (B02)

8 CP2114_MASK_GPIO_8 0x0100 GPIO.8_CTS_DACSEL3 (B01)

GPIO.8_CTS_CFGSEL3 (B02)

9 CP2114_MASK_GPIO_8 0x0200 GPIO.9_CLKOUT

10 CP2114_MASK_TX 0x0400 GPIO.10_TX

11 CP2114_MASK_RX 0x0800 GPIO.11_RX

12 CP2114_MASK_SUSPEND 0x1000 Suspend

13 CP2114_MASK_SUSPEND_BAR 0x2000 /Suspend

AN433: CP2110/4 HID-to-UART API Specification
CP2114 User Customization API Functions

silabs.com | Building a more connected world. Rev. 0.7 | 34

5.3 CP2114_GetPinConfig

Description : Retrieves the GPIO mode configuration for each pin.

Prototype : HID_UART_STATUS CP2114_GetPinConfig(HID_UART_DEVICE device,

BYTE* pinConfig, BOOL* useSuspendValues, WORD* suspendValue,

WORD* suspendMode, BYTE* clkDiv)

Parameters : 1. device—Device object pointer as returned by HidUart_Open().
2. pinConfig—A pointer to a 14-byte array to store GPIO mode configuration or dedicated function

for each of the 14 pins.
3. useSuspendValues—Returns the configuration for using the values in suspendValue and sus-

pendMode when in suspend mode
4. suspendValue—Returns the latch value that will be driven on each GPIO pin when the device is

in a suspend state.
5. suspendMode—Returns the mode for each GPIO pin when the device is in a suspend state.
6. clkDiv—Divider applied to GPIO.9_CLKOUT clock output

Return Value : HID_UART_STATUS

• HID_UART_SUCCESS

• HID_UART_INVALID_DEVICE_OBJECT

• HID_UART_INVALID_PARAMETER

• HID_UART_DEVICE_IO_FAILED

• HID_UART_DEVICE_NOT_SUPPORTED

AN433: CP2110/4 HID-to-UART API Specification
CP2114 User Customization API Functions

silabs.com | Building a more connected world. Rev. 0.7 | 35

5.4 CP2114_GetDeviceStatus

Description : Returns the status of the device (the device status is cleared on a read).

Prototype : HID_UART_STATUS CP2114_GetDeviceStatus(HID_UART_DEVICE device,

BYTE *pCP2114Status)

Parameters : 1. device—Device object pointer as returned by HidUart_Open().
2. pCP2114Status—Pointer to store status byte.

See Table 5.4 CP2114 Device Status Values on page 36 for more information.

Return Value : HID_UART_STATUS

• HID_UART_SUCCESS

• HID_UART_INVALID_DEVICE_OBJECT

• HID_UART_INVALID_PARAMETER

• HID_UART_DEVICE_IO_FAILED

• HID_UART_DEVICE_NOT_SUPPORTED

Table 5.4. CP2114 Device Status Values

Definition Value Description

HID_UART_SUCCESS 0x00 Last command produced no error

HID_UART_INVALID_CONFIG_NUMBER 0x20 Requested configuration number exceeded max
configurations of 32

HID_UART_BOOT_INDEXES_DEPLETED 0x21 All boot indices have been used

HID_UART_REQUESTED_CONFIG_NOT_PRESENT 0x22 Pointer to requested configuration is 0xFFFF

HID_UART_CONFIG_INVALID 0x23 Specified configuration consists of invalid parame-
ters

HID_UART_CONFIG_POINTERS_DEPLETED 0x24 All configuration pointer slots have been used

HID_UART_CONFIG_SPACE_DEPLETED 0x25 Not enough space to save the new Config

HID_UART_BOOT_INDEX_UNCHANGED 0x26 The user-specified boot index is already the current
boot index stored in OTP

HID_UART_CONFIG_UNCHANGED 0x27 Current configuration is already the same as the
user requested

HID_UART_INVALID_CONFIG_SEQUENCE_IDENTIFIER 0x28 (B02 only) Config sequence identifier was not one of
the following valid options:

INBAND_IDENTIFIER_INIT (0xF9)

INBAND_IDENTIFIER_SUSPEND (0xFA)

INBAND_IDENTIFIER_ACTIVE (0xFB)

HID_UART_INVALID_CONFIG_SETTINGS 0x29 (B02 only) Audio Configuration contains invalid ele-
ments.

HID_UART_UNSUPPORTED_CONFIG_FORMAT 0x2A (B02 only) The specified config format version num-
ber is not supported by the interface library, or is not
supported by the device firmware.

HID_UART_INVALID_NUMER_OF_CACHED_PARAMS 0x40 The number of cached parameters is invalid.

HID_UART_UNEXPECTED_CACHE_DATA 0x41 Cached parameters contain invalid or unexpected
data values.

HID_UART_I2C_BUSY 0x50 The I2C bus is busy.

AN433: CP2110/4 HID-to-UART API Specification
CP2114 User Customization API Functions

silabs.com | Building a more connected world. Rev. 0.7 | 36

Definition Value Description

HID_UART_I2C_TIMEOUT 0x51 Timeout waiting for I2C event (start condition, ACK,
etc.)

HID_UART_I2C_INVALID_TOKEN 0x52 Codec configuration contains invalid token.

HID_UART_I2C_INVALID_WRITE_LENGTH 0x53 Specified number of bytes to write is invalid.

HID_UART_I2C_INVALID_CONFIG_LENGTH 0x54 Specified configuration length is invalid.

HID_UART_I2C_SCL_STUCK_LOW 0x55 The I2C bus ‘SCL’ line is stuck low.

HID_UART_I2C_SDA_STUCK_LOW 0x56 The I2C bus ‘SDA’ line is stuck low.

5.5 CP2114_GetDeviceCaps

Description : Returns the CP2114 device capabilities.

Prototype : HID_UART_STATUS CP2114_GetDeviceCaps(HID_UART_DEVICE device,

PCP2114_CAPS_STRUCT pCP2114CapsStruct)

Parameters : 1. device—Device object pointer as returned by HidUart_Open().
2. pCP2114CapsStruct—pointer to store CP2114_CAPS_STRUCT.
3. availableBootIndices—Indicates how many CP2114 OTP Boot indices are left for programming.
4. availableOtpConfigs—indicates how many entries are left for programming in the CP2114 config-

uration table. Three OTP configurations are pre-programmed at factory default.
5. currentBootConfig—indicates the current active boot configdictated by DAC Select Pins, thus

this might not be the boot index in OTP. If currentBootConfig is 0xFF, the device will boot up with
no DAC.

6. availableOtpConfigSpace_LSB—low byte of OTP space left to support new configurations.
7. availableOtpConfigSpace_MSB—high byte of OTP space left to support new configurations.

Return Value : HID_UART_STATUS

• HID_UART_SUCCESS

• HID_UART_INVALID_DEVICE_OBJECT

• HID_UART_INVALID_PARAMETER

• HID_UART_DEVICE_IO_FAILED

• HID_UART_DEVICE_NOT_SUPPORTED

AN433: CP2110/4 HID-to-UART API Specification
CP2114 User Customization API Functions

silabs.com | Building a more connected world. Rev. 0.7 | 37

5.6 CP2114_SetRamConfig

Description : Configures the CP2114 RAM configuration parameters with the given values. These settings are writ-
ten to the internal volatile RAM of the CP2114 and are overwritten on power cycle or reset with the
values contained in the specified boot configuration.

The CP2114 data sheet has more information on the audio configuration string format.

See the Remarks area of this function description for usage recommendations.

Prototype : HID_UART_STATUS CP2114_SetRamConfig(HID_UART_DEVICE device,

PCP2114_RAM_CONFIG_STRUCT pCP2114RamConfigStruct)

Parameters : 1. device—Device object pointer as returned by HidUart_Open().
2. pCP2114RamConfigStruct—pointer to CP2114_RAM_CONFIG_STRUCT.

Note: For CP2114_SetRamConfig(), the Length does not matter. The size will be whatever the
user application passes in.

struct _RAM_CONFIG_STRUCT
{
U16 Length;
U8 configData[MAX_RAM_CONFIG_SIZE];
};

Return Value : HID_UART_STATUS

• HID_UART_SUCCESS

• HID_UART_INVALID_DEVICE_OBJECT

• HID_UART_INVALID_PARAMETER

• HID_UART_DEVICE_IO_FAILED

• HID_UART_DEVICE_NOT_SUPPORTED

AN433: CP2110/4 HID-to-UART API Specification
CP2114 User Customization API Functions

silabs.com | Building a more connected world. Rev. 0.7 | 38

Remarks : The intent of the CP2114_SetRamConfig() function is to allow temporary evaluation of minor configu-
ration changes (e.g. codec register settings) before programming the changes into a new OTP
EPROM configuration. However, there are some configuration elements that should not be changed
using this function.

Changing any of the following clocking options requires that the new configuration be written to OTP
EPROM because the clocking options are applied only when the CP2114 comes out of reset. Reset-
ting the CP2114 after applying a new RAM configuration is not an option, because at reset the exist-
ing RAM configuration data will be overwritten with data from the specified boot configuration.

• USBCLK source (Internal/External)
• SYSCLK source (Internal/External)
• SYSCLK frequency (48.000 MHz or 49.152 MHz)

Changing certain other configuration options in RAM has been seen to cause problems with some
host operating systems. Presumably the problems are due to the host saving information from the
CP2114’s USB descriptors the first time a unique CP2114 is recognized, but not updating this infor-
mation when the same device re-enumerates with different capabilities. If improper host behavior is
observed after changing these (or any other) configuration options in RAM, a new OTP EPROM con-
figuration should be created instead.

• Audio synchronization mode (Asynchronous/Synchronous)
• CP2114 support for playback volume and mute
• Playback volume parameters (Min/Max/Resolution)

Follow these steps when switching between OTP EPROM configurations:

1. If all the GPIO 8-5 pins remain in their default codec select state, these pins can be used to se-
lect the new configuration and the applied logic state can be changed at this time.

Note: On the CP2114-EK motherboard, JP16 connects GPIO,8 to the CTS output of the RS-232
level shifter device, and so must be disconnected when using GPIO 8 as a codec select line.

2. Otherwise, if any of the GPIO 8-5 pins have been reconfigured to something other than codec
select, the configuration utility must be used to program the OTP boot config with the index of the
desired configuration.

3. Disconnect the CP2114 from USB and power.
4. For Windows hosts, the CP2114 devices should be uninstalled. The USBDeview utility allows

users to uninstall USB devices on Windows, and can be run as a GUI or from the command line.
The following command uninstalls all CP2114s on a system: "C:\<pathname>\USBDeview.exe"
/remove_by_pid 10C4;EAB0". The <pathname> tag represents the actual path to USBDe-
view.exe file. Quotes are required (as shown) if the pathname contains spaces. The example
command specifies the CP2114’s default PID (0x10C4) and VID (0xEAB0) values; these argu-
ments must be changed if the VID or PID has been reprogrammed by the user.

5. Reconnect the CP2114 to power and USB.
6. Verify that the CP2114 device enumerates successfully.
7. Use the configuration utility to verify that the CP2114 is using the desired boot configuration.

AN433: CP2110/4 HID-to-UART API Specification
CP2114 User Customization API Functions

silabs.com | Building a more connected world. Rev. 0.7 | 39

5.7 CP2114_GetRamConfig

Description : Gets the current CP2114 RAM configuration parameters.

Prototype : HID_UART_STATUS CP2114_GetRamConfig(HID_UART_DEVICE device,

PCP2114_RAM_CONFIG_STRUCT pCP2114RamConfigStruct)

Parameters : 1. device—Device object pointer as returned by HidUart_Open().
2. pCP2114RamConfigStruct—Pointer to the buffer that will be filled with the RAM config block.

This buffer must be at least 65 bytes long. The first two bytes will contain the U16 size of the
following RAM config block. The config block for B01 and B02 devices is described in the device
data sheet.

Note: For CP2114_GetRamConfig(), the Length does not matter. The returned size will be the
size of the OTP configuration that was booted, or whatever the user application passed in if a
subsequent CP2114_SetRamConfig() call was made.

struct _RAM_CONFIG_STRUCT
{
U16 Length;
U8 configData[MAX_RAM_CONFIG_SIZE];
};

Return Value : HID_UART_STATUS

• HID_UART_SUCCESS

• HID_UART_INVALID_DEVICE_OBJECT

• HID_UART_INVALID_PARAMETER

• HID_UART_DEVICE_IO_FAILED

• HID_UART_DEVICE_NOT_SUPPORTED

5.8 CP2114_SetDacRegisters

Description : Configures the device or attached DAC using multiples of 2-byte or 3-byte sequences.

The first byte is DAC register address or special in-band command.

The following byte(s) is the data to write in the specified DAC register if preceded by DAC register
address, or parameter(s) of the in-band command if preceded by reserved in-band command IDs.

Some DACs have 8-bit registers, some have 16-bit registers. For 8-bit registers, 2-byte pairs shall be
used. For 16-bit registers, 3-byte triplets shall be used.

See the User's Guide for details on in-band commands.

Prototype : HID_UART_STATUS CP2114_SetDacRegisters(HID_UART_DEVICE device,

BYTE* pDacConfigBuffer, BYTE dacConfigBufferLength)

Parameters : 1. device—Device object pointer as returned by HidUart_Open().
2. pDacConfigBuffer—Pointer to the sequence buffer.
3. dacConfigBufferLength—Length in bytes of the sequences.

Return Value : HID_UART_STATUS

• HID_UART_SUCCESS

• HID_UART_INVALID_DEVICE_OBJECT

• HID_UART_INVALID_PARAMETER

• HID_UART_DEVICE_IO_FAILED

• HID_UART_DEVICE_NOT_SUPPORTED

Remarks : While the CP2114_SetDacRegisters() function is applicable to both CP2114-B01 and CP2114-B02
devices, the CP2114_I2cWriteData() function supports a wider range of data formats and is recom-
mended for B02 devices.

AN433: CP2110/4 HID-to-UART API Specification
CP2114 User Customization API Functions

silabs.com | Building a more connected world. Rev. 0.7 | 40

5.9 CP2114_GetDacRegisters

Description : Reads from the specified DAC registers via the I2C interface. Unlike CP2114_SetDacRegisters, this
API retrieves DAC register settings only without intercepting any in-band commands. The host should
ensure valid DAC register addresses are used.

Prototype : HID_UART_STATUS CP2114_GetDacRegisters(HID_UART_DEVICE device,

BYTE dacStartAddress, BYTE dacRegistersToRead,

BYTE* pDacConfigBuffer)

Parameters : 1. device—Device object pointer as returned by HidUart_Open().
2. dacStartAddress—Register address from which to start.
3. dacRegistersToRead—Number of registers to read.
4. pDacConfigBuffer—Pointer to a buffer to store the data returned from the device

Return Value : HID_UART_STATUS

• HID_UART_SUCCESS

• HID_UART_INVALID_DEVICE_OBJECT

• HID_UART_INVALID_PARAMETER

• HID_UART_DEVICE_IO_FAILED

• HID_UART_DEVICE_NOT_SUPPORTED

Remarks : While the CP2114_GetDacRegisters() function is applicable to both CP2114-B01 and CP2114-B02
devices, the CP2114_I2cReadData() function supports a wider range of data formats and is recom-
mended for B02 devices.

AN433: CP2110/4 HID-to-UART API Specification
CP2114 User Customization API Functions

silabs.com | Building a more connected world. Rev. 0.7 | 41

5.10 CP2114_GetOtpConfig

Description : Retrieves a CP2114 configuration from OTP.

Prototype : HID_UART_STATUS CP2114_GetOtpConfig(HID_UART_DEVICE device,

BYTE cp2114ConfigNumber, PCP2114_CONFIG_STRUCT pCP2114ConfigStruct)

Parameters : 1. device—Device object pointer as returned by HidUart_Open().
2. cp2114ConfigNumber—configuration number to retrieve CP2114 OTP.
3. pCP2114ConfigStruct—Pointer to store configuration data returned from the device. The config-

uration data has an internal structure that depends on the revision of the chip returned in
config_version by CP2114_GetVersions():

• B01—RAM_CONFIG_SIZE_B01 bytes of RAM configuration at the beginning, followed by
DAC configuration as the remainder of the data.

• B02—RAM_CONFIG_SIZE_B02 bytes of RAM configuration at the beginning, followed by
DAC configuration as the remainder of the data.

typedef union _CP2114_OTP_CONFIG
{
 struct // if config_version == CP2114_CONFIG_VERSION_B01
 {
 BYTE RemConfig[RAM_CONFIG_SIZE_B01];
 BYTE DacConfig[MAX_DAC_CONFIG_SIZE];
 } CP2114_B01;
 struct // if config_version == CP2114_CONFIG_VERSION_B02
 {
 BYTE PemConfig[RAM_CONFIG_SIZE_B02];
 BYTE DacConfig[MAX_DAC_CONFIG_SIZE];
 } CP2114_B02;
 BYTE Other[0xffff]; // Max size that can be specified in 2 bytes
} CP2114_OTP_CONFIG, *PCP2114_OTP_CONFIG;

typedef struct _CP2114_OTP_CONFIG_GET
{
 U16 Length; // byte count in OtpConfig + 2 for the Length itself
 CP2114_OTP_CONFIG OtpConfig;
} CP2114_OTP_CONFIG_GET, *PCP2114_OTP_CONFIG_GET;

Return Value : HID_UART_STATUS

• HID_UART_SUCCESS

• HID_UART_INVALID_DEVICE_OBJECT

• HID_UART_INVALID_PARAMETER

• HID_UART_DEVICE_IO_FAILED

• HID_UART_DEVICE_NOT_SUPPORTED

AN433: CP2110/4 HID-to-UART API Specification
CP2114 User Customization API Functions

silabs.com | Building a more connected world. Rev. 0.7 | 42

5.11 CP2114_CreateOtpConfig

Description : Creates a new CP2114 configuration in the available OTP space.

Prototype : HID_UART_STATUS CP2114_CreateOtpConfig(HID_UART_DEVICE device,

WORD configBufferLength, BYTE* pConfigBuffer)

Parameters : 1. device—Device object pointer as returned by HidUart_Open().
2. configBufferLength—Length in bytes of the configuration to be written to OTP.
3. pConfigBuffer—Pointer to the buffer containing configuration structured per CP2114_CON-

FIG_STRUCT excluding the U16 Length in CP2114_RAM_CONFIG_STRUCT. pConfigBuffer
has an internal structure that depends on the revision of the chip returned in config_version by
CP2114_GetVersions():

• B01—RAM_CONFIG_SIZE_B01 bytes of RAM configuration at the beginning, followed by
DAC configuration as the remainder of the data.

• B02—RAM_CONFIG_SIZE_B02 bytes of RAM configuration at the beginning, followed by
DAC configuration as the remainder of the data.

This function automatically inserts the 16-bit configBufferLength in front of the data before
writing to the OTP.

Return Value : HID_UART_STATUS

• HID_UART_SUCCESS

• HID_UART_INVALID_DEVICE_OBJECT

• HID_UART_INVALID_PARAMETER

• HID_UART_DEVICE_IO_FAILED

• HID_UART_DEVICE_NOT_SUPPORTED

5.12 CP2114_SetBootConfig

Description : Specifies the CP2114 configuration to be loaded from OTP on boot.

Prototype : HID_UART_STATUS CP2114_SetBootConfig(HID_UART_DEVICE device,

BYTE cp2114ConfigNumber)

Parameters : 1. device—Device object pointer as returned by HidUart_Open().
2. cp2114ConfigNumber—Configuration Index that will be set as the boot configuration upon reset.

Return Value : HID_UART_STATUS

• HID_UART_SUCCESS

• HID_UART_INVALID_DEVICE_OBJECT

• HID_UART_INVALID_PARAMETER

• HID_UART_DEVICE_IO_FAILED

• HID_UART_DEVICE_NOT_SUPPORTED

AN433: CP2110/4 HID-to-UART API Specification
CP2114 User Customization API Functions

silabs.com | Building a more connected world. Rev. 0.7 | 43

5.13 CP2114_ReadOTP

Description : Returns partial or full OTP customization block. The size of the OTP configuration space is 6 KB
(6144 bytes) for the CP2114-B01 and 32 KB (32768 bytes) for the CP2114-B02.

Prototype : HID_UART_STATUSCP2114_ReadOTP(HID_UART_DEVICE device,

UINT cp2114Address , BYTE* pReadBuffer, UINT ReadLength)

Parameters : 1. device—Device object pointer as returned by HidUart_Open().
2. cp2114Address—The OTP address to read from
3. pReadBuffer—Pointer to a byte array buffer to store data read from OTP space.
4. ReadLength—Length of OTP data to read in bytes.

Return Value : HID_UART_STATUS

• HID_UART_SUCCESS

• HID_UART_INVALID_DEVICE_OBJECT

• HID_UART_INVALID_PARAMETER

• HID_UART_DEVICE_IO_FAILED

• HID_UART_DEVICE_NOT_SUPPORTED

5.14 CP2114_WriteOTP

Description : Writes partial or full OTP customization block. The size of the OTP configuration space is 6 KB (6144
bytes) for the CP2114-B01 and 32 KB (32768 bytes) for the CP2114-B02.

Prototype : HID_UART_STATUSCP2114_WriteOTP(HID_UART_DEVICE device,

UINT cp2114Address , BYTE* pWriteBuffer, UINT writeLength)

Parameters : 1. device—Device object pointer as returned by HidUart_Open().
2. cp2114Address—The OTP address to start writing to
3. pWriteBuffer—Pointer to a byte array buffer that will contain values to write to the OTP space.
4. writeLength—The length of write buffer in bytes

Return Value : HID_UART_STATUS

• HID_UART_SUCCESS

• HID_UART_INVALID_DEVICE_OBJECT

• HID_UART_INVALID_PARAMETER

• HID_UART_DEVICE_IO_FAILED

• HID_UART_DEVICE_NOT_SUPPORTED

AN433: CP2110/4 HID-to-UART API Specification
CP2114 User Customization API Functions

silabs.com | Building a more connected world. Rev. 0.7 | 44

5.15 CP2114_I2cReadData

Description : Read data from I2C Slave Device (CP2114-B02 only).

Prototype : HID_TO_UART_API HID_UART_STATUS WINAPI CP2114_I2cReadData(HID_UART_DEVICE device,

BYTE slaveAddress, BYTE* pWriteBuffer, BYTE WriteLength,

BYTE* pReadBuffer, BYTE ReadLength);

Parameters : 1. device—Device object pointer as returned by HidUart_Open().
2. slaveAddress—The left-justified I2C slave address to use for the read transaction.
3. pWriteBuffer—Pointer to a byte array buffer that contains values to write to the I2C slave device.
4. writeLength—The length of the write buffer (maximum 2 bytes).
5. pReadBuffer—Pointer to a byte array buffer that will be used to store data that is read from the

I2C slave device.
6. readLength—The number of bytes to read (maximum 60 bytes). The size of the read buffer must

be at least as large as readLength.

Return Value : HID_UART_STATUS

• HID_UART_SUCCESS

• HID_UART_INVALID_DEVICE_OBJECT

• HID_UART_INVALID_PARAMETER

• HID_UART_DEVICE_IO_FAILED

• HID_UART_DEVICE_NOT_SUPPORTED

5.16 CP2114_I2cWriteData

Description : Write data to I2C Slave Device (CP2114-B02 only).

Prototype : HID_TO_UART_API HID_UART_STATUS WINAPI CP2114_I2cWriteData(HID_UART_DEVICE device,

BYTE slaveAddress, BYTE* pWriteBuffer, BYTE writeLength);

Parameters : 1. device—Device object pointer as returned by HidUart_Open().
2. slaveAddress—The left-justified I2C slave address to use for the write transaction.
3. pWriteBuffer—Pointer to a byte array buffer that contains data to write to the I2C slave device.
4. writeLength—The length of write buffer (maximum 2 bytes).

Return Value : HID_UART_STATUS

• HID_UART_SUCCESS

• HID_UART_INVALID_DEVICE_OBJECT

• HID_UART_INVALID_PARAMETER

• HID_UART_DEVICE_IO_FAILED

AN433: CP2110/4 HID-to-UART API Specification
CP2114 User Customization API Functions

silabs.com | Building a more connected world. Rev. 0.7 | 45

6. Port Latch Pin Definition

The following tables describe the GPIO bit definitions for latchValue in HidUart_ReadLatch() and HidUart_WriteLatch(). The li-
brary will remap the bit definitions used by the device to match this structure.

Table 6.1. CP2110 Port Latch Pin Definition

Bit CP2110 Pin Name CP2110 Pin Number

0 GPIO.0/CLK 1

1 GPIO.1/RTS 24

2 GPIO.2/CTS 23

3 GPIO.3/RS485 22

4 TX 21

5 RX 20

6 GPIO.4/TX Toggle 19

7 GPIO.5/RX Toggle 18

8 /SUSPEND 17

9 N/A

10 GPIO.6 15

11 GPIO.7 14

12 GPIO.8 13

13 GPIO.9 12

14 SUSPEND 11

15 N/A

Table 6.2. CP2114 Port Latch Pin Definition

Bit CP2114 Pin Name CP2114 Pin Number

0 GPIO.0_RMUTE 30

1 GPIO.1_PMUTE 29

2 GPIO.2_VOL- 14

3 GPIO.3_VOL+ 13

4 GPIO.4_RMUTELED 12

5 GPIO.5_TXT_DACSEL0 28

6 GPIO.6_RXT_DACSEL1 11

7 GPIO.7_RTS_DACSEL2 19

8 GPIO.8_CTS_DACSEL3 20

9 GPIO.9_CLKOUT 22

10 GPIO.10_TX 16

11 GPIO.11_RX 15

AN433: CP2110/4 HID-to-UART API Specification
Port Latch Pin Definition

silabs.com | Building a more connected world. Rev. 0.7 | 46

Bit CP2114 Pin Name CP2114 Pin Number

12 SUSPEND 18

13 /SUSPEND 17

14 Not Used Not Used

15 Not Used Not Used

AN433: CP2110/4 HID-to-UART API Specification
Port Latch Pin Definition

silabs.com | Building a more connected world. Rev. 0.7 | 47

7. HID_UART_STATUS Return Codes

Each library function returns an HID_UART_STATUS return code to indicate that the function returned successfully or to describe an error.
The table below describes each error code.

Table 7.1. HID_UART_STATUS Return Codes

Definition Value Description

HID_UART_SUCCESS 0x00 Function returned successfully.1

HID_UART_DEVICE_NOT_FOUND 0x01 Indicates that no devices are connected or that the
specified device does not exist.

HID_UART_INVALID_HANDLE 0x02 Indicates that the handle value is NULL or INVA-
LID_HANDLE_VALUE or that the device with the speci-
fied handle does not exist.

HID_UART_INVALID_DEVICE_OBJECT 0x03 Indicates that the device object pointer does not match
the address of a valid HID-to-UART device.

HID_UART_INVALID_PARAMETER 0x04 Indicates that a pointer value is NULL or that an invalid
setting was specified.

HID_UART_INVALID_REQUEST_LENGTH 0x05 Indicates that the specified number of bytes to read or
write is invalid. Check the read and write length limits.

HID_UART_READ_ERROR 0x10 Indicates that the read was not successful and did not
time out. This means that the host could not get an input
interrupt report.

HID_UART_WRITE_ERROR 0x11 Indicates that the write was not successful. This means
that the output interrupt report failed or timed out.

HID_UART_READ_TIMED_OUT 0x12 Indicates that a read failed to return the number of bytes
requested before the read timeout elapsed. Try increas-
ing the read timeout.

HID_UART_WRITE_TIMED_OUT 0x13 Indicates that a write failed to complete sending the
number of bytes requested before the write timeout
elapsed. Try increasing the write timeout (should be
greater than 0 ms).

HID_UART_DEVICE_IO_FAILED 0x14 Indicates that host was unable to get or set a feature re-
port. The device could have been disconnected.

HID_UART_DEVICE_ACCESS_ERROR 0x15 Indicates that the device or device property could not be
accessed. Either the device is not opened, already
opened when trying to open, or an error occurred when
trying to get HID information.

HID_UART_DEVICE_NOT_SUPPORTED 0x16 Indicates that the current device does not support the
corresponding action. Functions listed in this document
are for the CP2110/4 only.

HID_UART_UNKNOWN_ERROR 0xFF This is the default return code value. This value should
never be returned.

Note:
1. Set functions may return success, indicating that the device received the request; however, there is no indication that the device

actually performed the request (i.e., the setting was invalid). The user must call the corresponding get function to verify that the
settings were properly configured.

AN433: CP2110/4 HID-to-UART API Specification
HID_UART_STATUS Return Codes

silabs.com | Building a more connected world. Rev. 0.7 | 48

8. Thread Safety

The HID-to-UART library and associated functions are not thread-safe. This means that calling library functions simultaneously from
multiple threads may have undesirable effects.

To use the library functions in more than one thread, the user should do the following:

1. Call library functions from within a critical section such that only a single function is being called at any given time. If a function is
being called in one thread, then the user must prevent another thread from calling any function until the first function returns.

2.HidUART_Read() issues a pending read request that cannot be canceled from another thread. If the user calls HidUART_Close() in
a different thread than the thread in which the read request was created, then the device will not be accessible after calling
HidUart_Close(). The thread that issued the pending read request must return/terminate successfully before the device can be
accessed again. See 9. Thread Read Access Models (For Windows) for more information.

AN433: CP2110/4 HID-to-UART API Specification
Thread Safety

silabs.com | Building a more connected world. Rev. 0.7 | 49

9. Thread Read Access Models (For Windows)

There are several common read access models when using the HID-to-UART library. There are some restrictions on the valid use of a
device handle based on these models. CancelIo() can only cancel pending I/O (reads/writes) issued in the same thread in which Can-
celIo() is called. Due to this limitation, the user is responsible for cancelling pending I/O before closing the device. Failure to do so will
result in an inaccessible HID-to-UART device until the thread releases access to the device handle.

The following tables describe five common access models and the expected behavior.

Note: HidUart_Close() calls CancelIo() prior to calling CloseHandle().

Note: HidUart_Read() issues a pending read request. The request completes if at least one input report is read. The request is still
pending if the operation times out.

Note: HidUart_CancelIo() forces any pending requests issued by the same thread to complete (cancelled).

*
Indicates that a read is still pending and was issued in the specified thread.

?
Indicates that a read is still pending and was issued in one of the threads (indeterminate).

Table 9.1. Single Thread Access Model (Safe)

Thread A Thread B Result

HidUart_Open() — —

HidUart_Read()* — —

HidUart_Close() — OK

Table 9.2. Split Thread Access Model (Unsafe)

Thread A Thread B Result

HidUart_Open() — —

— HidUart_Read()* —

HidUart_Close() — Error: Device inaccessible

— Terminate Thread OK: Thread relinquishes device access

Table 9.3. Split Thread Access Model (Safe)

Thread A Thread B Result

HidUart_Open() — —

— HidUart_Read()* —

— HidUart_CancelIo() —

HidUart_Close() — OK

AN433: CP2110/4 HID-to-UART API Specification
Thread Read Access Models (For Windows)

silabs.com | Building a more connected world. Rev. 0.7 | 50

Table 9.4. Multi-Thread Access Model (Unsafe)

Thread A Thread B Result

HidUart_Open() — —

HidUart_Read()? HidUart_Read()? —

HidUart_Close() — Read()* Thread A: OK

Read()* Thread B: Error: Device inaccessi-
ble

— Terminate Thread OK: Thread relinquishes device access

Table 9.5. Multi-Thread Access Model (Safe)

Thread A Thread B Result

HidUart_Open() — —

HidUart_Read()? HidUart_Read()? —

— HidUart_CancelIo() —

HidUart_Close() — OK

AN433: CP2110/4 HID-to-UART API Specification
Thread Read Access Models (For Windows)

silabs.com | Building a more connected world. Rev. 0.7 | 51

10. Surprise Removal (For Windows)

HidUart_GetHidGuid() returns the HID GUID so that Windows applications or services can register for the WM_DEVICECHANGE
Windows message. Once registered, the application will receive device arrival and removal notices for HID devices. The application
must retrieve the device path to filter devices based on VID/PD. Similarly, if a DBT_DEVICEREMOVECOMPLETE message is received, then
the application must check to see if the device path matches the device path of any connected devices. If this is the case, then the
device was removed and the application must close the device. Also if a DBT_DEVICEARRIVAL message is received, then the application
might add the new device to a device list so that users can select any HID device matching the required VID/PID.

See accompanying example code for information on how to implement surprise removal and device arrival. Search the Knowledge
Base Articles on the Silicon Labs community (community.silabs.com) for "surprise removal" for programming examples for C++, Visual
Basic.NET, and Visual C#.

AN433: CP2110/4 HID-to-UART API Specification
Surprise Removal (For Windows)

silabs.com | Building a more connected world. Rev. 0.7 | 52

http://community.silabs.com/

11. Note on CP2114/SLABHIDtoUART Behavior Under Linux and Android

The CP2114 device uses a single HID interface for multiple purposes:
• Vendor-specific reports (declared in CP2114_Common.h).
• HID UART transmit and receive operations.
• HID consumer controls for audio playback volume increment, decrement and mute.

On Windows, the in-box system drivers allow the CP2114's UART I/O and vendor-specific HID reports to be accessed by the SLABHID-
toUART interface library, while the HID consumer-control volume and mute buttons remain associated with the system and therefore
remain operational.

Linux systems do not provide the ability to handle UART I/O and vendor-specific HID reports concurrently with the HID consumer-con-
trol volume and mute buttons. When the SLABHIDtoUART library opens the device, the kernel driver is detached from the CP2114
device handle, which results in the volume and mute controls ceasing to function while the device is opened.

The current version of the SLABHIDtoUART library calls the libusb_set_auto_detach_kernel_driver() function prior to claiming an inter-
face, which results in the kernel driver being automatically re-attached when the interface is released; so the volume and mute controls
will again work when the CP2114 device is closed.

AN433: CP2110/4 HID-to-UART API Specification
Note on CP2114/SLABHIDtoUART Behavior Under Linux and Android

silabs.com | Building a more connected world. Rev. 0.7 | 53

12. Revision History

Revision 0.7

August, 2021
• Updated GPIO.1/RST Description in Table 4.3 CP2110 Pin Configurations on page 27.
• Updated TX, Suspend, /Suspend Value in Table 4.3 CP2110 Pin Configurations on page 27.

Revision 0.6

April, 2016
• Updated formatting.
• Updated description for 5.10 CP2114_GetOtpConfig and 5.11 CP2114_CreateOtpConfig to more accurately reflect the actual be-

havior.
• Added notes regarding Length to 5.7 CP2114_GetRamConfig and 5.6 CP2114_SetRamConfig.
• Added support for the CP2114-B02:

• Added 5.15 CP2114_I2cReadData and 5.16 CP2114_I2cWriteData.
• Added a new parameter config_version to 5.1 CP2114_GetVersions.
• Updated pin descriptions for the Config Select pins in Table 5.2 CP2114 Pin Configurations on page 32 and Table 5.3 CP2114

Pin Mode Options in Suspend on page 34.
• Updated available pCP2114Status values in 5.4 CP2114_GetDeviceStatus.
• Removed the structure definition from 5.5 CP2114_GetDeviceCaps.
• Updated the Description and added a Remarks field for 5.6 CP2114_SetRamConfig.
• Updated the description of the pCP2114RamConfigStruct parameter to 5.7 CP2114_GetRamConfig.
• Added a Remarks field for 5.8 CP2114_SetDacRegisters and 5.9 CP2114_GetDacRegisters.
• Updated the Description fields for 5.13 CP2114_ReadOTP and 5.14 CP2114_WriteOTP.

Revision 0.5

October, 2012
• Added support for the CP2114.

AN433: CP2110/4 HID-to-UART API Specification
Revision History

silabs.com | Building a more connected world. Rev. 0.7 | 54

Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
USA

www.silabs.com

IoT Portfolio
www.silabs.com/IoT

SW/HW
www.silabs.com/simplicity

Quality
www.silabs.com/quality

Support & Community
www.silabs.com/community

Simplicity Studio
One-click access to MCU and wireless
tools, documentation, software,
source code libraries & more. Available
for Windows, Mac and Linux!

Disclaimer
Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software imple-
menters using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each
specific device, and “Typical” parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon
Labs reserves the right to make changes without further notice to the product information, specifications, and descriptions herein, and does not give warranties as to the
accuracy or completeness of the included information. Without prior notification, Silicon Labs may update product firmware during the manufacturing process for security or
reliability reasons. Such changes will not alter the specifications or the performance of the product. Silicon Labs shall have no liability for the consequences of use of the infor-
mation supplied in this document. This document does not imply or expressly grant any license to design or fabricate any integrated circuits. The products are not designed or
authorized to be used within any FDA Class III devices, applications for which FDA premarket approval is required or Life Support Systems without the specific written consent
of Silicon Labs. A “Life Support System” is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in
significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used
in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. Silicon Labs disclaims
all express and implied warranties and shall not be responsible or liable for any injuries or damages related to use of a Silicon Labs product in such unauthorized applications.
Note: This content may contain offensive terminology that is now obsolete. Silicon Labs is replacing these terms with inclusive language wherever possible. For more
information, visit www.silabs.com/about-us/inclusive-lexicon-project

Trademark Information
Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy
Micro logo and combinations thereof, “the world’s most energy friendly microcontrollers”, Redpine Signals®, WiSeConnect , n-Link, ThreadArch®, EZLink®, EZRadio®, EZRadioPRO®,
Gecko®, Gecko OS, Gecko OS Studio, Precision32®, Simplicity Studio®, Telegesis, the Telegesis Logo®, USBXpress® , Zentri, the Zentri logo and Zentri DMS, Z-Wave®, and others
are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered
trademark of ARM Limited. Wi-Fi is a registered trademark of the Wi-Fi Alliance. All other products or brand names mentioned herein are trademarks of their respective holders.

	1. Include Files
	2. API Functions
	2.1 HidUart_GetNumDevices
	2.2 HidUart_GetString
	2.3 HidUart_GetOpenedString
	2.4 HidUart_GetIndexedString
	2.5 HidUart_GetOpenedIndexedString
	2.6 HidUart_GetAttributes
	2.7 HidUart_GetOpenedAttributes
	2.8 HidUart_Open
	2.9 HidUart_Close
	2.10 HidUart_IsOpened
	2.11 HidUart_SetUartEnable
	2.12 HidUart_GetUartEnable
	2.13 HidUart_Read
	2.14 HidUart_Write
	2.15 HidUart_FlushBuffers
	2.16 HidUart_Cancello
	2.17 HidUart_SetTimeouts
	2.18 HidUart_GetTimeouts
	2.19 HidUart_GetUartStatus
	2.20 HidUart_SetUartConfig
	2.21 HidUart_GetUartConfig
	2.22 HidUart_StartBreak
	2.23 HidUart_StopBreak
	2.24 HidUart_Reset
	2.25 HidUart_ReadLatch
	2.26 HidUart_WriteLatch
	2.27 HidUart_GetPartNumber
	2.28 HidUart_GetLibraryVersion
	2.29 HidUart_GetHidLibraryVersion
	2.30 HidUart_GetHidGuid

	3. User Customization API Functions
	3.1 HidUart_SetLock
	3.2 HidUart_GetLock
	3.3 HidUart_SetUsbConfig
	3.4 HidUart_GetUsbConfig
	3.5 HidUart_SetManufacturingString
	3.6 HidUart_GetManufacturingString
	3.7 HidUart_SetProductString
	3.8 HidUart_GetProductString
	3.9 HidUart_SetSerialString
	3.10 HidUart_GetSerialString

	4. CP2110 User Customization API Functions
	4.1 HidUart_SetPinConfig
	4.2 HidUart_GetPinConfig

	5. CP2114 User Customization API Functions
	5.1 CP2114_GetVersions
	5.2 CP2114_SetPinConfig
	5.3 CP2114_GetPinConfig
	5.4 CP2114_GetDeviceStatus
	5.5 CP2114_GetDeviceCaps
	5.6 CP2114_SetRamConfig
	5.7 CP2114_GetRamConfig
	5.8 CP2114_SetDacRegisters
	5.9 CP2114_GetDacRegisters
	5.10 CP2114_GetOtpConfig
	5.11 CP2114_CreateOtpConfig
	5.12 CP2114_SetBootConfig
	5.13 CP2114_ReadOTP
	5.14 CP2114_WriteOTP
	5.15 CP2114_I2cReadData
	5.16 CP2114_I2cWriteData

	6. Port Latch Pin Definition
	7. HID_UART_STATUS Return Codes
	8. Thread Safety
	9. Thread Read Access Models (For Windows)
	10. Surprise Removal (For Windows)
	11. Note on CP2114/SLABHIDtoUART Behavior Under Linux and Android
	12. Revision History

