
Rev. 0.1 2/12 Copyright © 2012 by Silicon Laboratories AN671

AN671

PRECISION32™ PORT I /O CROSSBAR DECODER

1. Introduction

Precision32™ devices use one or more Port I/O Crossbar Decoders to assign internal digital signals to Port I/O
pins. A crossbar decoder provides the system designer with flexibility to customize the pinout according to the
needs of the application. The Port I/O Crossbar Decoder is particularly useful in low pin count devices where the
number of internal digital signals outnumber the available I/O pins.

The crossbars are fully supported by the Silicon Labs Precision32 SDK, including Hardware Access Layer (HAL)
routines and code examples showing how to configure a crossbar for a particular peripheral. Additionally, the
Precision32 AppBuilder application provides a graphical interface to easily configure pins in a crossbar.

Figure 1 shows an example of how internal signals are routed to the Port Banks of SiM3U1xx devices through the
use of two crossbar decoders. Port Bank 0 (PB0) and Port Bank 1 (PB1) are connected to crossbar 0, and
Port Bank 2 (PB2) and Port Bank 3 (PB3) are connected to crossbar 1.

Figure 1. Crossbar Example on a SiM3U167 Device

2. Relevant Documentation

Precision32 Application Notes are listed on the following website: www.silabs.com/32bit-mcu.

AN664: Precision32™ CMSIS and HAL User’s Guide

AN670: Getting Started with the Silicon Labs Precision32™ AppBuilder

SiM3U167
80-Pin TQFP

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

PB4.4

PB4.5

VSSHD

PB4.3

PB4.2

VIOHD

PB4.0

PB4.1

PB3.0

60

59

58

57

56

55

54

53

52

51

50

49

48

47

46

45

44

43

42

41

P
B

0.
1

1

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

V
S

S

V
IO

P
B

1.
1

3

8
0

7
9

7
8

7
7

7
6

7
5

7
4

7
3

7
2

7
1

7
0

6
9

6
8

6
7

6
6

6
5

6
4

6
3

6
2

6
1

V
B

U
S

V
S

S

V
D

D

V
IO

D
+

D
-

R
E

S
E

T

P
B

0.
0

P
B

0.
1

P
B

0.
2

P
B

0.
3

P
B

0.
4

P
B

0.
5

P
B

0.
6

P
B

0.
7

P
B

0.
8

P
B

0.
9

P
B

0.
1

0
PB0.13

PB0.14

PB0.15

PB1.0

PB1.1

PB1.2/TRST

PB1.3/TDO/SWV

PB1.4/TDI

PB1.5/ETM0

PB1.6/ETM1

VIO

PB1.8/ETM3

PB1.9/TRACECLK

PB1.10

PB1.11

PB1.12

P
B

1.
1

4

P
B

2
.3

P
B

2
.4

P
B

2
.5

P
B

2
.6

P
B

2
.7

P
B

2
.8

P
B

2
.9

P
B

2.
1

0

P
B

2.
1

1

P
B

2.
1

2

P
B

2.
1

3

P
B

2.
1

4

PB3.1

PB3.2

PB3.3

PB3.4

PB3.5

PB3.6

PB3.7

PB3.8

PB3.9

PB3.10

PB3.11

SWCLK/TCK

SWDIO/TMS

PB0.12

PB1.7/ETM2

P
B

1.
1

5

P
B

2
.0

P
B

2
.1

P
B

2
.2

V
R

E
G

IN

Crossbar 0
(PB0 and PB1)

Crossbar 1
(PB2 and PB3)

PB4
Independent of
the crossbars

www.silabs.com/32bit-mcu

AN671

2 Rev. 0.1

3. Crossbar Function

The primary function of a crossbar decoder is to route internal digital signals to Port Bank pins. Figure 2 is a block
diagram of crossbar 0 on SiM3U1xx devices. The inputs to the crossbar are a number of internal digital signals
inside the device. The XBAR0H, XBAR0L, and PBSKIP registers in the port configuration module (PBCFG) define
how the internal digital signals are mapped to the I/O pins of PB0 and PB1.

Figure 2. Example Routing of Internal Digital Signals to Port Banks on SiM3U1xx Devices

Crossbar 0

Digital
Crossbar 0

Priority
Decoder

Port Match

PM

PMMSK

Not all Port I/O pins are
available on all packages.

Port
I/O

Cells

PB1.0

PB1.15

16

Port
I/O

Cells

PB0.0

PB0.15

16

XBAR0H

XBAR0L

PBSKIP

Highest
Priority

Lowest
Priority

Flow Control

RX/TX

Clock

USART0

NSS

SCK/MISO/MOSI
SPI0

Flow Control

RX/TX

Clock

USART1

EPCA0 “N” Channels

PCA0 “N” Channels

PCA1 “N” Channels

EPCA0 ECI

PCA0 ECI

I2C0 SDA/SCL

CMP0A

CMP0S
CMP0

CMP1A

CMP1S
CMP1

T0EX

T0CT
TIMER0

T1EX

T1CT
TIMER1

I2S0 TX

PCA1 ECI

Flow Control

RX/TX
UART0

RX/TXUART1

NSS

SCK/MISO/MOSI
SPI1

NSS

SCK/MISO/MOSI
SPI2

AHB
Clock

Output (16)

AN671

Rev. 0.1 3

3.1. Crossbar Functionality on Reset
After a device reset, all crossbars enter a disabled default reset state. Port Bank pins connected to a disabled
crossbar are forced into a high impedance digital input mode. Firmware must enable the crossbar associated with
a specific Port Bank pin in order to use that pin as an output. In most applications, firmware will enable all
crossbars on the device to control all the available I/O pins on the device.

When a crossbar is enabled with no internal signals selected to be routed to I/O pins, the crossbar provides full
general purpose input/output (GPIO) access to the Port Banks associated with it. Pins with full GPIO access can
be used as digital inputs, digital outputs, or may be used by various analog functions on the device. As internal
signals are selected to be routed to I/O pins (or “enabled in the crossbar”), the crossbar claims pins from the
associated port banks. Pins claimed by the crossbar cannot be used as GPIO and are under the full control of the
crossbar and the associated peripheral.

3.2. Skipping Pins in the Crossbar
The crossbars have a pin-skipping feature for pins that must be reserved GPIO or analog functions. Any Port Bank
pin with its corresponding PBSKIPEN bit set to 1 cannot be claimed by the crossbar and will remain available for
GPIO or analog functions. The ability to have the crossbar skip certain pins is useful when a system designer is
trying to achieve a specific pinout for the device.

3.3. Crossbar Priority Order
As internal signals are enabled in a crossbar, the crossbar claims pins from the Port Banks to connect to the
internal signal, starting with the least significant Port Bank pin and finishing with the most significant Port Bank pin.
As an example, crossbar 0 of SiM3U1xx devices would start with PB0.0, then PB0.1, and continue in this fashion
until reaching PB1.15. If the crossbar encounters a pin that has its PBSKIPEN bit set to 1, it skips over the pin and
claims the next available pin. Any pin not claimed by the crossbar can be used for GPIO or analog functions.

The crossbar uses a priority order to assign enabled internal signals to claimed Port Bank pins. This priority order
varies with the specific crossbar implementation. Figure 3 shows an example priority order from crossbar 0 of
SiM3U1xx devices. In this example, there are four enabled peripherals that require pin assignment: SPI0, EPCA0,
UART0, and UART1. From the enabled peripherals, SPI0 has the highest priority, so it will be assigned to the first
three pins claimed by the crossbar. Note that in this example configuration, firmware configured the first 8 pins of
PB0 (PB0.0 - PB0.7) to be skipped by the crossbar; the crossbar will assign the SPI0 pins to PB0.8, PB0.9, and
PB0.10. Following the priority order, the EPCA0 pins are assigned to PB0.11, PB0.12, PB0.15, PB1.0. The PB1.2.
PB0.13 and PB0.14 pins are not assigned to EPCA0 because they are configured to be skipped by the crossbar.
UART0 and UART1 are assigned to the next four available pins: PB1.3, PB1.4, PB.15, and PB1.6. The remaining
pins (PB1.7–PB1.15) are not claimed by the crossbar.

3.4. Creating a Flexible Device Pinout
The definition of a system can sometimes change in the middle of the design cycle, necessitating a pinout change.
Planning ahead for such changes in pinout can save costly PCB revisions and decrease time to market when a
system definition change does occur. In the example pinout shown in Figure 3, SPI0 is used in 3-wire mode. If the
communication protocol was changed from 3-wire to 4-wire mode, then PB0.11 would be used for the NSS signal,
causing all peripherals of lower priority order to shift by one pin. Using the crossbar’s skip functionality, the system
designer can plan ahead for such a change by skipping PB0.11 when the specification calls for 3-wire SPI mode.
The skipped pin can later be un-skipped if the specification later requires the use of 4-wire SPI without affecting the
location of peripherals with a lower priority order. If the specification does not change, the skipped pin can be used
for GPIO (e.g., to control an LED or as a debug signal). Adding a few skipped pins when determining the original
device pinout can allow future functionality to be added with minimal impact on the device pinout.

AN671

4 Rev. 0.1

Figure 3. Example Crossbar Priority Order on SiM3U1xx Devices (Crossbar 0)

P0 P1

54 6 710 2 3 1312 14 1598 10 11 54 6 710 2 3 1312 14 1598 10 11Signal NamePeripheral

USART0_TXUSART0

USART0_RX

USART0_RTS

USART0_CTS

USART0_UCLK

SPI0_SCKSPI0

SPI0_MISO

SPI0_MOSI

SPI0_NSS

USART1_TXUSART1

USART1_RX

USART1_RTS

USART1_CTS

USART1_UCLK

EPCA0_CEX0EPCA0

EPCA0_CEX1

EPCA0_CEX2

EPCA0_CEX3

EPCA0_CEX4

EPCA0_CEX5

PCA0_CEX0PCA0

PCA0_CEX1

PCA1_CEX0PCA1

PCA1_CEX1

EPCA0_ECIEPCA0 ECI

PCA0_ECIPCA0 ECI

PCA1_ECIPCA1 ECI

I2S0_TX_WSI2S0 TX

I2S0_TX_SCK

I2S0_TX_SD

I2C0_SDAI2C0

I2C0_SCL

CMP0SCMP0

CMP0A

CMP1SCMP1

CMP1A

TIMER0_CTTIMER0

TIMER0_EX

TIMER1_CTTIMER1

TIMER1_EX

UART0_TXUART0

UART0_RX

UART0_RTS

UART0_CTS

UART1_TXUART1

UART1_RX

SPI1_SCKSPI1

SPI1_MISO

SPI1_MOSI

SPI1_NSS

SPI2_SCKSPI2

SPI2_MISO

SPI2_MOSI

SPI2_NSS

AHB_OUTAHB Clock / 16

11 1 111 1 1 10 1 000 0 0 00 0 000 0 0 00 0 000 0 0PBSKIPEN

AN671

Rev. 0.1 5

4. Configuring the Crossbar and Port I/O in Firmware

The Precision32 AppBuilder application provides a graphical interface to easily configure pins in the crossbars.
This software uses the Hardware Access Layer (HAL), a part of the Silicon Labs SDK package that enables rapid
development on SiM3xxxx devices. The crossbars and Port Banks on SiM3xxxx devices are part of the PBCFG
and PBSTD modules.

The following steps show an example of how to initialize the crossbars and pins on SiM3U1xx devices to achieve
the pinout shown in Figure 3 using the Silicon Labs HAL:

1. Enable the APB clock to the I/O modules:

2. Configure pins to be skipped by the crossbars and enable signals in the crossbars. A full list of signal
names that may be enabled in the crossbars can be found in a file named SI32_PBCFG_A_Support.h.

3. Configure the functional and output mode of each pin:

4. Enable the crossbar or crossbars:

http://www.silabs.com

Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
USA

Simplicity Studio

One-click access to MCU and
wireless tools, documentation,
software, source code libraries &
more. Available for Windows,
Mac and Linux!

IoT Portfolio
www.silabs.com/IoT

SW/HW
www.silabs.com/simplicity

Quality
www.silabs.com/quality

Support and Community
community.silabs.com

Disclaimer
Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or
intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical"
parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes
without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included
information. Silicon Labs shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted
hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent of
Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal
injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass
destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

Trademark Information
Silicon Laboratories Inc.® , Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®,
EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®,
Gecko®, ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® and others are trademarks or registered trademarks of Silicon
Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand
names mentioned herein are trademarks of their respective holders.

	1. Introduction
	2. Relevant Documentation
	3. Crossbar Function
	3.1. Crossbar Functionality on Reset
	3.2. Skipping Pins in the Crossbar
	3.3. Crossbar Priority Order
	3.4. Creating a Flexible Device Pinout

	4. Configuring the Crossbar and Port I/O in Firmware

