
Rev. 0.2 10/14 Copyright © 2014 by Silicon Laboratories AN778

AN778

UART BOOTLOADER

1.  Introduction

A bootloader enables field updates of application firmware. A Universal Asynchronous Receiver/Transmitter
(UART) bootloader enables firmware updates over the UART. The UART bootloader described in this application
note is based on the Silicon Labs Modular Bootloader Framework. This framework is described in detail in the
application note “AN533: Modular Bootloader Framework for Silicon Labs C8051Fxxx Microcontrollers”, which can
be downloaded from here: http://www.silabs.com/products/mcu/Pages/ApplicationNotes.aspx.

The following components are part of the firmware update setup:

Target Bootloader Firmware

Active Data Source Software

Target Application Firmware

The firmware update setup is shown in Figure 1. Details about the steps involved in updating the firmware can be
found in the Firmware Update Process Flow Diagram in application note, “AN533: Modular Bootloader Framework
for Silicon Labs C8051Fxxx Microcontrollers”.

The code accompanying this application note is originally written for several specific devices, but can be ported to
other devices in the Silicon Labs microcontroller range.

Figure 1. Firmware Update Setup

PC

Target Application Firmware Hex File

Active Data Source Software

Comm. Interface Device Driver / API

UART (RS-232)

Target MCU

UART (RS-232)
Target Application 

Firmware

Target Bootloader 
Firmware

http://www.silabs.com/products/mcu/Pages/ApplicationNotes.aspx


AN778

2 Rev. 0.2

2.  Getting Started

This section provides step-by-step instructions to use the included UART bootloader examples.

2.1.  Preparation
Unzip the AN778SW software package to a location on memory. Each example contains:

DataSource_Software — contains the PC application that communicates with the Target Bootloader and 
downloads the application image.

Sample_User_Application — contains a simple example application project.

TargetBootloader — contains the UART bootloader source using the Modular Framework.

2.2.  Procedure
1.  Go to the TargetBootloader directory and open the UART bootloader project (F33x_UART_TargetBL or 

another device project file).

2.  Compile and download the bootloader code to a target board.

3.  After downloading, power down the target board.

4.  Run the SerialBootloaderDataSource.exe executable in the 
DataSource_Software\SerialBootloaderDataSource\SerialBootloaderDataSource\bin\Release 
directory.

Figure 2. Running the Active Data Source Software



AN778

Rev. 0.2 3

5.  Choose a COM port in the application, select the application HEX file in the Sample_User_Application 
directory, and click the Open COM Port button.

Figure 3. Opening the Target MCU COM Port



AN778

4 Rev. 0.2

6.  Power up the target board. The bootloader will print text in red in the application display window when it’s 
ready to update the application code.

Figure 4. Target Bootloader Ready to Update Application Code



AN778

Rev. 0.2 5

7.  Click the Update Application Firmware button to download the selected application firmware to the target 
board.

Figure 5. Downloading the Application Code

8.  Once the download completes successfully, the bootloader will jump to the application code (Blinky).



AN778

6 Rev. 0.2

3.  Target Bootloader Profile

The UART target bootloader firmware allows application firmware updates in the field over UART. The UART
bootloader code builds under the Keil toolchain. The bootloader firmware is stored in address 0x0000-0x0400 and
last flash page. This means that the application firmware starts at address 0x0400 and ends one page short of the
last flash page. Figure 6 shows the UART bootloader memory map. Figure 7 shows an example code space
utilization of the bootloader grouped by functional blocks based on version 1.1 of the 'F330 bootloader firmware.
For detailed information on the latest source code size, see the Excel file in the software package accompanying
this document.

Figure 6. UART Target Bootloader Memory Map

Figure 7. UART Target Bootloader Example Code Space Utilization Profile

Reset Vector and Interrupt Redirection
0x0000

Bootloader Firmware

Part of Bootloader Firmware 
(last flash page)

Lock Byte

Bootloader FW Project

Application FW Project

Bootloader FW Project

Reserved Area
(on most MCUs)

Bootloader InfoBlock

0x0400

Area NOT erasable by bootloader

Area erasable by bootloader

23%

5%

4%

24%6%

22%

8%

8% Reset Vector and Interrupt Redirection

Device‐Specific Functions

Flash Erase/Write Functions

Main program loop

Bootloader Command Interpreter

Comm Functions (UART)

Comm Functions (CRC)

Other(Infor block / library)



AN778

Rev. 0.2 7

3.1.  Configurable Options
The target bootloader has the following parameters that can be configured. These parameters are located in two
header files as grouped in Table 1 and Table 2.

Table 1. Fxxx_Target_Config.h

Parameter Options

TGT_MCU_CODE1 Any 8-bit value

TGT_BL_TYPE2 8-bit value: 0x01

TGT_FLASH_PAGE_SIZE3 Number of bytes per flash page: 512

TGT_FLASH_PAGE_SIZE_CODE4 8-bit value: 1

APP_FW_START_ADDR5 16-bit value: 0x0400

APP_FW_END_ADDR6 16-bit value: 0x1BFF

Notes:
1. This can be used to identify a product line among many different products.
2. This denotes that the BL uses Silicon Labs-defined UART bootloader protocol (see Fxxx_BL129_UART_Interface.h).
3. Should be changed based on the MCU data sheet.
4. 1 means 512 bytes/page; 2 means 1024 bytes/page.
5. Starting address of App FW.
6. Ending address of App FW (includes App InfoBlock and Signature bytes). It should be changed based on the size of 

Flash.

Table 2. Fxxx_TargetBL_Config.h

Parameter Options

TGT_BL_FW_INFOBLOCK_LENGTH1 8-bit value: 19

TGT_BL_FW_VERSION_LOW and
TGT_BL_FW_VERSION_HIGH2

8-bit values: 1 and 1

TGT_BL_BUF_SIZE_CODE3 8-bit value: 0

Notes:
1. See Table 1 in application note, “AN533: Modular Bootloader Framework for Silicon Labs C8051Fxxx Microcontrollers”.
2. BL v1.1. Low = 1 and High = 1. 
3. This valve determines the max packet size when the PC sends a page of data to the bootloader..

The buffer size = page_size/(1<<buffer_size_code).



AN778

8 Rev. 0.2

4.  Target Application Profile

The target application firmware needs to fit within the allocated application area in flash memory. The application
firmware memory map is shown in Figure 8.

Figure 8. Target Application Memory Map

4.1.  Target Application Template
A target application template is included for easy integration with existing application code or to use as a starting
point. For example, the C8051F33x template includes the following files:

F330_Blinky.c

STARTUP.A51

F33x_InfoBlock.c

Bootloader FW Project

Application FW Project

Bootloader FW Project

Reserved Area
(on most MCUs)

0x0400

Area NOT erasable by bootloader

Area erasable by bootloader

Note: The application firmware starts at address 0x0400 in this example.

Application Firmware

Application Reset Vector Set to 0x0400

Application InfoBlock

0x0400
Redirected Interrupt Vectors

(spacing = 3 bytes)



AN778

Rev. 0.2 9

4.2.  Configurable Options
The application firmware should always keep its version number updated in the Application InfoBlock whenever a
new version is built so that the application hex file includes this information. The active data source software can
interpret this information from the hex.

4.3.  Making an Application Bootloader Aware
A series of simple steps can be used to make an existing application firmware project “bootloader aware”, i.e.,
allow it to co-exist with the bootloader. These steps are described in detail in application note, “AN533: Modular
Bootloader Framework for Silicon Labs C8051Fxxx Microcontrollers”. The following is a summary of the changes
needed when using the Keil toolchain for the C8051F33x MCU family:

1.  Add STARTUP.A51 to the application firmware project and build list; this changes the reset vector from 
0x0000 to 0x0400.

2.  Add these options to the compiler command line of the project:

INTVECTOR(0x0400) INTERVAL(3)

3.  Add these options to the linker command line of the project:

CODE(0x0400-0x1BFF, ?CO?F33X_INFOBLOCK(0x1BF5))

4.  Add F33x_InfoBlock.c to the application project and build list.

5.  (Optional) Add code to the application to recognize the TGT_Enter_BL_Mode command and take 
appropriate action.

6.  Check the hardware design to allow the use of a GPIO pin as a fail-safe trigger to enter bootload mode. In 
the UART bootloader example, port pin P0.7 is used for this purpose. To disable or change this, see 
Fxxx_TargetBL_Main.c in the Target Bootloader firmware project. If this is disabled, then the application 
has to provide some other way of entering bootload mode.

5.  Data Source Examples

The Silicon Labs MCU Serial Bootloader Data Source software included with the modular bootloader framework is
an example of an active data source software. This is described in application note, “AN533: Modular Bootloader
Framework for Silicon Labs C8051Fxxx Microcontrollers”. The software source code is included with UART
bootloader source code.

Table 3. F33x_InfoBlock.c

Parameter Options

TGT_APP_FW_VERSION_LOW and
TGT_APP_FW_VERSION_HIGH1

8-bit values: 2 and 1

TGT_APP_FW_INFOBLOCK_LENGTH2 8-bit value: 7

Notes:
1. App v1.2Low = 2 and High = 1.
2. See Table 5 in application note, “AN533: Modular Bootloader Framework for Silicon Labs C8051Fxxx Microcontrollers”.



http://www.silabs.com

Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
USA

Simplicity Studio

One-click access to MCU and 
wireless tools, documentation, 
software, source code libraries & 
more. Available for Windows, 
Mac and Linux!

IoT Portfolio
www.silabs.com/IoT

SW/HW
www.silabs.com/simplicity

Quality
www.silabs.com/quality

Support and Community
community.silabs.com

Disclaimer
Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or 
intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" 
parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes 
without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included 
information. Silicon Labs shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted 
hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent of 
Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal 
injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass 
destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

Trademark Information
Silicon Laboratories Inc.® , Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®, 
EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®, 
Gecko®, ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® and others are trademarks or registered trademarks of Silicon 
Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand 
names mentioned herein are trademarks of their respective holders. 


	1. Introduction
	2. Getting Started
	2.1. Preparation
	2.2. Procedure

	3. Target Bootloader Profile
	3.1. Configurable Options

	4. Target Application Profile
	4.1. Target Application Template
	4.2. Configurable Options
	4.3. Making an Application Bootloader Aware

	5. Data Source Examples



