
Welcome
Bluetooth App Development with CircuitPython

Nicola Wrachien & Scott Shawcroft

4:003:593:583:573:563:553:543:533:523:513:503:493:483:473:463:453:443:433:423:413:403:393:383:373:363:353:343:333:323:313:303:293:283:273:263:253:243:233:223:213:203:193:183:173:163:153:143:133:123:113:103:093:083:073:063:053:043:033:023:013:002:592:582:572:562:552:542:532:522:512:502:492:482:472:462:452:442:432:422:412:402:392:382:372:362:352:342:332:322:312:302:292:282:272:262:252:242:232:222:212:202:192:182:172:162:152:142:132:122:112:102:092:082:072:062:052:042:032:022:012:004:00We will begin in: 1:591:581:571:561:551:541:531:521:511:501:491:481:471:461:451:441:431:421:411:401:391:381:371:361:351:341:331:321:311:301:291:281:271:261:251:241:231:221:211:201:191:181:171:161:151:141:131:121:111:101:091:081:071:061:051:041:031:021:011:000:590:580:570:560:550:540:530:520:510:500:490:480:470:460:450:440:430:420:410:400:390:380:370:360:350:340:330:320:310:300:290:280:270:260:250:240:230:220:210:200:190:180:170:160:150:140:130:120:110:100:090:080:070:060:050:040:030:020:010:00

Presentation
Will Begin
Shortly

U P C O M I N G S E S S I O N S

B L U E T OOT H S E R I E S

O N D E M A N D

N E W

3 ©2023 Silicon Labs Inc. All rights reserv ed.

Agenda

About CircuitPython

Architecture

Supported Boards

Port Features

Example: Bluetooth LE Application

Sample Code

Conclusion

About CircuitPython

• Good for beginners

• Lots of libraries

• Batteries included fast development

• Not good for MCUs

▸ Limited access to hardware

resource

▸ Memory hungry

• Optimized for 32-bit MCUs

• Some less-used features not

implemented

• REPL (read-eval-print loop) console

over UART

• Target Python 3.4 language features

• Limited standard library support

• Fork of MicroPython

• Focused on students, beginners,

ease of use

• Unified hardware-access APIs

• Initially: on different, less powerful,

MCUs than MicroPython (now many

powerful MCUs supported too)

Origin of CircuitPython

©2023 Silicon Labs Inc. All rights reserv ed.5

P Y T H O N I S V E R Y H I G H L E V E L M I C R O P Y T H O N W A S D E V E L O P E D C I R C U I T P Y T H O N , S I M P L I F I E D

A P P L I C A T I O N SA P P L I C A T I O N SA P P L I C A T I O N SA P P L I C A T I O N SA P P L I C A T I O N S L O W L I G H T S

▪ Very high-level language

• Few lines to create relatively complex programs

▪ Beginner Friendly:

• Easy to use, with smooth learning curve

• Automatic memory management, with garbage collector

• No pointers

• Tons of libraries

• Tons of examples and guides

▪ Cross-platform compatible

• The same project can run in different MCUs

• Many projects can run on Linux SBCs via Blinka

▪ No compilation time

▪ Many more Python devs than C devs

▪ Simple setup

CircuitPython: Advantages and Drawbacks

A D VA NTA GE S

▪ Interpreted language, slow, memory intensive

• Large flash footprint by default

▪ Less control on hardware

• Hard to use MCU-specific peripherals without Python driver

▪ Some hidden issues, which might be frustrating
sometimes

• How does “0xfor x in (1, 2, 3)” eval?

• Errors found during runtime rather than compile time (e.g.

modules not found)

• Hidden bugs that might have been caught at compile time if

strong typed

©2023 Silicon Labs Inc. All rights reserv ed.6

D RAWB A C K S

Focus on the application

behavior and Time to Market

C-code Performance Not Always a Must

~80 MHz Cortex M33 is fast

enough to handle higher
level languages than C at a

good speed

E.g., On/Off relay or a

thermostat

Response time in ~ms is
more than enough

The CPU-intensive work can

be done by existing libraries,
written in C.

The impact of Python

implementation is reduced.

©2023 Silicon Labs Inc. All rights reserv ed.7

Q U IC K P O C C R E A TIO N S TR O N G M C U
R E A L - W O R L D

A P P L IC A T IO N S

U S IN G E X IS T IN G

L IB R A R IE S

W H Y C IR C U ITP YTH O N ?

About Silicon Labs

8

M A N Y P R O D U C T V A R IA N TS

Different formfactors

Cost

Performance (CPU, RAM, FLASH, MVP)

Peripheral set

Etc.

D IV E R S E P R O TO C O L S

Bluetooth LE

Zigbee

Matter

Z-Wave

Etc.

Smart Home

Industrial IoT

Smart Cities

Smart Retails

Connected Health

©2023 Silicon Labs Inc. All rights reserv ed.

S IL IC O N L A B S F O C U S : IO T M A R K E T

W ID E M A R K E T

Addressing the maker community's need to interface

with a broad audience from beginners…up to experts.

Addressing Makers Ecosystem

9 ©2023 Silicon Labs Inc. All rights reserv ed.

▪ Our main SDK is the Gecko SDK (GSDK)

• Largely based on C

• Hundreds of different files

• Maintained by Silicon Labs

• No or limited third party contribution

▪ Our Main Development Tool is Simplicity Studio

• C or C++ projects

▪ Bluetooth LE is a rather complex protocol

WE LL K NOWN E C OS YS TE MS , NE E D S

TO B E S UP P ORTE D

C URRE NT S IL IC ON LA B S

D E V E LOP ME NT E NV IRONME NT

Architecture

Architecture

▪ Multithread architecture using Free RTOS (other RTOS can be used thanks to OS abstraction layer)

▪ Less issues in handling time critical protocol-related tasks.

▪ Easier to add other protocols (Dynamic multi protocol can be supported as well)

11 ©2023 Silicon Labs Inc. All rights reserv ed.

Architecture

12 ©2023 Silicon Labs Inc. All rights reserv ed.

Application layer

▪ Python code and libraries for the project.

Code and libraries loaded from the

filesystem or REPL (Read-Eval-Print Loop)

console.

▪ REPL console

Command-line interface that allows

developers to interactively test and debug

their code on the microcontroller.

REPL runs only after the code.py finishes.

Architecture

13 ©2023 Silicon Labs Inc. All rights reserv ed.

CircuitPython core layer

▪ Core libraries:

Standard Python libraries including modules

for math, string manipulation, file I/O, and

more…

▪ Runtime environment:

Provides the necessary infrastructure to

execute Python code on the microcontroller,

including memory management, garbage

collection, and exception handling.

▪ Python Interpreter:

Interprets py code, compiles and feeds it to

the VM.

▪ Python Virtual Machine:

Executes python bytecode.

Architecture

14 ©2023 Silicon Labs Inc. All rights reserv ed.

Hardware abstraction layer (HAL)

▪ Provides a consistent interface to

interact with the MCU hardware.

▪ Set of HAL API provided by

CircuitPython.

▪ MCU-specific API implementation

SDK
▪ Provides stacks, and low-level MCU-

specific drivers

Supported Boards

▪ xG24 based, supporting BLE

▪ On-board debugger

▪ 3rd party hardware support
▪ Qwiic connector

▪ Lowest price point

▪ Feather Formfactor

▪ SD Card slot

▪ xG24 based, supporting BLE

▪ On-board debugger

▪ 3rd Party Hardware Support
▪ Qwiic connector

▪ MikroBus Connector

Supported Boards

X G 2 4 E X P L O R E R K IT

©2023 Silicon Laboratories Inc. All rights reserv ed.16

▪ xG24 based, supporting BLE

▪ On-board debugger

▪ 3rd Party Hardware Support
▪ Qwiic connector

▪ On-Board sensors

▪ Impressive out-of-the-box
demos

▪ External Flash

X G 2 4 D E V E LO P M E N T K IT
S P A R K F U N TH IN G P L U S

M A TTE R

Port Features

Flash Memory and FileSystem

• CircuitPython uses a file system to store code/data:

• Internal Flash

• External Flash

• External SD card (adafruit_sdcard)

▪ Modules and code loaded to RAM

• ➔ high RAM usage

• Frozen lib are integrated in the firmware

• ➔ no need to load them in RAM

18 ©2023 Silicon Labs Inc. All rights reserv ed.

Firmware and

Frozen lib

File system

NVM

Internal Peripheral Support

19 ©2023 Silicon Labs Inc. All rights reserv ed.

Low level drivers made in C supporting internal MCU peripherals:

▪ Serial interfaces: I2C, SPI, UART (busio)

▪ Analog functions (ADC, DAC) (analogio)

▪ GPIOs (digitalio)
▪ PWM (pwmio)

▪ RTC (rtc)

▪ NVM (microcontroller.nvm)

CircuitPython allows flexible configuration of pins for peripheral communication.
▪ This uses Silicon Labs EFR32 devices’ ability of mapping any peripheral to almost any GPIO.

uart = busio.UART(board.TX, board.RX, baudrate=9600)

uart = busio.UART(board.PB1, board.PB2, baudrate=9600)

Board’s default UART pin assignment:

Routing to a different pin:

External Peripheral Support

20 ©2023 Silicon Labs Inc. All rights reserv ed.

Adafruit CircuitPython Library Bundle

▪ Collection of python libraries/examples for over

300 devices (display, sensors, etc).

▪ Allow to use any external peripheral on any MCU,

having some internal peripheral sets.

▪ Based on lower level drivers coded in C for

internal peripheral support.

import board # import board definitions and peripherals
from adafruit_bme280 import basic as adafruit_bme280 # import Adafruit Library Bundle BME280 driver

i2c = board.I2C() # create i2c object required by the sensor driver
bme280 = adafruit_bme280.Adafruit_BME280_I2C(i2c) # create bme280 driver object

print("\nTemperature: %0.1f C" % bme280.temperature) # read and print temperature

Bluetooth LE Support

21 ©2023 Silicon Labs Inc. All rights reserv ed.

Adafruit_Circuitpython_BLE

▪ python module providing high level

easy to use APIs for BLE.

▪ Can be both external or frozen lib.

▪ built over _bleio (in C)

_bleio

▪ _bleio module:

provides necessary low-level

functionality for BLE,

interact with events from BLE thread.

▪ dynamic GATT table support

from adafruit_ble import BLERadio
from adafruit_ble.advertising import Advertisement
ble = BLERadio() # init BLE
adv = Advertisement() # create advertisement object
adv.complete_name="Silabs CircuitPython" # set complete name
ble.start_advertising(advertisement = adv, interval = 1) # start advertising

Start Advertising with six lines of code!

Performance Comparison

Performance Comparison

▪ Hard to do a fair comparison

• Which optimization level was used?

• Which operation?

• Which libraries?

23 ©2023 Silicon Labs Inc. All rights reserv ed.

v.s.

xG24 DEV kitxG24 DEV kit

Performance Comparison

▪ Inefficient bubble-sort algorithm + optimized library sort function of a descendent array

24 ©2023 Silicon Labs Inc. All rights reserv ed.

Circuitpython code C code
(Simplicity Studio empty C project + test)

…and some tens more files…

(autogenerated, still require user
configuration – UART, clock, GPIOs)

Performance Results

25 ©2023 Silicon Labs Inc. All rights reserv ed.

C vs CircuitPython bubble sort implementation: 296 microseconds vs 70 ms: 236 times slower

“Only” 25 times slower if using libraries. Libraries are 35 times fasters.

➔ Don’t reinvent the wheel. Use libraries whenever possible!

Bluetooth LE Example

Suggested Development Environment

▪ We suggest Thonny

• Syntax highlight

• REPL console output

• Directly uploads, even
without native USB

• Additional features:

▸ Variable list

▸ Program tree

▸ Object inspector

27 ©2023 Silicon Labs Inc. All rights reserv ed.

BLE Example features

▪ Measure temperature and humidity (xG24 Development Board)

▪ Collector automatically finds the sensor board, connects, and prints the results. (Sparkfun ThingPlus

Matter board).

• Advertises with a specific payload

• Measures humidity and temperature

• Accepts connections from a central device

• Scans for devices with the Sensor Service

• Connects to the device

• Reads measurements

28 ©2023 Silicon Labs Inc. All rights reserv ed.

Simple Thermometer + Humidity Sensor Application

▪ Very few lines of code for both applications!

29 ©2023 Silicon Labs Inc. All rights reserv ed.

Bluetooth LE peripheral device Bluetooth LE central device

Sample Code

Sample Code

▪ In https://github.com/SiliconLabs/circuitpython_applications/tree/main we released some examples

Bluetooth LE-based

©2023 Silicon Labs Inc. All rights reserv ed.32

https://github.com/SiliconLabs/circuitpython_applications/tree/main

Some examples

33 ©2023 Silicon Labs Inc. All rights reserv ed.

Sample Code

34 ©2023 Silicon Labs Inc. All rights reserv ed.

Conclusions

Conclusions

▪ Silicon Labs is now actively supporting Circuit Python on xG24 boards

• Main features implemented:

▸ Digital GPIO support

▸ Analog functions (DAC, ADC)

▸ Serial interfaces (UART, SPI, I2C)

▸ NVM and filesystem (including SD support)

▸ Bluetooth LE

▪ The architecture allows for easy feature extension

• New board and SoC support

• Adding support for additional protocols.

▪ CircuitPython allows writing complex programs in few lines

➔ Good for learning and for quick PoC designs

36 ©2023 Silicon Labs Inc. All rights reserv ed.

Thank You

Watch

Q&A

4:003:593:583:573:563:553:543:533:523:513:503:493:483:473:463:453:443:433:423:413:403:393:383:373:363:353:343:333:323:313:303:293:283:273:263:253:243:233:223:213:203:193:183:173:163:153:143:133:123:113:103:093:083:073:063:053:043:033:023:013:002:592:582:572:562:552:542:532:522:512:502:492:482:472:462:452:442:432:422:412:402:392:382:372:362:352:342:332:322:312:302:292:282:272:262:252:242:232:222:212:202:192:182:172:162:152:142:132:122:112:102:092:082:072:062:052:042:032:022:012:004:001:591:581:571:561:551:541:531:521:511:501:491:481:471:461:451:441:431:421:411:401:391:381:371:361:351:341:331:321:311:301:291:281:271:261:251:241:231:221:211:201:191:181:171:161:151:141:131:121:111:101:091:081:071:061:051:041:031:021:011:000:590:580:570:560:550:540:530:520:510:500:490:480:470:460:450:440:430:420:410:400:390:380:370:360:350:340:330:320:310:300:290:280:270:260:250:240:230:220:210:200:190:180:170:160:150:140:130:120:110:100:090:080:070:060:050:040:030:020:01

U P C O M I N G S E S S I O N S

B L U E T OOT H S E R I E S

O N D E M A N D

N E W

	Default Section
	Slide 1
	Slide 2: Presentation Will Begin Shortly
	Slide 3: Agenda
	Slide 4: About CircuitPython

	General CircuitPython
	Slide 5: Origin of CircuitPython
	Slide 6: CircuitPython: Advantages and Drawbacks
	Slide 7: C-code Performance Not Always a Must

	Silabs and CircuitPython
	Slide 8: About Silicon Labs
	Slide 9: Addressing Makers Ecosystem
	Slide 10: Architecture
	Slide 11: Architecture
	Slide 12: Architecture
	Slide 13: Architecture
	Slide 14: Architecture
	Slide 15: Supported Boards
	Slide 16: Supported Boards
	Slide 17: Port Features
	Slide 18: Flash Memory and FileSystem
	Slide 19: Internal Peripheral Support
	Slide 20: External Peripheral Support
	Slide 21: Bluetooth LE Support

	Performance comparison
	Slide 22: Performance Comparison
	Slide 23: Performance Comparison
	Slide 24: Performance Comparison
	Slide 25: Performance Results
	Slide 26: Bluetooth LE Example
	Slide 27: Suggested Development Environment
	Slide 28: BLE Example features
	Slide 29: Simple Thermometer + Humidity Sensor Application
	Slide 30
	Slide 31: Sample Code
	Slide 32: Sample Code
	Slide 33: Some examples
	Slide 34: Sample Code
	Slide 35: Conclusions
	Slide 36: Conclusions
	Slide 37
	Slide 38
	Slide 39

