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About CircuitPython



• Good for beginners

• Lots of libraries

• Batteries included fast development

• Not good for MCUs

▸ Limited access to hardware 

resource

▸ Memory hungry

• Optimized for 32-bit MCUs

• Some less-used features not 

implemented

• REPL (read-eval-print loop) console 

over UART

• Target Python 3.4 language features

• Limited standard library support

• Fork of MicroPython

• Focused on students, beginners, 

ease of use

• Unified hardware-access APIs

• Initially: on different, less powerful, 

MCUs than MicroPython (now many 

powerful MCUs supported too)

Origin of CircuitPython
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P Y T H O N  I S  V E R Y  H I G H  L E V E L M I C R O P Y T H O N  W A S  D E V E L O P E D C I R C U I T P Y T H O N ,  S I M P L I F I E D



A P P L I C A T I O N SA P P L I C A T I O N SA P P L I C A T I O N SA P P L I C A T I O N SA P P L I C A T I O N S L O W L I G H T S

▪ Very high-level language

• Few lines to create relatively complex programs

▪ Beginner Friendly:

• Easy to use, with smooth learning curve

• Automatic memory management, with garbage collector

• No pointers

• Tons of libraries

• Tons of examples and guides

▪ Cross-platform compatible

• The same project can run in different MCUs

• Many projects can run on Linux SBCs via Blinka

▪ No compilation time

▪ Many more Python devs than C devs

▪ Simple setup

CircuitPython: Advantages and Drawbacks

A D VA NTA GE S

▪ Interpreted language, slow, memory intensive

• Large flash footprint by default

▪ Less control on hardware

• Hard to use MCU-specific peripherals without Python driver

▪ Some hidden issues, which might be frustrating 
sometimes

• How does “0xfor x in (1, 2, 3)” eval?

• Errors found during runtime rather than compile time (e.g. 

modules not found)

• Hidden bugs that might have been caught at compile time if 

strong typed
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D RAWB A C K S



Focus on the application 

behavior and Time to Market

C-code Performance Not Always a Must 

~80 MHz Cortex M33 is fast 

enough to handle higher 
level languages than C at a 

good speed

E.g., On/Off relay or a 

thermostat

Response time in ~ms is 
more than enough

The CPU-intensive work can 

be done by existing libraries, 
written in C.

The impact of Python 

implementation is reduced.
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About Silicon Labs
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M A N Y P R O D U C T V A R IA N TS

Different formfactors

Cost

Performance (CPU, RAM, FLASH, MVP)

Peripheral set

Etc.

D IV E R S E  P R O TO C O L S  

Bluetooth LE

Zigbee

Matter

Z-Wave

Etc.

Smart Home

Industrial IoT

Smart Cities

Smart Retails

Connected Health
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S IL IC O N  L A B S  F O C U S :  IO T  M A R K E T

W ID E  M A R K E T



Addressing the maker community's need to interface 

with a broad audience from beginners…up to experts.

Addressing Makers Ecosystem
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▪ Our main SDK is the Gecko SDK (GSDK)

• Largely based on C

• Hundreds of different files

• Maintained by Silicon Labs

• No or limited third party contribution

▪ Our Main Development Tool is Simplicity Studio

• C or C++ projects

▪ Bluetooth LE is a rather complex protocol

WE LL K NOWN E C OS YS TE MS , NE E D S  

TO B E  S UP P ORTE D

C URRE NT S IL IC ON LA B S

D E V E LOP ME NT E NV IRONME NT



Architecture



Architecture

▪ Multithread architecture using Free RTOS (other RTOS can be used thanks to OS abstraction layer)

▪ Less issues in handling time critical protocol-related tasks.

▪ Easier to add other protocols (Dynamic multi protocol can be supported as well)
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Architecture
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Application layer

▪ Python code and libraries for the project. 

Code and libraries loaded from the 

filesystem or REPL (Read-Eval-Print Loop) 

console.

▪ REPL console 

Command-line interface that allows 

developers to interactively test and debug 

their code on the microcontroller.

REPL runs only after the code.py finishes.



Architecture
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CircuitPython core layer

▪ Core libraries:

Standard Python libraries including modules 

for math, string manipulation, file I/O, and 

more…

▪ Runtime environment:

Provides the necessary infrastructure to 

execute Python code on the microcontroller, 

including memory management, garbage 

collection, and exception handling.

▪ Python Interpreter:

Interprets py code, compiles and feeds it to 

the VM.

▪ Python Virtual Machine:

Executes python bytecode.



Architecture
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Hardware abstraction layer (HAL)

▪ Provides a consistent interface to 

interact with the MCU hardware.

▪ Set of HAL API provided by 

CircuitPython. 

▪ MCU-specific API implementation

SDK
▪ Provides stacks, and low-level MCU-

specific drivers



Supported Boards



▪ xG24 based, supporting BLE

▪ On-board debugger

▪ 3rd party hardware support
▪ Qwiic connector

▪ Lowest price point

▪ Feather Formfactor

▪ SD Card slot

▪ xG24 based, supporting BLE

▪ On-board debugger

▪ 3rd Party Hardware Support
▪ Qwiic connector

▪ MikroBus Connector

Supported Boards

X G 2 4  E X P L O R E R  K IT
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▪ xG24 based, supporting BLE

▪ On-board debugger

▪ 3rd Party Hardware Support
▪ Qwiic connector

▪ On-Board sensors

▪ Impressive out-of-the-box 
demos

▪ External Flash

X G 2 4  D E V E LO P M E N T K IT
S P A R K F U N  TH IN G P L U S  

M A TTE R



Port Features



Flash Memory and FileSystem

• CircuitPython uses a file system to store code/data:

• Internal Flash

• External Flash

• External SD card (adafruit_sdcard)

▪ Modules and code loaded to RAM

• ➔ high RAM usage

• Frozen lib are integrated in the firmware

• ➔ no need to load them in RAM
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Firmware and 

Frozen lib

File system

NVM



Internal Peripheral Support
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Low level drivers made in C supporting internal MCU peripherals:

▪ Serial interfaces: I2C, SPI, UART (busio)

▪ Analog functions (ADC, DAC) (analogio)

▪ GPIOs    (digitalio)
▪ PWM    (pwmio)

▪ RTC     (rtc)

▪ NVM    (microcontroller.nvm)

CircuitPython allows flexible configuration of pins for peripheral communication.
▪ This uses Silicon Labs EFR32 devices’ ability of mapping any peripheral to almost any GPIO.

uart = busio.UART(board.TX, board.RX, baudrate=9600)

uart = busio.UART(board.PB1, board.PB2, baudrate=9600)

Board’s default UART pin assignment:

Routing to a different pin:



External Peripheral Support
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Adafruit CircuitPython Library Bundle

▪ Collection of python libraries/examples for over 

300 devices (display, sensors, etc).

▪ Allow to use any external peripheral on any MCU, 

having some internal peripheral sets. 

▪ Based on lower level drivers coded in C for 

internal peripheral support.

import board     # import board definitions and peripherals
from adafruit_bme280 import basic as adafruit_bme280  # import Adafruit Library Bundle BME280 driver

i2c = board.I2C()       # create i2c object required by the sensor driver 
bme280 = adafruit_bme280.Adafruit_BME280_I2C(i2c)         # create bme280 driver object

print("\nTemperature: %0.1f C" % bme280.temperature)  # read and print temperature



Bluetooth LE Support

21 ©2023 Silicon Labs Inc. All rights reserv ed.

Adafruit_Circuitpython_BLE

▪ python module providing high level 

easy to use APIs for BLE.

▪ Can be both external or frozen lib.

▪ built over _bleio (in C)

_bleio

▪ _bleio module:

provides necessary low-level 

functionality for BLE, 

interact  with events from BLE thread.

▪ dynamic GATT table support

from adafruit_ble import BLERadio
from adafruit_ble.advertising import Advertisement
ble = BLERadio()                                              # init BLE
adv = Advertisement()                                         # create advertisement object
adv.complete_name="Silabs CircuitPython"                      # set complete name
ble.start_advertising(advertisement = adv, interval = 1)      # start advertising

Start Advertising with six lines of code!



Performance Comparison



Performance Comparison

▪ Hard to do a fair comparison

• Which optimization level was used?

• Which operation?

• Which libraries?
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v.s.

xG24 DEV kitxG24 DEV kit



Performance Comparison

▪ Inefficient bubble-sort algorithm + optimized library sort function of a descendent array
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Circuitpython code C code
(Simplicity Studio empty C project + test)

…and some tens more files… 

(autogenerated, still require user 
configuration – UART, clock, GPIOs)



Performance Results
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C vs CircuitPython bubble sort implementation: 296 microseconds vs 70 ms: 236 times slower 

“Only” 25 times slower if using libraries. Libraries are 35 times fasters.

➔ Don’t reinvent the wheel. Use libraries whenever possible!



Bluetooth LE Example



Suggested Development Environment

▪ We suggest Thonny

• Syntax highlight

• REPL console output

• Directly uploads, even 
without native USB

• Additional features:

▸ Variable list

▸ Program tree

▸ Object inspector
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BLE Example features

▪ Measure temperature and humidity (xG24 Development Board)

▪ Collector automatically finds the sensor board, connects, and prints the results. (Sparkfun ThingPlus

Matter board).

• Advertises with a specific payload

• Measures humidity and temperature

• Accepts connections from a central device

• Scans for devices with the Sensor Service

• Connects to the device

• Reads measurements
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Simple Thermometer + Humidity Sensor Application

▪ Very few lines of code for both applications!
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Bluetooth LE peripheral device Bluetooth LE central device





Sample Code



Sample Code

▪ In https://github.com/SiliconLabs/circuitpython_applications/tree/main we released some examples

Bluetooth LE-based

©2023 Silicon Labs Inc. All rights reserv ed.32

https://github.com/SiliconLabs/circuitpython_applications/tree/main


Some examples
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Sample Code
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Conclusions



Conclusions

▪ Silicon Labs is now actively supporting Circuit Python on xG24 boards

• Main features implemented:

▸ Digital GPIO support

▸ Analog functions (DAC, ADC)

▸ Serial interfaces (UART, SPI, I2C)

▸ NVM and filesystem (including SD support)

▸ Bluetooth LE

▪ The architecture allows for easy feature extension

• New board and SoC support

• Adding support for additional protocols.

▪ CircuitPython allows writing complex programs in few lines

➔ Good for learning and for quick PoC designs
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Thank You

Watch



Q&A
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