-’

SILICON LABS

UG519: Custom Part Manufacturing

Service User's Guide

This application note explains the process for ordering custom
parts through the Custom Part Manufacturing Service (CPMS). In-
structions for customizing device identity security certificates and
wrapping custom keys are also included.

What is CPMS?

Custom Part Manufacturing Service (CPMS) allows you to customize Silicon Labs hard-
ware — wireless SoCs, modules, MCUs — at the factory. The CPMS self-service web por-
tal guides you through the customization process and its various customizable features
and settings. You can place orders for customized test and production units to our facto-
ries securely via the CPMS portal.

Unlike traditional flash programming, CPMS is a secure provisioning service that ena-
bles you to customize your chips with several highly advanced features such as secure

boot, secure debug, encrypted OTA, public, private and secret keys, secure identity cer-
tificates, and more.

The custom features, identities and certificates are injected on the hardware securely,
quickly, and cost-efficiently at the world’s safest place, the Silicon Labs factories.

Why CPMS?

Securing an loT device is a highly complicated and costly process - you must generate
public and private keys for secure boot and secure debug, sign code with a private key,
store all the private keys in a Hardware Security Module (HSM), place the public keys
for secure boot and secure debug in one-time-programmable (OTP) memory, flip OTP
bits for secure boot and secure debug, and flash the encrypted code and identity certifi-
cates within the hardware. CPMS streamlines the programming part of this process for
you. Even the most advanced security features, certificates, and identities can be pro-
grammed in a secure, fast, and cost-efficient way at the Silicon Labs factories.

silabs.com | Building a more connected world. Copyright © 2021 by Silicon Laboratories

KEY POINTS

This application note exlains how to:
« Start a new custom part

+ Customize the following four fields in the
device certificate:
« Common name

» Organization
« Country
» Organizational unit
* Import custom wrapped keys

https://www.silabs.com/developers/custom-part-manufacturing-service

UG519: Custom Part Manufacturing Service User's Guide
Custom Certificates

1. Custom Certificates

CPMS allows you to customize the device identity certificate chain. The certificates use the X.509 format, and must conform to
RFC-3280. At this time, CPMS supports customization of four fields in the device certificate:

1.Common name: User-defined, 30-character name that will terminate with the 64-bit EUl of the device (example is
"EUL00000000aaxxxxxx” and will terminate with " S:SEO ID:MCU" or " S:FLO ID:MCU" depending on if the device is a Secure Vault
High device or not.)

2. Organization: User-defined, 64-character company name
3. Country: Must be a legitimate country code letter pair (e.g., US)
4. Organizational Unit: User-defined field of up to 64 characters

If there are other certificate customizations you would like to implement, specify them in the "Special Instructions" section in the CPMS.

@ Custom Identity

Custom Identity allows customers to extend the default Silicon Labs certificate identity cert chain to provide your own. This is an
advanced feature which requires additional charges. Please contact a Silicon Labs sales representative for details.

Read more about secure identity

Scope of Customization

@ Device certificate only O The certificate chain

Special Instructions

Tell us how you would like to customize the identity of this part. (2000/2000 remaining)

silabs.com | Building a more connected world. Rev.0.1 | 2

https://datatracker.ietf.org/doc/html/rfc3280

UG519: Custom Part Manufacturing Service User's Guide
Key Wrapping

2. Key Wrapping

Secure Vault High devices support Key Wrapping, which is a feature where keys are encrypted using a Physically Unclonable Function
(PUF) key. A PUF key is secret, random, and unique to each individual device. PUF keys do not live in flash and are not vulnerable to
flash extraction attacks.

CPMS allows customers to provide their own keys, which will be wrapped by the secure element and stored on the device. This means
that the firmware image does not need to contain the key at any point in production.

To use this feature, you need to provide CPMS with four fields:

1.Key Auth - an 8-byte password that must be provided by software whenever the key is used. This password can be disabled by
setting the Key Auth to 0x0000000000000000.

2.Key Value - the value of the key to be wrapped (max 200 bytes).

3. Key Metadata - 4 bytes of key metadata, including information such as the type of key, allowed uses, length, etc. More information
on how to generate this value for an existing key can be found in section 3.2 Importing Custom Wrapped Keys.

4.Key Address - the address in user flash to which the key should be programmed.

UserKey 1 O

Key Auth

Auth data for key (must be 8 bytes)

Key Value

Value of the key to be wrapped (max 200 bytes)

Key Metadata

4 bytes of metadata

Key Address

Address in user flash to which the key should be programmed

silabs.com | Building a more connected world. Rev.0.1 | 3

https://www.silabs.com/security/secure-vault

UG519: Custom Part Manufacturing Service User's Guide
CPMS Use Case Examples

3. CPMS Use Case Examples

3.1 Configuring a Device for an Untrusted Manufacturing Environment

This example will show how to order a custom part that is secure from the moment it leaves Silicon Labs. It has secure boot, secure
debug lock, and encrypted upgrades enabled so that an untrusted contract manufacturer cannot access the debug port or upload un-
signed and/or unencrypted applications.

This example uses an EFR32MG21B, which is a Secure Vault High part. Secure Vault Base or Mid parts do not have the same custom-
ization options, so some sections of this example will not be applicable to such devices.

silabs.com | Building a more connected world. Rev.0.1 | 4

UG519: Custom Part Manufacturing Service User's Guide
CPMS Use Case Examples

3.1.1 CPMS

This section provides detailed information on starting a new custom part in CPMS and configuring the debug lock and Secure Boot.

1.In a browser, open CPMS at https://cpms.silabs.com/login.
2.Log in using your www.silabs.com account credentials.

silabs.com | Building a more connected world. Rev.0.1 | 5

https://cpms.silabs.com/login
http://www.silabs.com

UG519: Custom Part Manufacturing Service User's Guide
CPMS Use Case Examples

3. Click "Create a new Custom Part":

4\ // Custom Part Manufacturing Service

Start Creating a new Custom Part

Silicon Labs Custom Part Manufacturing Service (CPMS) lets you configure your own custom parts. As part of the customization process, we will send you
samples for approval, and once approved, you will receive a unique Orderable Part Number (OPN) that you can use to order commercial quantities of your
part from your Silicon Labs sales representative or authorized distributor.

Create a new Custom Part

a.Part: Select any Secure Vault Mid or High part. This example used "EFR32MG21B010F 1024IM32-B".

Start Creating a new Custom Part

To get started, select the part to base your custom programming on and give your new OPN a hame. On the next screen you will be able to set your custom
programming data and request samples be sent to you.

Select a stock part for you to customize and give your product an alias name. This alias name is only used on this portal for you to remember a specific order;
it has no relation to the configuration of your part in any way.

Don't see a part you want? Tell us!

Start typing to select a Part to custom program
EFR32MG21B010F1024IM32-B

Part Details

Product: Wireless

Group: ZigBee and Thread
Family: EFR32MG21 Series 2 SoCs
Flash size: 1024kB

b.Name: Enter "Example-1". This name will be used within CPMS to help differentiate between custom devices.
c. Estimated Product Order Volume: Select any of the options.
d. Estimated First Volume Order Time: Select any of the options.

Give your Customn Part Order a Name
Example-1

A friendly name for you to refer back to on this portal. This name does not appear in the final chip.
Estimated Production Order Volume? (just guess if you are not sure)

@® <1,000 units

(O 1,000 - 9,999 units

(O 10,000 - 99,999 units

(O 100,000 - 299,999 units

(O 21,000,000 units

Estimated First Volume Order Time? (just guess if you are not sure)

@ 1-3 months
O 4-6 months

O 6+ months

silabs.com | Building a more connected world.

UG519: Custom Part Manufacturing Service User's Guide
CPMS Use Case Examples

4. Click "Customize". This takes you to the part customization page. Change the following configurations (configurations not listed can
be left as the default):

a. Debug Lock: Select "Secure".

Please update your customization to ensure these conditions are met:

@ Provide a command key for secure debug lock

Debug Lock
O Standard @ Secure O Permanent O Unlocked

The debug access port connected to the Series 2 device's Cortex-M33 processor can be closed by issuing commands to the Secure
Element, either from a debugger over DCI or through the mailbox interface. Three properties govern the behavior of the debug lock.
Locking the part reduces the general attack surface and prevents information leakage post Silicon Labs manufacturing.

b. Configure Secure Boot, Flash Lock, and Tamper Settings: On. Turn off "Require Verify Certificate before secure boot", since
this example will not use certificates.

@@ Configure Secure Boot, Flash Lock, and Tamper Settings

These configurations can only be made at one time and are irreversible once they are made.

Read more about secure boot with RTSL and production programming

Enable Secure Boot with RTSL

If set, authenticates the first code image in flash memory, which is typically the second stage bootloader, before allowing that code to run.
Enabling secure boot will ensure that the device will only boot code that has been properly signed by you.

|:| Require Verify Certificate before secure boot

The Verify intermediate certificate before secure boot option provisions the Public Sign Key to enable certificate-based Secure Boot. Enabling this
reduces the need to access the OTP signing key allowing more stringent access restrictions. It also provides the ability to roll the intermediate key
in the event it is compromised.

c. Before we can enter the keys and images, we need to generate them. This will be covered in the following sections.

silabs.com | Building a more connected world. Rev.0.1 | 7

UG519: Custom Part Manufacturing Service User's Guide
CPMS Use Case Examples

3.1.2 Generating the Application

Follow the instructions below to generate and configure an application.
1. Open "Simplicity Studio".
2.In the Launcher view, click "EXAMPLE PROJECTS & DEMOS".
3. Search for "blink", and select the Platform - Blink Bare-metal project.
4. Click "Finish".
5. There should now be a blink baremetal project open in the Simplicity IDE view. Open blink baremetal.slcp.

blink_baremetal OVERVIEW

Target and SDK Selection Project Details Project Generators

blink_baremetal »* Simplicity IDE Project

This example project shows how to blink an LED in a bare-metal A Simplicity IDE project supporting builds for MCUs
configuration using C/C++ and assembly files.

Category
> Example|Platform

Preferred SDK

Gecko SDK Suite: Amazon, Bluetooth 3.2.2, Bluetooth Mesh 2.1.2,
EmberZNet 6.10.2.0, Flex 3.2.2.0, HomeKit 1.0.2.0, MCU 6.1.2.0,
Micrium OS Kernel, OpenThread 1.2.2.0 (GitHub-48b129e74),
Platform 3.2.1.0, Wi-SUN 1.1.1.0, Z-Wave SDK 7.16.2.0

EFR32MG21B010F1024IM32 Import Mode

Link sdk and copy project sources v
EFR32xG218 2.4 GHz 10 dBm Radio Board (BRD4181C)

Wireless Starter Kit Mainboard (BRD4001A Rev A01)

ge Target/SDK

6. Click on the "SOFTWARE COMPONENTS" tab.
7.1n the Search bar, search for “bootloader”.
8. Click on "Platform > Bootloader > Bootloader Application Interface", and click "Install".

blink_baremetal SOFTWARE COMPONENTS
h keywords, t's
Y Filter : Configurable Components D Installed Components D Components Installed by You D S?bagtg;li;a;;r gﬂpone” rame
v Connect | Bootloader Application Interface Install

v OTA
Add compenent to project

OTA Broadcast Bootloader Client o
Description

OTA Broadcast Bootloader Server e P
This component must be added to a project in order to use the Gecko Bootloader. When this component is

OTA Unicast Bootloader Client ¢ part of a project = part of flash memory will be reserved for Bostloader usage in the application linker
file. This component also provides a bootloader interface for interacting with the Geeko Bootloader.

OTA Unicast Bootloader Server e
Quality

v Test PRODUCTION

OTA Bootloader Test Common

OTA Broadcast Bootloader Test Open in Browser

OTA Unicast Bootloader Test App"cation |nter-face

OTA Bootloader Interface
v Platform Description
v Bootloader o

Application interface to the bootloader.

Bootloader Application Interface

PP The application interface consists of functions that can be included in the customer application that and will communicate
with the bootloader through the MzinBootloaderTable t . This table contains function pointers to the bootloader. The
v Services 10th word of the bootloader contains a pointer to this struct, allowing any application to easily locate it. To access the

silabs.com | Building a more connected world.

UG519: Custom Part Manufacturing Service User's Guide
CPMS Use Case Examples

9. The application image will need an application_properties.c file as shown below to enable secure boot. The ".cert" pointer is set
to NULL to disable the application certificate option. The signatureType and signatureLocation fields are filled by Simplicity
Commander when signing the application image using the convert command.

#include <stddef.h>
#include "application properties.h"

// Rpplication version number (uint32 t) for anti-rollback
#define APP_PROPERTIES_VERSION (O0UL)

// Rpplication properties for secure boot
const ApplicationProperties t sl app properties = {
.magic = APPLICATION_PROPERTIES MAGIC,
.structVersion = APPLICATION PROPERTIES VERSION,
.signatureType = APPLICATION_SIGNATURE_NONE,
.signatureLocation = 0,
.app = {
.type = APPLICATION_TYPE MCU,
.version = APP_PROPERTIES_ VERSION,
.capabilities = 0UL,
.productId = { oU },
bo
.cert = NULL,
.longTokenSectionAddress = NULL,

¥

ok blink_baremetal.slcp % bootloader-storage-internal-single.isc I@ application_properties.c &

=

#include <stddef.h>
#include "application_properties.h"

// Application version number (uint32_t) for anti-rollback
#define APP_PROPERTIES_VERSIONM (@UL)

// Application properties for secure boot

const ApplicationProperties t sl _app properties = {
.magic = APPLICATION_PROPERTIES MAGIC,
.structVersion = APPLICATION_PROPERTIES_VERSION,
.signatureType = APPLICATION SIGNATURE MOMNE,
.signaturelocation = @,

-app = {

.type = APPLICATION_TYPE_MCU,

.version = APP_PROPERTIES_VERSION,

.capabilities = UL,

.productId = { @U },

},

-cert = MNULL,

20 .longTokenSectionAddress = MULL,

21 };

22

O = ohoun s L R

W00 s 3 W Pl RS e S

10. Now that the configuration is set, "Build" the project. This will generate binaries for the project.

o | B R v R il vy Oy RIS
55 Project Explorer &3 | Build 'GNU ARM v10.2.1 - Default’ for project ‘blink_baremetal’

i<
=

silabs.com | Building a more connected world. Rev.0.1 | 9

UG519: Custom Part Manufacturing Service User's Guide
CPMS Use Case Examples

3.1.3 Generating the Bootloader

Follow the steps below to generate and configure a bootloader.
1. Now go back to the Launcher and search for "bootloader".
2.Locate and "Create" the "Internal Storage Bootloader (single image on 1MB device)" example.
3. Open bootloader-storage-internal-single.isc.

4. Click on the "Plugins" tab, then select "Bootloader Core, provides API: core".
5. Click "Require encrypted firmware upgrade files" and "Enable Secure Boot".

© Gecko Bootioader, version1.120
& General [+ Plugins -+ Storage | & Callbacks | & Other

Plugin configuration
Use this section to select or unselect the plugins that you want to use in your application
|2
~ [0 % Communication
[[] %> BGAPI UART DFU
[0+ EZsP-5PI
[J 4> UART XMODEM
(] 4> XMODEM Parser, provides APL: xmodemParser
~ m% Core
[J < Application upgrade version cheek
< Bootloader Core, provides API: core
[] %> GBL Compression (LZ4)
[% GBL Compression (LZMA)
4 Image Parser, provides APk imageParser
[[] %> Image Parser with legacy EBL support, provides AP imageParser
] 4% Image Parser without encryption support. provides AP imageParser
~ []% Drivers
(] Delay, provides AP: delayDriver
14 SPI Master, provides APk; spiDriver
[J <> $PI Slave, provides APL spiSlaveDriver
(14> UART, provides APk uartDriver
~ [W] % Storage
[J % Common Storage, provides APt storageCommon
< Common Storage isingle storage slot only), provides APE storageCommon
< Internal Storage, provides AP!: storage
(14 57! Flash Storage, provides AP: storage
~ [% Utils
4 Crypto, provides AP aes, sha, ecdsa
4 Cyclic Redundancy Check, provides APE crc

Plugin: <> Baotloader Core

Qual

@ Unknown plugin quality
Description:

B Generate || « Preview

Core library for bootloader

Options:
[Require signed firmware uparade files
encrypted firmware upgrade files

ric key stored in Secure Element storage

ertificate support

from manufacturing token storage

\i4 reset
Base address of bootloader upgrade image: | 32768

Details (double-click on files to show content):

Reset to defaults

& Located at: CASiliconLabs\Simpli s st ore
: ?::C;f & Common source files (4)

=

[]4 EZSP GPIO activation i :::ﬂ‘f::)mum e

[GPIO activation 2 Setup contributions (2)

[)4 SE Manager Options (13)

4> Token Management, provides API: tokenManagement & APIs (1)

< mbed TLS

= Precompiled libraries (32)

6. At the top right, click on "Generate".

7.Now that the files have been generated, "Build" the project (if the build button is greyed out, you may need to click on the project in
the Project Explorer).

silabs.com | Building a more connected world.

UG519: Custom Part Manufacturing Service User's Guide
CPMS Use Case Examples

3.1.4 Generating the Sign Key, the Command Key, and the OTA Decryption Key

Enabling secure boot and secure debug requires importing public keys. Ideally, these keys would be generated and managed by an
HSM. This example will use Commander.

1. Create a sign key pair for secure boot:

commander util genkey --type ecc-p256 --privkey cpms-sign-priv.pem --
pubkey cpms-sign-pub.pem

C:\Users\bethorel\SimplicityStudio\v5_workspace>commander util genkey --type ecc-p256
--privkey cpms-sign-priv.pem --pubkey cpms-sign-pub.pem
Generating ECC P256 key pair...

Writing private key file in PEM format to cpms-sign-priv.pem
Writing public key file in PEM format to cpms-sign-pub.pem
DONE

2. Create a command key pair for secure debug:

commander util genkey --type ecc-p256 --privkey cpms-cmd-priv.pem --
pubkey cpms-cmd-pub.pem

C:\Users\bethorel\SimplicityStudio\v5_workspace>commander util genkey --type ecc-p256
--privkey cpms-cmd-priv.pem --pubkey cpms-cmd-pub.pem

Generating ECC P256 key pair...

Writing private key file in PEM format to cpms-cmd-priv.pem

Writing public key file in PEM format to cpms-cmd-pub.pem

DONE

3. Create an OTA decryption/encryption key for GBL upgrades:

commander util genkey --type aes-ccm --outfile cpms-gbl.txt

C:\Users\bethorel\SimplicityStudio\v5_workspace>commander util genkey --type aes-ccm
--outfile cpms-gbl.txt

Using Windows' Cryptographic random number generator
DONE

silabs.com | Building a more connected world. Rev. 0.1 | 11

UG519: Custom Part Manufacturing Service User's Guide
CPMS Use Case Examples

3.1.5 Signing and Merging the Application and Bootloader Images

We now need to prepare our application and bootloader for CPMS. First, we need to sign the images. Then, since CPMS requires the
firmware image to be in one file, we need to merge the signed hex files. We will do this using the Simplicity Commander command line
interface.

1. Open a terminal and navigate to your Simplicity Studio workspace.
2. Sign the bootloader:

commander convert "internal-storage-bootloader-single\GNU ARM v10.2.1 -
Default\internal-storage-bootloader-single.hex" --secureboot --keyfile
cpms-sign-priv.pem --outfile cpms-btl-signed.hex

This will create the cpms-btl-signed.hex signed image file in your workspace.

C:\Users\bethorel\SimplicityStudio\v5_workspace>commander convert "bootloader-sto
rage-internal-single\GNU ARM v10.2.1 - Default\bootloader-storage-internal-single
.hex" --secureboot --keyfile cpms-sign-priv.pem --outfile cpms-btl-signed.hex
Parsing file bootloader-storage-internal-single\GNU ARM v10.2.1 - Default\bootloa
der-storage-internal-single.hex...

Found Application Properties at ©xe00024a8

Writing Application Properties signature pointer to point to ©x000025e0

Setting signature type in Application Properties: ©x00000001

Image SHA256: ca36debc860cdb720aabedfdd37dc730172fe34571aedc452b52f9ef5a824264
= 3EBES8AF660QF769FE25E9262E6899188B61716723352367FOECO96DF6C7133B20

S = 5C36A7B3124F320C9B9B56B80D2F1A1D8B3593BCOR8E11B50015E3BEE4638537

Writing to cpms-btl-signed.hex...

DONE

3. Sign the application:

commander convert "blink baremetal\GNU ARM v10.2.1 - Default\blink baremetal.hex" --secureboot --keyfile
cpms-sign-priv.pem --outfile cpms-app-signed.hex

This will create the cpms-app-signed.hex signed image file in your workspace.

C:\Users\bethorel\SimplicityStudio\v5_workspace>commander convert "blink_baremeta
I\GNU ARM v10.2.1 - Default\blink_baremetal.hex" --secureboot --keyfile cpms-sign
-priv.pem --outfile cpms-app-signed.hex

Parsing file blink_baremetal\GNU ARM v1@0.2.1 - Default\blink_baremetal.hex...
Found Application Properties at ©x000061bc

Writing Application Properties signature pointer to point to @x000064d8

Setting signature type in Application Properties: 0x00000001

Image SHA256: 030b8cdb43e7666bla®l5ada8ab58a96169be@86177548b692a385edb5840295

R = OC64B8ECOFEFDO81EFEBFO8EOQ744A13CA606BD654C1A6B108AF2F5CO6AECDSAL

S = CASDE6279F50C86CD317365FD98380D097D90764A9EDEFE@6623FES126763844

Writing to cpms-app-signed.hex...

DONE

silabs.com | Building a more connected world. Rev. 0.1 | 12

UG519: Custom Part Manufacturing Service User's Guide
CPMS Use Case Examples

4. Merge the signed hex files:

commander convert cpms-app-signed.hex cpms-btl-signed.hex -o cpms-merged.hex

C:\Users\bethorel\SimplicityStudio\v5_workspace>commander convert cpms-app-signed
.hex cpms-btl-signed.hex -o cpms-merged.hex
Parsing file cpms-app-signed.hex...

Parsing file cpms-btl-signed.hex...
Writing to cpms-merged.hex...
DONE

This will create cpms-merged.hex in your workspace.

silabs.com | Building a more connected world.

Rev. 0.1 | 13

UG519: Custom Part Manufacturing Service User's Guide
CPMS Use Case Examples

3.1.6 Programming the Keys and Flash Memory

This section describes how to upload the public sign key and the merged signed hex file.
1.In CPMS, return to the "Standard Security Keys" section.
2. Click on the blue upload button in the "Secure Boot Key" field, then select the cpms-sign-pub.pem file.

Standard Security Keys

Secure Boot Key o

This key is used for binary authentication and/or OTA upgrade payload authentication. If you enabled secure boot, you must provide the public
part of the key you used to sign your bootloader or application image here. (eg. 0x04123456789...ABCEDF, total 65 bytes. You can also upload a
.pem or .der file)

<« Users » bethorel » SimplicityStudic » w5_workspace v O 2 Search vi_workspace
Mew folder =~ 8
t-glitch ™ MName Date modified Type Size g
_ e g e e et i e -
act Presentations B cpers-cma-priv 11/18/2021 11:45AM PGPdesk Document 1KB
AIML L cpms-crmd-pub 11/18/2021 11:45 AM PGPdesk Document 1KB
3ecurity Marketing <] cpms-sign-priv 11/18/2021 11:44 AM PGPdesk Document 1KB
ning W & cpms-sign-pub 11/18/2021 11:44 AM PGPdesk Document 1KB .
File name: | cpms-sign-pub v| Custom Files ~

silabs.com | Building a more connected world. Rev. 0.1 | 14

UG519: Custom Part Manufacturing Service User's Guide
CPMS Use Case Examples

3. Click on the blue upload button in the "Command Key" field, then select the cpms-cmd-pub.pem file.

Standard Security Keys

Secure Boot Key
0x 049fbc742281f7aa335c8bb2341eb23132be67ace68alcf7e1555b17ac694cha8bb7cb0c6d99ec08c55ddf1c19ac540aeaefd2: 6

This key is used for binary authentication and/or OTA upgrade payload authentication. If you enabled secure boot, you must provide
the public part of the key you used to sign your bootloader or application image here. (eg. 0x04123456789...ABCEDF, total 65 bytes.
You can also upload a .pem or .der file)

Command Key <O

This key is used for Secure Debug Unlock or Disable Tamper command authentication. If you chose secure debug lock, you must
provide the public part of your command key here. (eg. 0x04123456789...ABCEDF total 65 bytes. You can also upload a .pem or .der

file)

<« lsers » bethorel * SimplicityStudio * v5_workspace v | D 0 Search v5_workspace
New folder =~ @
t-glitch " MName Date modified Type Size g
_ e e R e e i -

uct Presentations B cpms-cmd-piiv 11/18/2021 11:45AM PGPdesk Document 1KB

AlIML L cpms-cmd-pub 11/18/2021 11:45 AM PGPdesk Document 1KB

security Marketing k cpms-sign-priv 11/18/2021 11:44 AM PGPdesk Document 1KB

ining w fah cpms-sign-pub 111872021 11:44 AM PGPdesk Document 1KB o
File name: | cpms-cmd-pub v‘ Custom Files w

4. For the OTA Decryption Key, copy the key value (in hex) from cpms-gbl.txt into the “OTA Decryption Key” field.

C:\Users\bethorel\SimplicityStudio\v5_workspace>type cpms-gbl.txt
Key randomly generated by 'util genkey'

TOKEN_MFG_SECURE_BOOTLOADER_KEY: D374A93C78C6A115D8F51D287C633165

OTA Decryption Key @

Ox D374A93C78C6A115D8F51D287C633165

This key is used for decrypting GBL payloads used for firmware upgrades. (eg. 0x0123456789...ABCEDF total 16 bytes.)

5. Scroll down to the "Flash Programming" section.

silabs.com | Building a more connected world. Rev. 0.1 | 15

trboyd
Sticky Note
should this be ABCDEF?

UG519: Custom Part Manufacturing Service User's Guide
CPMS Use Case Examples

6."Firmware Type:" Select "App and Bootloader".
Flash Programming

Flash Programming involves the addition of customer specific code to a standard product. Customer code in INTEL HEX format is required.

Firmware

Fill Character
0x FF

We will fill unused or unspecified addresses of the flash with the byte you provide here.

Firmware Type

O App only O Bootloader only @ App and Bootloader

’ & C(LICK HERE OR DRAG DROP TO UPLOAD A FILE

Intel HEX

7.Click on "CLICK HERE OR DRAG DROP TO UPLOAD A FILE".
8. Navigate to your workspace. On Windows this will be in C:/Users/<username>/SimplicityStudio/v5_workspace.
9. Select cpms-merged.hex and click "Open". CPMS only accepts Intel Hex files for firmware images.

» Benjamin Thorell » SimplicityStudio » v5_workspace » w [} £ Search v5_workspace
Mew folder Bz e
~ Mame Date modified Type Size 4
5 Q7P n A AP 34
D btlhex G/3/2021 10:13 AM HEX File 27 KB
iilicon Labs) D cpms-app-signed.hex 11/1872021 1:16 PM HEX File 27 KB
personal D cpms-btl-signed.hex 111872021 1:12 PM HEX File 27 KB
. D cprms-merged.hex 11/18/2021 1:17 PM HEX File 53 KB
-glitch ~/ 8 ;s e o fraa rmAna e e ETS— - &
File name: | cpms-merged.hex v| Custom Files w

silabs.com | Building a more connected world. Rev. 0.1 | 16

UG519: Custom Part Manufacturing Service User's Guide
CPMS Use Case Examples

10. You should now be able to see the binary for the application in CPMS.

Flash Programming

Flash Programming involves the addition of customer specific code to a standard product. Customer code in INTEL HEX format is required.

Firmware

Fill Character
Ox FF

We will fill unused or unspecified addresses of the flash with the byte you provide here.

Firmware Type
O App only O Bootloader only @ App and Bootloader

& CLICK HERE OR DRAG DROP TO UPLOAD A FILE

AN1363-merged.hex
:1000000000800020A10000009D0000000B01000006 -
:100010009D0000009D0000009D000000SD0000006C
:100020009D0000009D000000682400009D0000006D
:100030009D000000A82400009D0000009D000000TD
:1000400010B5054C237833B9044B13B1044800E0D4
:1000500000BF0123237010BD080100200000000034

SAAAACAANR ANCAAAAANNI AN ANANNANAN AAAN AONATA AN

11. Scroll to the top of the page, and click "PROCEED TO REVIEW".

Title Example-1 Vama o

Base Part EFR32MG21BO10F1624IM32-B

o Select Part ° Customize e Review e Payment e Processing o Shipping 0 Done

Customize Your Part

Your OPN programming data is valid and ready to be reviewing for sample programming. You can leave PROCEED TO REVIEW >

this page and come back at any time to complete your order. Incomplete orders are retained 30 days from

last access.

12.You can now review the pricing for the custom part and the security configurations you've entered.

silabs.com | Building a more connected world.

UG519: Custom Part Manufacturing Service User's Guide
CPMS Use Case Examples

3.2 Importing Custom Wrapped Keys

To import custom wrapped keys into CPMS, you need four fields: value, address, auth, and metadata. The following examples will
show how to get the metadata value for an asymmetric and a symmetric key.

Example #1: Importing Custom Wrapped Asymmetric Keys

1. In Simplicity Studio, in the Launcher view click on "EXAMPLE PROJECTS & DEMOS".
2. Search for "SE Manager".
3. Create a project from the "Platform - SE Manager Digital Signature (ECDSA and EdADSA)" example.

EFR32xG21B 2.4 GHz 10 dBm RB, WSTK Mainboard (ID: 000440169815)
OVERVIEW ~ EXAMPLE PROJECTS & DEMOS ~ DOCUMENTATION ~ COMPATIBLE TOOLS

Run a pre-compiled demo or create a new project based on a software example.

16 resources found

Filter on keywords

SR Platform - SE Manager Asymmetric Key Handling Platform - SE Manager Block Cipher
This example project demonstrates the asymmetric key handling API This example project demonstrates the block cipher APl of SE
Remes . of SE Manager. Manager.
Example Projects . View Project Documentation 4 View Project Documentation (4

n What are Demo and Example Projects?

Platform - SE Manager Digital Signature (ECDSA and Platform - SE Manager Hash

~ Technology Type @ Clear Filter
9y Typ Ed DSA) This example project demonstrates the Hash API of SE Manager. CREATE
This example project demonstrates the digital signature (ECDSA and
[J Amazon (0) ple pro glatelg (CREATE View Project Documentation (3

EdDSA) API of SE Manager.
[J Bluetooth (0)

View Project Documentation (3
[Bluetooth Mesh (0)

4.CPMS will automatically wrap your key and write it into flash. To emulate that for testing, we will use the Memory System Controller
to write the key into flash. To enable the MSC, first open se_manager_signature.slcp.

5. Open the "SOFTWARE COMPONENTS" tab.
6. Search for "msc".
7.Click on the MSC Peripheral and click "Install".

blink_baremetal SOFTWARE COMPONENTS
Search keywords, t's
Y Filter: Configurable Components D Installed Components D Components Installed by You D ?ba:t;IIZaé;r SWOM e
E4CGonnect | Bootloader Application Interface Install
v OTA
OTA Broadcast Bootloader Client o
OTA Broadcast Bootloader Server o] Description
This component must be added to a project in order to use the Gecko Bootloader. When this component is
OTA Unicast Bootloader Client ¢ part of a project a part of flash memory will be reserved for Bootloader usage in the application linker
file. This component also provides a bootloader interface for interacting with the Geeko Bootloader.
OTA Unicast Bootloader Server o
Quality
v Test PRODUCTION
OTA Bootloader Test Common
OTA Broadcast Bootloader Test Open in Browser
OTA Unicast Bootloader Test App"cation |nterface
OTA Bootloader Interface
v Platform Description
v Bootloader o
Application interface to the bootloader.
Bootloader Application Interface o))) ; o !
The application interface consists of functions that can be included in the customer application that and will communicate
with the bootloader through the MzinBootloaderTable t . This table contains function pointers to the bootloader. The
v Services 10th word of the bootloader contains a pointer to this struct, allowing any application to easily locate it. To access the

silabs.com | Building a more connected world.

UG519: Custom Part Manufacturing Service User's Guide
CPMS Use Case Examples

8. We will modify the "create_wrap_asymmetric_key" function of app_se_manager_signature.c to use our "CPMS key". Instead of
generating a key, we will import our ecc key. In app_se_manager_signature.c line 255, replace the lines:

print error cycle (sl _se generate key(&cmd ctx, &asymmetric key desc),
&cmd_ctx) ;

with the following:

// YOUR KEY VALUE GOES HERE:

static uint8 t user key[64] =

{
0x79, 0x7D, 0x86, O0xE3, 0x5B, OxAA, 0x03, O0xAS5,
OxEE, 0x09, OxAB, O0x5E, 0x7E, 0xBl, 0x2D, 0xC3,
0x92, O0xFC, O0xCE, 0xDC, 0xD0O, 0x2A, 0xBO, O0xF7,
0x56, Ox5E, 0x73, 0x30, 0x86, 0x1D, OxAE, 0xD5,
0xDD, O0x8A, 0x84, 0xA2, 0x87, 0x0F, 0xCC, 0x2B,
0x70, 0x66, OxAE, OxEO, 0x88, 0x44, 0x2C, 0xCC,
0x0C, 0x53, O0xCE, 0x9D, 0x26, 0xBB, 0xB3, 0x04,
0xA8, 0xB7, 0xB9, OxE5, 0x20, 0x43, 0x62, OxAE

b
sl se key descriptor t plaintext desc = {
.type = key type,
.flags = SL_SE KEY FLAG ASYMMETRIC BUFFER HAS PRIVATE KEY
| SL_SE KEY FLAG ASYMMMETRIC SIGNING ONLY,
.storage.method = SL_SE_KEY STORAGE EXTERNAL_ PLAINTEXT,
.storage.location.buffer.pointer = user key,
.storage.location.buffer.size = 64
¥
if (sl _se import key(&cmd ctx, &plaintext desc, &asymmetric key desc) != SL STATUS OK)

return SL_STATUS FAIL;

This code will import your key into the Secure Engine, wrap it, then store the wrapped key to the asymmetric_key_buf that asym-
metric_key_desc.storage.location.buffer.pointer is pointing to.

247 // The size of the wrapped key buffer must have space for the overhead of the
248 /! key wrapping

249 if (sl _se_validate_key(&asymmetric_key desc) != SL_STATUS_OK

250 || sl_se get storage size(&asymmetric_key desc, &req size) != SL_STATUS_OK
251 || asymmetric_key desc.storage.location.buffer.size < reg_size) {
252 return SL_STATUS FAIL;

253}

254

255 // YOUR KEY VALUE GOES HERE

256 static uint8 t user_key[64] =

257 {

258 0x79, 0x7D, 0x86, OXE3, Ox5B, OxAA, Ox03, OXAS,

259 OxEE, 0x09, OxAB, OxSE, @x7E, ©xB1, Ox2D, Ox(3,

260 0x92, OXFC, OxCE, OxDC, @xDO, ©x2A, OxBO, OxF7,

261 0x56, OXSE, 0x73, 0x30, 0x86, Ox1D, OXAE, @xDS,

262 OxDD, Ox8A, Ox84, 0xA2, OxS87, @x0F, OxCC, Ox2B,

263 0x70, Ox66, OXAE, OXEQ, Ox88, @x44, Ox2C, OxCC,

264 0x0C, 0x53, OxCE, 0x9D, @x26, OxBB, OxB3, 0x04,

265 0xAS, OxB7, OxB9, OXES, @x20, ©x43, Ox62, OXAE

266 };

267

268 sl _se_key descriptor_t plaintext _desc = {

269 .type = key_type,

270 flags = SL_SE_KEY FLAG ASYMMETRIC_ BUFFER_HAS PRIVATE KEY

271 | SL_SE KEY FLAG ASYMMMETRIC_ SIGNING ONLY,

272 .storage.method = SL_SE KEY STORAGE EXTERNAL PLAINTEXT,

273 .storage.location.buffer.pointer = user_key,

274 .storage.location.buffer.size = 64

275 };

276

277 if (sl _se_import key(&cmd_ctx, &laintext desc, &asymmetric_key desc) != SL_STATUS_OK)
278 return SL_STATUS_FAIL;|

279 }

280

2819 /’********4{***4{*************4{****************4{***4{********4{******************i;’**
282 * Generate a non-exportable asymmetric key into a volatile SE key slot.

silabs.com | Building a more connected world.

UG519: Custom Part Manufacturing Service User's Guide
CPMS Use Case Examples

9. Next, we need to write the wrapped key blob into flash. Add the following lines to create_wrap_asymmetric_key:

// YOUR KEY ADDRESS GOES HERE:
unsigned int wrapped key address = 0x00080000;

printf ("\nWriting key into flash at 0x%08x...\n", wrapped key address) ;

// Clear out the old wrapped key
MSC ErasePage ((uint32 t*)wrapped key address) ;

// Flash the new wrapped key
MSC WriteWord((uint32 t*)wrapped key address, asymmetric_key buf,

sizeof (asymmetric_key buf)) ;

// Update the key descriptor to point to the key in flash
asymmetric_key desc.storage.location.buffer.pointer = (uint8_t*)wrapped key address;

10. Next, we'll print out the keyspec that we need for CPMS. Add the following lines to create_wrap_asymmetric_key:

unsigned int keyspec;

if (sli_se key to keyspec (&asymmetric key desc, &keyspec) != SL STATUS OK)
return SL_STATUS_FAIL;

printf ("\nKeyspec: 0x%08x\n", keyspec) ;

return SL_STATUS OK;

275 1

276

277 if (s1_se_import_key(&cmd_ctx, &plaintext_desc, &asymmetric_key_desc) != SL_STATUS_OK)
278 return SL_STATUS_FAIL;

279

280 // YOUR KEY ADDRESS GOES HERE:

281 unsigned int wrapped_key_address = 9x000280000;

282

283 printf("\nkWriting key into flash at @x%@8x...\n", wrapped key address);

284

285 // Clear out the old wrapped key

286 MSC_ErasePage((uint32_t*)wrapped_key address);

287

288 // Flash the new wrapped key

280 MSC_WriteWord((uint32_t*)wrapped_key_address, asymmetric_key buf, sizeof(asymmetric_key buf));
290

291 // Update the key descriptor to point to the key in flash

292 asymmetric_key desc.storage.location.buffer.pointer = (uint8_t*)wrapped_key_address;
293 unsigned int keyspec;

294

295 if (sli_se_key to_keyspec(&asymmetric_key desc, &keyspec) != SL_STATUS_OK)

296 return SL_STATUS_FAIL;

297

298 printf("\nKeyspec: @x%¥@8x\n", keyspec);

299

300 return SL_STATUS_OK;

301 }

382

3030 [FEEERERR R R R R KRR R R KRR [[

silabs.com | Building a more connected world.

UG519: Custom Part Manufacturing Service User's Guide
CPMS Use Case Examples

11.Keys imported using CPMS use a different bus master than the CPU, so the key descriptor needs to be updated. In cre-
ate_wrap_symmetric_key, edit the symmetric_key desc.flags field to remove SL_SE FLAG_ASYMMETRIC_BUF-
FER_HAS_PUBLIC_KEY and add SL_SE_KEY_FLAG_ALLOW_ANY_ACCESS (line 229):

asymmetric key desc.flags = SL SE KEY FLAG ASYMMETRIC BUFFER HAS PRIVATE KEY
| SL_SE KEY FLAG ASYMMMETRIC SIGNING ONLY
| SL_SE KEY FLAG NON EXPORTABLE
| SL_SE KEY FLAG ALLOW ANY ACCESS;

asymmetric_key_desc.type = key_type;
asymmetric_key desc.flags = SL_SE KEY FLAG ASYMMETRIC BUFFER_HAS PRIVATE KEY
| SL_SE_KEY FLAG_ASYMMMETRIC_ SIGNING_OMLY
| SL_SE_KEY_FLAG_MON_EXPORTABLE
| SL_SE KEY FLAG ALLOW ANY ACCESS;
asymmetric_key desc.storage.method = SL_SE KEY STORAGE_EXTERMAL_WRAPPED;
// Set pointer to a RAM buffer to support key generation
asymmetric_key desc.storage.location.buffer.pointer = asymmetric_key buf;
asymmetric_key desc.storage.location.buffer.size = sizeof(asymmetric_key buf);

12.Build the project.
File Edit 5ource Refactor Navigate Search Project Eun Window Help
HvHR O~/ ~ipv @i~~~ O oy v OM
"%‘:I Project Explorer &3 || Build 'GNU ARM v10.2.1 - Default’ for project 'se_manager_signature’

13. Flash to the target device.
~ = se_manager_signature [GNU ARM v10. Browse Files Here Suite: Amazon,
P. - -
v 3%, Binaries @ COpen Command Line Here

%+ se_manager_signature.axf - [arm, ¥ Flash to Device...

2 se_manager_signature.bin - [unkr)
- ger- _g [Properties Alt+Enter
2 se_manager_signature.hex - [Unkl rewessees

2 se_manager_signature.s37 - [unknown/le]

14.1In the "Debug Adapters" window, right click on the adapter for your device and click "Launch Console . . ."

it app_se_manager_signature.c

lh app_se_manager_signature.h

le main.c

@ readme.html

& se_manager_signature.pintool

Launch Console...
1 spiffer Configurator...

AoA Analyzer
@) Bluetooth NCP Commander...

& se manager signature sicp & Device configuration...
. Force Unlock...
Debug Ad 143 52 | %= Qutli RS Pl T BEEE S
: = s
ug Adapters o= Outline Set Unlack Token..

EFR32xG21 2.4 GHz 20 dBm RE (IP:
EFR32xG21 2.4 GHz 20 dBm RE (IP: View Device Certificates
EFR32xG21B 2.4 GHz 10 dBm RB (ILr=rroro=ory

Clear Unlock Token

silabs.com | Building a more connected world. Rev. 0.1 | 21

UG519: Custom Part Manufacturing Service User's Guide
CPMS Use Case Examples

15. Click on the "Serial 1" tab, then send "Enter" to start the console.

16. Reset the device. The program will first ask which type of key you want to use: plaintext, wrapped, or volatile. Type a "Space" then
"Enter" to select the second option, "wrapped".

== Serial 0 == Serial 1 = Admin <= Debug

. Current asymmetric key algorithm is ECC Weierstrass Prime.
+ Pre=s SPACE to select asymmetric key algorithm (ECC Weierstrass PrimesECC EdDSA (Ed25519)). pre=ss ENTER to next option.

SE Manager Digital Signature (ECDSA and EdDSA) Example — Core running at 38000 kHz.
. S5E manager initialization... SL_STATUS QK {(cycle=s: 9 time: 0 us)
+ Fill 4096 bytes plain message buffer with random number. .. SL_STATUS CK (cycles: 68068 time: 1791 us)

. Current asymmetric key i= a plaintext key.
+ Pre=s SPACE to select a plaintext or wrapped or volatile key, press ENTER to next option.
+ Current asymmetric key is a wrapped key.

. Current asymmetric key algorithm i= ECC Veierstrass Prime.
+ Pre=s SPACE to select asymmetric key algorithm (ECC Weierstrass PrimesECC EdDSA (Ed25519)). pre=ss ENTER to next option.

17. Type "Enter" four more times and you will see the keyspec printed to the console. When entering a custom wrapped key into
CPMS, this value is the "Key Metadata" value.

. Digital signature

+ ECC Weierstra=zs Prime — ECC F192

+ Generate a non-exportable wrapped asymmetric key. ..
Writing key into flash at 0=z00080000...

Key=pec: 0=8900c417
+ Sign 256 bytes message with SHAL and wrapped priwate key. .. SL_STATUS OK (cycle=s: 131246 time: 3453 us)
+ Ezport public kevy from private key... SL_STATUS QK {(cycles: 118968 time: 3130 us)
+ Verify =signature with SHA1 and wrapped public key. . . SL_STATUS QK (cycle=: 121817 time: 3205 us)

Current asymmetric key i= a wrapped key.
+ Press SPACE to select a plaintext or wrapped or wolatile kev, press ENTER to next option.

18. Now that we have the key wrapped and stored in flash, we want to see that the program can use it without having the plaintext key
anywhere in the application. Go back to app_se_manager_signature.c and comment out lines 255 to 278 and lines 283 to 289.

252 return SL_STATUS_FAIL;
253}

254

255 // // YOUR KEY VALUE GOES HERE
256 // static uint8_t user_key[64] =

257 /1 A

258 // 9x79, 0x7D, ©x86, OxE3, Ox5B, OxAA, 0x03, OxXAS

259 // OxEE, ©x@9, @xAB, Ox>E, Ox7E, OxBl, @x2D, @x(3,

260 // 0x92, OxFC, OxCE, OxDC, OxDO, Ox2A, OxBO, OxF7,

261 // 0x56, OXSE, Bx73, 0x30, 0x86, Ox1D, OXAE, 0xD5

262 // OxDD, @x8A, 0x84, OxA2, @x87, OxOF, @xCC, 0x2B,

263 // 0x70, OxB66, OXAE, OXE®, Ox88, Ox44, 0x2C, 0xCC,

24 // @x0C, 0x53, OxCE, 0x9D, 0x26, OxBB, OxB3, 0x04,

265 // 0xAB, @xB7, OxBY, OxES, ©x20, Bx43, Ox62, BXAE

266 // };

267 //

268 // sl _se_key descriptor_t plaintext_desc = {

269 // .type = key_type,

270 // _flags = SL_SE_KEY_FLAG ASYMMETRIC_BUFFER_HAS_PRIVATE KEY
271 // | SL_SE_KEY_FLAG_ASYMMMETRIC_SIGNING_ONLY,
272 // .storage.method = SL_SE_KEY_STORAGE_EXTERNAL_PLATNTEXT,
273 /] .storage.location.buffer.pointer = user_key,

274 /] .storage.location.buffer.size = 64

275 /] };

276 //

277 /] if (sl_se_import_key(&cmd _ctx, &plaintext desc, &asymmetric key desc) != SL_STATUS_OK)
278 // return SL_STATUS_FAIL;

279

280 // YOUR KEY ADDRESS GOES HERE:
281 unsigned int wrapped_key_address = @x000380000;

282
283=// printf("\nWriting key into flash at @x%@8x...\n", wrapped_key_address);
284 /]

285 // // Clear out the old wrapped key
2286 // MSC_ErasePage((uint32 t*)wrapped key address);

287 //

288 // // Flash the new wrapped key

289 // MSC_WriteWord((uint32 t*)wrapped key address, asymmetric key buf, sizeof(asymmetric_key buﬂ);l
290

291 // Update the key descriptor to point to the key in flash

292 asymmetric_key_desc.storage.location.buffer.pointer = (uint8_t*)wrapped_key_address;

293 unsigned int keyspec;
a0a

silabs.com | Building a more connected world.

UG519: Custom Part Manufacturing Service User's Guide
CPMS Use Case Examples

19. Now the application simply sets up the key descriptor to point to where we wrote the wrapped key in flash, without knowing the
value of the key.

20.Repeat steps 12 to 17 to verify that the wrapped key can still be used. Note that if the flash is erased (by a commander device
unlock command, for instance), this application will fail - it needs the wrapped key to be stored in flash by a previous process.

SE Hanager Digital Signature (ECDSA and EdDSA) Example — Core running at 38000 kH=z
SE manager initialization SL_STATUS_OK (cycles: 9 time: 0 us
Fill 4096 bytes plain message buffer with random number SL_STATUS_OE (cycles: 68674 time: 1807 us)

+

Current asymmetric key is a plaintest key

+ Press SPACE to select a plaintext or wrapped or volatile key. press ENTER to next option.

+ Current ssymmetric key is a wrapped key
Current ssymmetric key algorithm iz ECC WUeierstrass Prime.

+ Pre==s SPACE to =select asymmetric key algorithm (ECC Weierstrass Prime-ECC EJdDSA (Ed25519)), press ENTER to next option
Current ECC Weierstrass Prime key iz ECC P192

+ Press SPACE to select ECC Weierstrass Prime key (ECC P192/ECC P2L6~ECC P3B4-ECC P521-ECC Custom (secp2htkl in this example)). press ENTER to next option
Current Hash algorithm for signature is SHa

+ Press SPACE to select Hash algorithm (5HA1/224/256/384/512) for signature, press ENTER to next option
Current data length i= 256 bytes

+ Press SPACE to select data length (256 or 1024 or 4096), press ENTER to run
Digitsl =zignature

+ ECC Weierstrass Prime — ECC P192

+ Generate s non—exportable wrapped asymmetric key. ..

Keyspec: 0x8900c417
+ Sign 256 bytes meszage with SHAl and wrapped private key... SL_STATUS OK (cycles: 125919 time: 3313 us)
+ Export public key from private key SL_STATUS_OK (cycles: 115894 time: 3049 us)
+ Verify signature with SHA1 and wrapped public key SL_STATUS OK (cycles: 122195 time: 3215 us)

Current asymmetric key is a wrapped key
+ Press SPACE to select a plaintext or wrapped or volatile key. press ENTER to next option.

silabs.com | Building a more connected world.

UG519: Custom Part Manufacturing Service User's Guide
CPMS Use Case Examples

Example #2: Importing Custom Wrapped Symmetric Keys

1. In Simplicity Studio, in the Launcher view click on "EXAMPLE PROJECTS & DEMOS".
2. Search for "SE Manager".
3. Create a project from the "Platform - SE Manager Block Cipher" example:
EFR32xG21B 2.4 GHz 10 dBm RB, WSTK Mainboard (ID: 000440169815)
OVERVIEW EXAMPLE PROJECTS & DEMOS DOCUMENTATION COMPATIBLE TOOLS

Run a pre-compiled demo or create a new project based on a software example.

16 resources found
Filter on keywords
Esmanzosiie) Platform - SE Manager Asymmetric Key Handling Platform - SE Manager Block Cipher
This example project demonstrates the asymmetric key handling API This example project demonstrates the block cipher API of SE
EEms . of SE Manager. CREATE Manager. CREATE
Example Projects . View Project Documentation 3 View Project Documentation (4
n What are Demo and Example Projects?
Platform - SE Manager Digital Signature (ECDSA and Platform - SE Manager Hash
~ Technology Type © Clear Filter EdDSA) g 9 9 (g

This example project demonstrates the Hash API of SE Manager. CREATE
This example project demonstrates the digital signature (ECDSA and CREATE

3 Amazon () View Project Documentation (3
EdDSA) API of SE Manager.

[] Bluetooth (0) X X .
View Project Documentation &3
[] Bluetooth Mesh (0)

4. CPMS will automatically wrap your key and write it into flash. To emulate that for testing, we will use the Memory System Controller
to write the key into flash. To enable the MSC, first open se_manager_block_cipher.sicp.

5.0pen the "SOFTWARE COMPONENTS" tab.
6. Search for "msc".
7. Click on the MSC Peripheral and click "Install".

£ se_manager_block_ciphersicp 3| @ readmentm! | =0
se_manager_block_cipher SOFTWARE COMPONENTS
Y Filter : Configurable Components D Installed Components D Components Installed by You D j’:nshc a‘ms Sl

v Platform | MsC m
Add component to project

MSC
Description

Flash controller (MSC!

Quality
PRODUCTION

MSC - Memory System Controller

Description

Memory System Controller API.

Contains functions to control the MSC, primarily the Flash. Users can perform Flash memory write and erase
operations, as well as optimization of the CPU instruction fetch interface for the application. Available
instruction fetch features depends on the MCU or SoC family, but features such as instruction pre-fetch, cache,
and configurable branch prediction are typically available.

Note
Flash wait-state configuration is handled by cro - ¢
confiauration is chanaed by a call to functions siich a

unit. When core clock
ar () or

View Dependencies

silabs.com | Building a more connected world.

UG519: Custom Part Manufacturing Service User's Guide
CPMS Use Case Examples

8. We will modify the "create_wrap_symmetric_key" function of app_se_manager_block_cipher.c to use our "CPMS key". Instead of
generating a key, we will import our aes key. In app_se_manager_block_cipher.c line 259, replace the lines:

print error cycle(sl _se generate key(&cmd ctx, &symmetric key desc),
&cmd_ctx) ;

with the following:

// YOUR KEY VALUE GOES HERE:

static uint8 t user key[1l6] =
0x70, OxF4, 0x82, 0x4E, 0x49, 0xBD, 0x97, O0xAB,
0x65, 0x65, 0x32, 0x22, O0xA0, 0x70, 0xB5, 0xlé6

b

sl se key descriptor t plaintext desc = {

.type = SL_SE_KEY TYPE AES 128,

.flags = 0,

.storage.method = SL_SE KEY STORAGE EXTERNAIL PLAINTEXT,
.storage.location.buffer.pointer = user key,

.storage.location.buffer.size = 16
b
if (sl_se import key(&cmd ctx, &plaintext desc, &symmetric key desc) != SL STATUS_ OK)

return SL STATUS FAIL;

This code will import your key into the Secure Engine, wrap it, then store the wrapped key to the symmetric_key_buf that sym-
metric_key_desc.storage.location.buffer.pointer is pointing to.

42=s] status_t create_wrap_symmetric_key(sl_se_key_type_t key_type)
43 {

uint32_t req_size;

symmetric_key desc.type = key_type;

symmetric_key desc.flags = SL_SE_KEY_FLAG_NON_EXPORTABLE;

symmetric_key desc.storage.method = SL_SE_KEY_STORAGE_EXTERNAL_WRAPPED;
symmetric_key desc.storage.location.buffer.pointer = symmetric_key buf;
symmetric_key desc.storage.location.buffer.size = sizeof(symmetric_key buf);

if ((sl_se_validate_key(&symmetric_key desc) != SL_STATUS_OK)
|| (s1_se_get storage size(&symmetric_key desc,
&req_size) != SL_STATUS_OK)
|| (sizeof(symmetric_key buf) < req size)) {
return SL_STATUS_FATL;
}

// YOUR KEY VALUE GOES HERE:
static uint8_t user_key[16] =

0x7@, @xF4, Ox82, OxAL, BxA49, OxBD, ©x97, OxAB,
Ox65, Ox65, @x32, Ox22, OxAQ, 0x70, OxB5, Ox16
IS

66 sl se_key descriptor_t plaintext desc = {

.type = SL_SE KEY TYPE_AES 128,

.flags = @,

.storage.method = SL_SE KEY STORAGE EXTERMAL PLAINTEXT,
.storage.location.buffer.pointer = user_key,
.storage.location.buffer.size = 16

1

NN NN o Qo g
WNP ®D=J

~
=

if (sl_se_import_key(&cmd_ctx, &plaintext_desc, &symmetric_key_desc) != SL_STATUS_OK)
return SL_STATUS_FAIL;|

~ o~
@
——

silabs.com | Building a more connected world.

UG519: Custom Part Manufacturing Service User's Guide
CPMS Use Case Examples

9. Next, we need to write the wrapped key blob into flash. Add the following lines to create_wrap_symmetric_key:

// YOUR KEY ADDRESS GOES HERE:
unsigned int wrapped key address = 0x00080000;

printf ("Writing key into flash at 0x%08x...\n", wrapped key address) ;

// Clear out the old wrapped key
MSC ErasePage ((uint32 t*)wrapped key address) ;

// Flash the new wrapped key
MSC WriteWord((uint32 t*)wrapped key address, symmetric key buf, sizeof (symmetric key buf)) ;

// Update the key descriptor to point to the key in flash
symmetric key desc.storage.location.buffer.pointer = (uint8 t*)wrapped key address;

10. Next, we'll print out the keyspec that we need for CPMS. Add the following lines to create_wrap_symmetric_key:

unsigned int keyspec;

if (sli_se key to keyspec (&symmetric key desc, &keyspec) != SL STATUS OK)
return SL STATUS FAIL;

printf ("\nKeyspec: 0x%08x\n", keyspec) ;

return SL_STATUS OK;

274 if (sl _se_import_key(&cmd_ctx, &plaintext desc, &symmetric_key desc) != SL_STATUS OK)
275 return SL_STATUS_FAIL;

276

277 // YOUR KEY ADDRESS GOES HERE:

278 unsigned int wrapped_key_address = @x00080000;

279

280 printf("Writing key into flash at 8x%88x...\n", wrapped key address);

281

282 // Clear out the old wrapped key

283 MSC_ErasePage((uint32_t*)wrapped_key_address);

284

285 // Flash the new wrapped key

286 MSC_WritelWord((uint32 t*)wrapped_key address, symmetric_key buf, sizeof(symmetric_key buf));
287

288 // Update the key descriptor to point to the key in flash

289 symmetric_key desc.storage.location.buffer.pointer = (uint8_t*)wrapped_key_address;

290

291 unsigned int keyspec;

292

203 if (s1li_se key to keyspec(&symmetric_key desc, &keyspec) != SL_STATUS_OK)
294 return SL_STATUS_FAIL;

295

206 printf("\nKeyspec: @x%@8x\n", keyspec);

297

208 return SL_STATUS_DKﬂ

200 }

silabs.com | Building a more connected world. Rev. 0.1 | 26

UG519: Custom Part Manufacturing Service User's Guide
CPMS Use Case Examples

11.Keys imported using CPMS use a different bus master than the CPU, so the key descriptor needs to be updated. In cre-
ate_wrap_symmetric_key, edit the symmetric_key_desc.flags field to include SL_SE_KEY_FLAG_ALLOW_ANY_ACCESS (line
247):

symmetric key desc.flags = SL_SE KEY FLAG NON EXPORTABLE | SIL SE KEY FLAG ALLOW ANY ACCESS;

symmetric_key desc.type = key_ type;

symmetric_key desc.flags = SL_SE_KEY FLAG_NON_EXPORTABLE | SL SE_KEY FLAG_ALLOW_ANY ACCESS;
symmetric_key desc.storage.method = SL_SE_KEY_STORAGE_EXTERMAL_ WRAPPED;

symmetric_key desc.storage.location.buffer.pointer = symmetric_key buf;

symmetric_key desc.storage.location.buffer.size = sizeof(symmetric_key buf);

12.Build the project.
File Edit Source Refactor Navigate Search Project Run Window Help
R | B~ R~ i @il R OOy | AIS| | O A Wel
‘L:Tl‘l Project Explorer & 85ild ‘GNU ARM v10.2.1 - Default' for project 'se_manager_block_cipher’

13. Flash to the target device.

v 1= se_manager_block_cipher [GNU ARM v10.2.1 - C %3 Browse Files Here Ami
~ 3 Binaries @ Open Command Line Here

> %F se_manager_block_cipher.axf - [arm/le] % Flash to Device...
> 2 se_manager_block_cipher.bin - [unknown/

Properties Alt+Enter

» (2 se_manager_block_cipher.hex - [unknown; ey
» (2 se_manager_block_cipher.s37 - [unknown/le]
> m! Includes
» = autogen
» = config
» = gecko_sdk_3.2.2

silabs.com | Building a more connected world. Rev. 0.1 | 27

UG519: Custom Part Manufacturing Service User's Guide

CPMS Use Case Examples

14.1n the "Debug Adapters" window, right click on the adapter for your device and click "Launch Console . . ."

= autogen

= config

(= gecko_sdk_3.2.2

= GNU ARM v10.2.1 - Default

[¢ app_init.c

[% app_inith

[¢ app_process.c

[H app_process.h

il app_se_manager_block_cipher.c
[W app_se_manager_block_cipher.h

Rename

Connect

Disconnect

Start capture

Start capture with options..
Stop capture

Redo last upload

Upload application...
Upload adapter firmware...

[H app_se_manager_macro.h

Make a sniffer
[¢ main.c
@ readme.html Launch Console...
se_manager_block_cipher.pintool L(‘“ Sniffer Configurator...
&4 se_manager_block_ciphersicp & AoA Analyzer
= se_manager_block_cipherslps @) Bluetooth NCP Commander...
<l D ’ " ® Device configuration.. T B B
Force Unlock... = =
it Debug Adapters: 117 &2 | 5= Outline P EOCAXRB~-EEEE

Select Crypto Profile...
Set Unlock Token...
Clear Unlock Token

EFR32xG21 2.4 GHz 10 dBm RB (IP:10.12.¢

EFR32xG21 2.4 GHz 10 dBm RE (IP:10.12.2

EFR32xG21 2.4 GHz 20 dBm RB (IP:10.12.2 View Device Certificates
& EFR32xG21B 2.4 GHz 10 dBm RB (ID:4401 o

EFR32xG21B 2.4 GHz 10 dBm RB (IP:10.12.240.153)

15. Click on the Serial 1 tab, then reset the device. The program will first ask which type of key you want to use: plaintext, wrapped, or
volatile. Type a Space, then "Enter" to select the second option, "wrapped".

=5 Serial 0 == Serial 1 = Admin =& Debug

SE Manager Block Cipher Example — Core running at 38000 kHz.
. 5E manager initialization... SL_STATUS 0K {(cycles: 10 time: 0 us)

Fill buffer=s for block cipher operations.

Filling 16 bytes IV buffer with random number... SL_STATUS OK (cycles: 3777 time: 99 us)

Filling 32 bytes associated data buffer with random number ... SL_STATUS OK (cycles: 3765 time: 99 us)
Filling 4096 bytes plain message buffer with random number ... SL_STATUS OK (cycles: 69629 time: 1832 us)

44+

. Current symmetric key i= a plaintext key.
+ Pres=s SPACE to =elect a plaintext or wrapped or wolatile key. press ENTER to next option.
+ Current symmetric key iz a wrapped key.

. Current symmetric key length is 128-bit.
+ Press SPACE to =select symmetric kev length (128 or 192 or 256). press ENTEE to next option.

16. Type "Enter" once more, and you will see the keyspec printed to the console. When entering a custom wrapped key into CPMS,
this value is the "Key Metadata" value.

. Current symmetric key length 1= 128-bit.
+ Press SPACE to select symmetric key length (128 or 192 or 256). press ENTER to ne=t option.
+ Generating a 128-bit non-exportable symmetric wrapped key. .. Writing key into flash at 0=z00080000. ..

Keyspec: 0=09008010

. Current data length is 256 bytes.
+ Press SPACE to =select data length (256 or 1024 or 4096). press ENTER to next option.

silabs.com | Building a more connected world.

UG519: Custom Part Manufacturing Service User's Guide

CPMS Use Case Examples

17. Type "Enter" two more times to verify that the key can be used without error. Note that if you type "Enter" after this, the program
will try to use that key as a ChaCha20-Poly1305 key, and it will fail.

Keyspec: 0x09008010

Current data length i=s 256 bytes.

+-

Current Hash algorithm for HHAC is SHAL

+-

AES ECE test
Encrypting 256 bytes plaintext with 128 bit key
Decrypting 256 bytes ciphertext with 128 bit key

+ o+t

AES CTR test
Encrypting 256 bytes plaintext with 128 bit key
Decrypting 256 bytes ciphertext with 128 bit key

+ o+

AES CCH test

Decrypting 256 bytes ciphertext with 128 bit key

+ 4+

AES GCH test

+ o+t

Decrypting 256 bytes ciphertext with 128 bit key
Comnparing decrypted message with plain nessage

AES CEC test

++ o+

Comnparing decrypted message with plain nessage

AES CFBE test

++ o+

Comnparing decrypted message with plain nessage

AES CFB128 test

++ o+

AES CHAC test

+-

HMAC test

+-

Press SPACE to select data length (256 or 1024 or 4096).

Comnparing decrypted message with plain nessage. . .

Comnparing decrypted message with plain nessage. . .

Encrypting 256 bytes plaintext with 128 bit kevy. ..

Comnparing decrypted message with plain nessage. . .

Encrypting 256 bytes plaintext with 128 bit kew. ..

Encrypting 256 bytes plaintext with 128 bit kew. ..
Decrypting 256 bytes ciphertext with 128 bit key. ..

Encrypting 256 bytes plaintext with 128 bit kew. ..
Decrypting 256 bytes ciphertext with 128 bit key...

Encrypting 256 bytes plaintext with 128 bit key. ..
Decrypting 256 bytes ciphertext with 128 bit key...
Comparing decrypted message with plain nessage. . .

Generating 16 bytes CMAC on 256 bytes message with 128 bit key.

Generating SHA1 HMAC on 256 bytes message with 128 bit key

SI_STATUS 0K (cvycles

SI_STATUS_OE {cvcles:

0K

SI_STATUS 0K (cvycles

SI_STATUS_OE {cvcles:

OK

SL_STATUS QK {cycles

SI_STATUS_OE {cvcles:

OK

SL _STATUS 0K {cycles

SIL_STATUS_OE {cvcles:

0K

SL_STATUS 0K {cycles
0K

SL_STATUS QK {cycles
0K

SI_STATUS QK (cvcles
QK

SL_STATUS_OE f{cvcles:

SL_STATUS QOE {(cycles:

SL_STATUS OE {(cycle=:

press ENTER to next option

Pres=s SPACE to select Hash algorithm (SHA1-224-2056-384-512) for HMAC., press ENTER to

15379 time

15507 time:

15527 time

15476 time:

16101 time

17067 time:

16332 time

16504 time:

15333 time

15137 time:

3985747 time:
3985039 tine

15403 time

15528 time:

. SL_STATUS OKE i{cycles

SI_STATUS 0K (cycles:

run.

404 us)
408 us)

408 us)
407 us)

423 us)
449 us)

429 u=)
434 us)

403 u=)
398 us)

104 m=)
104 m=)
405 us)
408 us=)
15491 time: 407 us)
14388 time: 378 us)

18. Now that we have the key wrapped and stored in flash, we want to see that the program can use it without having the plaintext key
anywhere in the application. Go back to app_se_manager_block_cipher.c and comment out lines 259 to 275 and lines 280 to

286.
257}
258
2592 // // YOUR KEY VALUE GOES HERE
260 // static uint8 t user_key[16] =
261 //
262 // Qx79, OxF4, 0x82, @x4E, ©x49, OxBD, 0x97, @xAB,
263 // ©x65, Ox65, 0x32, Ox22, OxAQ, 0x70, OxBS, Ox16
264 // };
265 //
266 // 51 se key descriptor_t plaintext desc = {
267 // .type = SL SE_KEY TYPE AES 128,
268 // .flags =@,
269 // .storage.method = SL_SE_KEY STORAGE_EXTERNAL_PLAINTEXT,
278 [/ .storage.location.buffer.pointer = user key,
271 // .storage.location.buffer.size = 16
272 /[};
273 //
274 /f if (s1_se_import_key(&cmd ctx, &plaintext desc, &symmetric key desc) != SL_S[TATUS_OK)
275 // return SL_STATUS FAIL:
276
277 // YOUR KEY ADDRESS GOES HERE
278 unsigned int wrapped_key address = @x00080000;
279
280=// printf("Writing key into flash at @x%@8x...\n",
281 //
282 [/ // Clear out the old wrapped key
283 // MSC_ErasePage((uint32 t*)wrapped key address);
284 //
285 // // Flash the new wrapped key
286 //
287
288 // Update the key descriptor to point to the key in flash
289 symmetric_key_desc.storage.location.buffer.pointer = (uint8_t*)wrapped_key_address;

wrapped_key_address);

MSC_WriteWord((uint32 t*)wrapped_kev address, symmetric key buf, sizeof(symmetric key buf));

19.Now the application simply sets up the key descriptor to point to where we wrote the wrapped key in flash, without knowing the

value of the key.

silabs.com | Building a more connected world.

UG519: Custom Part Manufacturing Service User's Guide
CPMS Use Case Examples

20.Repeat steps 11 to 15 to verify that the wrapped key can still be used. Note that if the flash is erased (by a commander device
unlock command, for instance), this application will fail - it needs the wrapped key to be stored in flash by a previous process.

++

Current _symmstric key
Eress SPACE to select
Current symmetric key

is 5 plaintext key
= plaintext or wrapped or volatile key. press ENTER to nest option.
is o wrapped key.

Current_symmetric key length is 128-bit

+ Press SPACE to select symmetric key length (128 or 192 or 256),
+ Generating a 128-bit non-exportable symnetric wrapped key
Keyspes: 0=05008010

+

+++ o+ + 4+ o+ + 4+ o+ +++ +

+

+

silabs.com | Building a more

Current data length is 256 bytes

Press SPACE to select data length (256 or 1024 or 4096).

Current Hash algorithm for HHAC is SHAL

Press SPACE to select Hash algorithm (SHA1-224-256-384-512) for HMAC, press ENTER to

AES ECE test

Encrypting 256 bytes plaintsst with 128 bit key

Decrypting 256 bytes ciphertext with 128 bit key
Comparing decrypted message with plain nessage. .

AES CTR test

Encrypting 256 bytes plaintext with 122 bit key.
Decrypting 256 bytes ciphertext with 128 bit key
Comparing decrypted message with plain messags

AES CCH test

Encrypting 256 bytes plaintsst with 128 bit key

Decrypting 256 bytes ciphertext with 128 bit key
Comparing decrypted message with plain message. .

AFS GCH test

Encrypting 256 bytes plaintest with 128 bit key.
Decrypting 256 bytes ciphertsxt with 128 bit kay
Comparing decrypted message with plain message

AES CBC test

Encrypting 256 bytes plaintsst with 128 bit key

Decrypting 256 bytes ciphertext with 128 bit key
Comparing decrypted message with plain nessage. .

AES CFEE test

SL_STATUS OK (cvoles:
SL_STATUE_OK (cycles
0K

SL_STATUS_COK (cycles:

SL_STATUS_CK (cycles:

0K

SL_STATUS OK (cvoles:

SL_STATUS OK (cycles:

[0):4

SL_STATUS_COK (cycles:

SL_STATUS_OK (cycles:

0K

SL_STATUS OK (cvoles:

SL_STATUS 0K (cycles:

QK

press ENTER to next option

press ENTER to next opticn

run

13905 time
15018 time

365 us)
395 us)

15474 tine
15532 time

407 us)
408 us)

16497 time
16856 time

434 us)
443 us)

16159 time
16464 time

425 us)
433 us)

15469 time
15106 time

407 us)
397 us)

Encrypting 256 bytes plaintext with 122 bit key. SL_STATUS _OK ({cycles: 3985565 time: 104 ms)
Decrypting 256 bytes ciphertest with 128 bit key ST STATUS OK (cycles: 3978599 time: 104 ms)
Comparing decrypted message with plain nessage 0K

AFES CFB128 test

Encrypting 256 bytes plaintext with 128 bit key SI.STATUS OK (cwcles: 15176 time: 399 us)

Decrypting 256 bytes ciphertext with 123 bit key SL_STATUS_ QK {(cycles: 15550 time: 409 us)

Comparing decrypted message with plain message. .. OK

AES CHMAC test

Generating 16 bytes CHAC on 256 bytes message with 128 bit key... SL_STATUS OK (cycles: 15370 time: 404 us)
HHAC test

Generating SHAL HMAC on 256 bytes message with 128 bit key. .. SL_STATUS QK (cycles: 14034 time: 369 us)

connected world.

Simplicity Studio

One-click access to MCU and wireless
tools, documentation, software,
source code libraries & more. Available
for Windows, Mac and Linux!

o

loT Portfolio SW/HW Quality Support & Community

www.silabs.com/loT www.silabs.com/simplicity www.silabs.com/quality www.silabs.com/community

Disclaimer

Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software imple-
menters using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each
specific device, and “Typical” parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon
Labs reserves the right to make changes without further notice to the product information, specifications, and descriptions herein, and does not give warranties as to the
accuracy or completeness of the included information. Without prior notification, Silicon Labs may update product firmware during the manufacturing process for security or
reliability reasons. Such changes will not alter the specifications or the performance of the product. Silicon Labs shall have no liability for the consequences of use of the infor-
mation supplied in this document. This document does notimply or expressly grant any license to design or fabricate any integrated circuits. The products are not designed or
authorized to be used within any FDA Class Il devices, applications for which FDA premarket approval is required or Life Support Systems without the specific written consent
of Silicon Labs. A “Life Support System” is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in
significant personalinjury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used
in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. Silicon Labs disclaims
allexpress and implied warranties and shall not be responsible or liable for any injuries or damages related to use of a Silicon Labs product in such unauthorized applications.
Note: This content may contain offensive terminology thatis now obsolete. Silicon Labs is replacing these terms with inclusive language wherever possible. For more
information, visit www.silabs.com/about-us/inclusive-lexicon-project

Trademark Information

Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labs®, SiLabs®and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy
Micro logo and combinations thereof, “the world’s most energy friendly microcontrollers”, Redpine Signals®, WiSeConnect, n-Link, ThreadArch®, EZLink®, EZRadio®, EZRadioPRO®,
Gecko®, Gecko OS, Gecko OS Studio, Precision32®, Simplicity Studio®, Telegesis, the Telegesis Logo® USBXpress®, Zentri, the Zentri logo and Zentri DMS, Z-Wave®, and others
are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered
trademark of ARM Limited. Wi-Fiis a registered trademark of the Wi-Fi Alliance. All other products or brand names mentioned herein are trademarks of their respective holders.

Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701

USA

SILICON LABS www.silabs.com

	1. Custom Certificates
	2. Key Wrapping
	3. CPMS Use Case Examples
	3.1 Configuring a Device for an Untrusted Manufacturing Environment
	3.1.1 CPMS
	3.1.2 Generating the Application
	3.1.3 Generating the Bootloader
	3.1.4 Generating the Sign Key, the Command Key, and the OTA Decryption Key
	3.1.5 Signing and Merging the Application and Bootloader Images
	3.1.6 Programming the Keys and Flash Memory

	3.2 Importing Custom Wrapped Keys

