) ANS532

SILICON LABS
HID LIBRARY APl SPECIFICATION

1. Introduction

The Silicon Labs HID library provides an API for communicating with a Human Interface Device (HID). This library
provides methods for extracting device information and sending and receiving HID reports. C libraries are provided
for Windows 2000 and later. Similarly, various include files are provided to import library functions into C# .NET and
Visual Basic .NET. Refer to Table 1 for complete details.

User Application

1

SLABHIDDevice Library

Input Inferrupt
Report Qusus

:

HID Drriver
{Provided by OF)

Input Report Qutput Report
Cusue Cuaus

:

USE Root Hub

Human Interface Device

Figure 1. System Architecture Diagram

Table 1. HID Library Include Files

Operating System Library Include Files Version

SLABHIDDevice.h
SLABHIDDevice.vb (VB .NET)
SLABHIDDevice.bas (VB6)
SLABHIDDevice.cs (C# .NET)

Windows 2000 and later SLABHIDDevice.dll 1.5

Rev. 0.2 11/21 Copyright © 2021 by Silicon Laboratories AN532

ANS532

2. Library Usage

The HID Library contains the following files:

SLABHIDDevice.dll—Dynamic link library that exports a C HID library
SLABHIDDevice.lib—Provides build-time linking for C/C++ projects
SLABHIDDevice.h—Defines HID library function prototypes and constants
SLABHIDDevice.vb—Provides DLL imports and constants for Visual Basic .NET
SLABHIDDevice.bas—Provides DLL imports and constants for Visual Basic 6
SLABHIDDevice.cs—Provides DLL imports, constants, and an HID class for Visual C#

2.1. C/C++ Projects

The HID Library is designed to be universally compatible with most programming languages and is exported in C.
Perform the following steps to use the library in a C/C++ project:
1. Add “SLABHIDDevice.lib” as a linker input dependency or add the following code:
#pragma comment (lib, “SLABHIDDevice.lib”)
2. Include “SLABHIDDevice.h” as needed.
3. Provide “SLABHIDDevice.dll” with the executable (.exe file).

2.2. Visual Basic .NET Projects

Perform the following steps to use the library in a Visual Basic .NET project:
1. Include “SLABHIDDevice.vb” in the project to define library constants and library declarations.
2. Provide “SLABHIDDevice.dIlI” with the executable (.exe file).

2.3. Visual Basic 6 Projects
Perform the following steps to use the library in a Visual Basic 6 project:

1. Include “SLABHIDDevice.bas” in the project to define library constants and library declarations.
2. Provide “SLABHIDDevice.dllI” with the executable (.exe file).

2.4. Visual C# Projects

Perform the following steps to use the library in a Visual C# project:
1. Include "SLABHIDDevice.cs" in the project to define library constants and library declarations.
This file also defines an HID class that uses the DLL functions and manages the
“HID_DEVICE device” parameter automatically.
2. Provide “SLABHIDDevice.dllI” with the executable (.exe file).

2 Rev. 0.2

SILICON LABS

ANS532

3. SLABHIDDevice Library Functions

Table 2. APl Functions Table

Definition Description Page #
HidDevice GetNumHidDevices() Returns the number of devices connected 3
HidDevice_GetHidString() Returns the specified USB string 4
HidDevice GetHidIndexedString() Returns the USB string descriptor by index 5
HidDevice_GetHidAttributes() Returns the VID/PID/Release Number 6
HidDevice GetHidGuid() Returns the HID GUID 6
HidDevice_GetHidLibraryVersion() Returns the library version and debug/release mode 6

3.1. HidDevice_GetNumHidDevices

Description:

Prototype:
Parameters:

Return Value:

Remarks:

This function returns the number of devices connected to the host with matching vendor ID and

product ID (VID, PID).

DWORD HidDevice_GetNumHidDevices (WORD vid, WORD pid)

1. vid—Filter device results by vendor ID. If both vid and pid are set to 0x0000, devices will not
be filtered by VID/PID.

2. pid—Filter device results by product ID. If both vid and pid are set to 0x0000, devices will not
be filtered by VID/PID.

A return value of 0 indicates that no devices are available. Otherwise returns the number of
connected devices. When referring to a device by devicelndex, the index may range from 0 to
(HidDevice_GetNumHidDevices() — 1).

This function returns the number of connected devices. This does not imply that a device is
available for use. Users must call HidDevice_GetNumHidDevices() before calling any function that
takes a device index as a parameter in order to build an up-to-date device list. If a device is
installed or removed after calling HidDevice_GetNumHidDevices(), then the device list will be out
of date, and the results may be unpredictable. Currently, HidDevice GetHidString(),
HidDevice_GetHidIndexedString(), HidDevice GetHidAttributes(), and HidDevice_Open() are the
only functions that take a device index parameter.

SILICON LABS

Rev. 0.2 3

ANS532

3.2. HidDevice_GetHidString

Description: This function returns a null-terminated vendor ID, product ID, device path, serial, manufacturer, or
product string for the device specified by an index passed in devicelndex.
Prototype: BYTE HidDevice GetHidString (DWORD devicelndex, WORD vid, WORD pid, BYTE
hidStringType, char* deviceString, DWORD deviceStringlLength)
Parameters: 1. devicelndex—Index specifying which device to retrieve the string from. This value ranges from
0 to (HidDevice_GetNumHidDevices() — 1).
2. vid—Filter device results by vendor ID. If both vid and pid are set to 0x0000, devices will not
be filtered by VID/PID.
3. pid—Filter device results by product ID. If both vid and pid are set to 0x0000, devices will not
be filtered by VID/PID.
4. hidStringType—Determines if deviceString contains a vendor ID, product ID, device path,
serial, manufacturer, or product string.
Definition Value Length Description
HID_VID_STRING 0x01 5 Vendor ID
HID_PID_STRING 0x02 5 Product ID
HID_PATH_STRING 0x03 260 Device path
HID_SERIAL_STRING 0x04 256 Serial string
HID_MANUFACTURER_STRING 0x05 256 Manufacturer String
HID_PRODUCT_STRING 0x06 256 Product String
5. deviceString—Pointer to a user-defined, ASCII string that will contain a NULL-terminated
device string on return. The string must be allocated with enough space to return the desired
string.
6. deviceStringLength—The length of deviceString in bytes.
4 Rev. 0.2)

SILICON LABS

ANS532

Return Value:

HID_DEVICE_SUCCESS
HID_DEVICE_NOT_FOUND
HID_DEVICE_INVALID BUFFER_SIZE
HID_DEVICE_SYSTEM CODE
HID_DEVICE_ALREADY_OPENED
HID_DEVICE_CANNOT_GET_HID_INFO

3.3. HidDevice_GetHidindexedString

Description:
Prototype:

Parameters:

Return Value:

This function returns an ASCII, null-terminated USB string descriptor using the specified string

descriptor index for the device specified by devicelndex.

BYTE HidDevice GetHidIndexedString (DWORD devicelndex, WORD vid, WORD,

pin, DWORD stringlndex, char* deviceString, DWORD deviceStringLength)

1. devicelndex—Index specifying from which device to retrieve the string. This value ranges from
0 to (HidDevice_GetHidNumDevices() — 1).

2. vid—Filter device results by vendor ID. If both vid and pid are set to 0x0000, devices will not
be filtered by VID/PID.

3. pid—Filter device results by product ID. If both vid and pid are set to 0x0000, devices will not
be filtered by VID/PID.

4. stringindex—Index specifying which USB string descriptor to retrieve.

5. deviceString—Pointer to a user-defined, ASCII string that will contain a NULL-terminated
device string on return. The string must be allocated with enough space to return the desired
string and must be at least 256 bytes.

6. deviceStringLength—The length of deviceString in bytes.

HID_DEVICE_SUCCESS
HID_DEVICE_NOT_FOUND
HID_DEVICE_INVALID_BUFFER_SIZE
HID_DEVICE_SYSTEM _CODE
HID_DEVICE_ALREADY_OPENED

SILICON LABS

Rev. 0.2 5

ANS532

3.4. HidDevice_GetHidAttributes

Description:
Prototype:

Parameters:

Return Value:

This function returns the USB vendor ID, product ID, and device release number for the device

specified by devicelndex.

BYTE HidDevice_GetHidAttributes (DWORD devicelndex, WORD vid, WORD pid,

WORD* deviceVid, WORD* devicePid, WORD* deviceReleaseNumber)

1. devicelndex—Index specifying from which device to retrieve attributes. This value ranges from
0 to (HidDevice_GetNumHidDevices() — 1).

2. vid—Filter device results by vendor ID. If both vid and pid are set to 0x0000, devices will not
be filtered by VID/PID.

3. pid—rFilter device results by product ID. If both vid and pid are set to 0x0000, devices will not
be filtered by VID/PID.

4. deviceVid—Returns the USB device vendor ID.
5. devicePid—Returns the USB device product ID.

6. deviceReleaseNumber—Returns the USB device bcdVersion, or device release number, in
binary-coded decimal.

HID_DEVICE_SUCCESS
HID_DEVICE_NOT_FOUND
HID_DEVICE_SYSTEM_CODE
HID_DEVICE_ALREADY_OPENED

3.5. HidDevice_GetHidGuid

Description:
Prototype:
Parameters:

Remarks:

This function returns the HID GUID.
void HidDevice_ GetHidGuid (void* hidGuid)
1. hidGuid—Returns the HID GUID.

See "8. Surprise Removal" on page 21 for more information on surprise removal.

3.6. HidDevice_GetLibraryVersion

Description:
Prototype:

Parameters:

Return Value:

This function returns the library version and whether the build is a debug or release version.

BYTE HidDevice_GetLibraryVersion (BYTE* major, BYTE* minor, BOOL*
release)

1. major—Returns the library major version number. This value ranges from 0 to 255.

2. minor—Returns the library minor version number. This value ranges from 0 to 255.

3. release—Returns TRUE if the library was built in release mode. Returns FALSE if the library
was built in debug mode.

HID_DEVICE_SUCCESS
HID_DEVICE_INVALID_BUFFER_SIZE

Rev. 0.2

SILICON LABS

ANS532

4. SLABHIDDevice Library Functions for Opened Devices

Table 3. APl Functions for Opened Devices

Definition Description Page #
HidDevice_Open() Opens an HID using a device index 8
HidDevice_IsOpened() Returns the opened state 9
HidDevice_GetHandle() Returns the HID handle for the currently opened device 9
HidDevice_GetString() (Fj{ee\trcrgs the specified USB string for the currently opened 9
HidDevice_GetindexedString() Esél:]ren:(’;r;igeSB string descriptor by index for the currently 10
HidDevice_GetAttributes() ‘Ij?:\ﬁjcrgs the VID/PID/Release Number for the currently opened 10
HidDevice_SetFeatureReport_Control() ﬁ}zngsn?dHelrl?dfs;tnutre report from the host to the device over 1
HidDevice_GetFeatureReport_Control() E}eec;ﬁrsofznl-élsorﬁtature report from the device to the host over 11
HidDevice_SetOutputReport_Interrupt() ;?:gzpinel:égg::put report from the host to the device over the 1
HidDevice_GetinputReport_Interrupt() E?ecrertvpetsemjl?xl)ri\rﬁut reports from the device to the host over the 12
HidDevice_SetOutputReport_Control() ?s:t?;aer:]gggi:tutput report from the host to the device over the 13
HidDevice_GetinputReport_Control() Ezc:é\;?fofgnllli;:fut report from the device to the host over 13
HidDevice_GetlnputReportBufferLength() | Returns the maximum input report size including the report ID 14
HidDevice_GetOutputReportBufferLength() | Returns the maximum output report size including the report ID 14
HidDevice_GetFeatureReportBufferLength() | Returns the maximum feature report size including the report ID 14
HidDevice_GetMaxReportRequest() 55;‘;2‘; i:‘fh’;aH’iE“gm;‘fmber of input reports that can be 14
HidDevice_ FlushBuffers() 512?-:?; ﬁtl)lrz?dlng input reports in the HID driver queue and 15
HidDevice_Cancello() Saa”ri]sgltsherila%end|ng input and output operations issued by the 15
HidDevice_GetTimeouts() ‘F:r?cti;rcr)}itthe input and output report timeouts over the interrupt 15
HidDevice_SetTimeouts() Esitstthe input and output report timeouts over the interrupt end- 16
HidDevice_Close() Closes the currently opened device 16

Note: These functions require an additional "

HID_DEVICE device" parameter at the beginning of the argument list.

This parameter is an HID class object pointer as returned by HidDevice_Open().

SILICON LABS

Rev. 0.2

ANS532

4.1. HidDevice_Open

Description: Opens a device using a device index and returns a device object pointer which will be used for
subsequent access.

Prototype: BYTE HidDevice Open (HID_DEVICE* device, DWORD devicelndex, WORD vid,
WORD pid, DWORD numlnputBuffers)

Parameters: 1. device—Returns a pointer to an HID class object used for subsequent device access.

2. devicelndex—Zero-based device index ranging from 0 to (HidDevice_GetNumDevices() — 1).

3. vid—Filter device results by vendor ID. If both vid and pid are set to 0x0000, then devices will
not be filtered by VID/PID.

4. pid—Filter device results by product ID. If both vid and pid are set to 0x0000, then devices will
not be filtered by VID/PID.

5. numinputBuffers—Specifies the number of input report buffers to queue in the HID driver.

Definition Value Description
MAX_REPORT REQUEST XP 512 Maximum number of input report buffers
for Windows XP and later.
MAX REPORT REQUEST 2K 200 Maximum number of input report buffers
- - - for Windows 2000.
DEFAULT_REPORT_INPUT_BUFFER 0 Use OS-dependent HID driver default.

Return Value: HID DEVICE_SUCCESS
HID_DEVICE_ALREADY_OPENED
HID_DEVICE_CANNOT_GET_HID_INFO
HID_DEVICE_NOT_FOUND
Remarks: For Windows 2000, the maximum number of queued input reports is 200.
For Windows XP and later, the maximum number of queued input reports is 512.
For Windows XP and later, the OS default number of queued input reports is 32.
In most cases, call this function with numinputBuffers set to MAX REPORT_REQUEST_XP to
achieve the best input report throughput.
If numinputBuffers is set to a value higher than the OS maximum, then the OS maximum value will

be used.

It is very common to list all connected devices by serial string. After calling
HidDevice_GetNumHidDevices(), call HidDevice_GetHidString() to get each device's serial string,
making sure to check the return code. Since HidDevice GetHidString() may fail (indicating that the
device is unavailable) it is not appropriate to simply add each device's serial string to a list and use
the list index to open. Similarly, a device index may have changed since the last time the device
list was updated. In this case, the user should select a device solely by serial string and query all
devices for a matching serial string.

This function allocates the dynamic report buffers, sets timeouts to their default values, and clears
the report queue.

8 Rev. 0.2

SILICON LABS

ANS532

4.2. HidDevice_IsOpened

Description:
Prototype:
Parameters:

Return Value:

This function returns the device opened state.
BOOL HidDevice IsOpened (HID _DEVICE device)
1. device—A pointer to an HID class object returned by HidDevice_Open().

Returns TRUE if a device is opened. Returns FALSE if the device is invalid or if a device is not
opened.

4.3. HidDevice_GetHandle

Description:
Prototype:
Parameters:

Return Value:

This function returns the HID handle for the currently-opened device
HANDLE HidDevice_ GetHandle (HID_DEVICE device)
1. device—A pointer to an HID class object returned by HidDevice_Open().

Returns a Windows HANDLE created by ::CreateFile() in HidDevice_Open(). Returns
INVALID_HANDLE_VALUE if a device is not open or if there was an error opening a device.

4.4. HidDevice_GetString

Description:
Prototype:

Parameters:

This function returns an ASCII, null-terminated vendor ID, product ID, device path, serial,
manufacturer, or product string for the device specified by device.

BYTE HidDevice GetString (HID DEVICE device, BYTE hidStringType, char*
deviceString, DWORD deviceStringlLength)

1. device—A pointer to an HID class object returned by HidDevice_Open().

2. hidStringType—Determines if deviceString contains a vendor ID, product ID, device path,
serial, manufacturer, or product string.

Definition Value Length Description
HID_VID_STRING 0x01 5 Vendor ID
HID_PID_STRING 0x02 5 Product ID

HID_PATH_STRING 0x03 260 Device path
HID_SERIAL_STRING 0x04 256 Serial string
HID_MANUFACTURER_STRING 0x05 256 Manufacturer String
HID_PRODUCT_STRING 0x06 256 Product String

Return Value:

Remarks:

5. deviceString—Pointer to a user-defined, ASCII string which will contain a NULL-terminated
device string on return. The string must be allocated with enough space to return the desired
string.

6. deviceStringLength—The length of deviceString in bytes.

HID_DEVICE_SUCCESS

HID_DEVICE_NOT_FOUND

HID_DEVICE_NOT_OPENED

HID_DEVICE_INVALID_BUFFER_SIZE

HID_DEVICE_SYSTEM _CODE

HID_DEVICE_ALREADY_OPENED

HID_DEVICE_CANNOT_GET_HID_INFO

Once a device is opened, devicelndex is no longer valid. Similarly, to retrieve a USB string,
HidDevice_GetString() must be used rather than HidDevice GetHidString().

SILICON LABS

Rev. 0.2 9

ANS532

4.5. HidDevice_GetindexedString

Description:
Prototype:

Parameters:

Return Value:

This function returns an ASCII, null-terminated USB string descriptor using the specified string
descriptor index for the currently-open device.

BYTE HidDevice_GetlIndexedString (HID_DEVICE_ device, DWORD stringlndex,
char* deviceString, DWORD deviceStringLength)

1. device—A pointer to an HID class object returned by HidDevice_Open().

2. stringIndex—Index specifying which USB string descriptor to retrieve.

3. deviceString—Pointer to a user-defined, ASCII string which will contain a NULL-terminated
device string on return. The string must be allocated with enough space to return the desired
string and must be at least 256 bytes.

4. deviceStringLength—The length of deviceString in bytes.

HID_DEVICE_SUCCESS
HID_DEVICE_NOT_FOUND
HID_DEVICE_NOT_OPENED
HID_DEVICE_INVALID_BUFFER_SIZE
HID_DEVICE_SYSTEM_CODE

4.6. HidDevice_GetAttributes

Description:
Prototype:

Parameters:

Return Value:

This function returns the USB vendor ID, product ID, and device release number for the currently-
open device.

BYTE HidDevice GetAttributes (HID DEVICE device, WORD* deviceVid, WORD*
devicePid, WORD* deviceReleaseNumber)

1. device—A pointer to an HID class object returned by HidDevice_Open().

2. deviceVid—Returns the USB device vendor ID.
3. devicePid—Returns the USB device product ID.
4

deviceReleaseNumber—Returns the USB device bcdVersion, or device release number, in
binary-coded decimal.

HID_DEVICE_SUCCESS
HID_DEVICE_NOT_FOUND
HID_DEVICE_NOT_OPENED
HID_DEVICE_SYSTEM_CODE

10

Rev. 0.2

SILICON LABS

ANS532

4.7. HidDevice_SetFeatureReport_Control

Description:
Prototype:

Parameters:

Return Value:

This function sends an HID feature report from the host to the device over the control endpoint.
BYTE HidDevice SetFeatureReport_Control (HID_DEVICE device, BYTE*
buffer, DWORD bufferSize)

1. device—A pointer to an HID class object returned by HidDevice Open().
2. buffer—A byte array containing a feature report. The first byte specifies the report ID.
3. bufferSize—The size of the feature report including the report ID.

HID_DEVICE_SUCCESS
HID_DEVICE_NOT_FOUND
HID_DEVICE_INVALID_BUFFER_SIZE
HID_DEVICE_NOT_OPENED
HID_DEVICE_TRANSFER_FAILED

4.8. HidDevice_GetFeatureReport_Control

Description:
Prototype:

Parameters:

Return Value:

This function receives an HID feature report from the host to the device over the control endpoint.
BYTE HidDevice GetFeatureReport_Control (HID_DEVICE device, BYTE*
buffer, DWORD bufferSize)

1. device—A pointer to an HID class object returned by HidDevice Open().

2. buffer—Returns a byte array containing a feature report with report ID. The user must call this
function with the first byte in buffer set to the report ID of the report to receive. Buffer must be
large enough to hold the feature report including report ID and, in most cases, should be
allocated with a size equal to HidDevice_GetFeatureReportBufferLength().

3. bufferSize—The size of buffer in bytes.

HID_DEVICE_SUCCESS
HID_DEVICE_NOT_FOUND
HID_DEVICE_INVALID BUFFER_SIZE
HID_DEVICE_NOT_OPENED
HID_DEVICE_TRANSFER_FAILED

4.9. HidDevice_SetOutputReport_Interrupt

Description:
Prototype:

Parameters:

Return Value:

This function sends an HID output report from the host to the device over the interrupt endpoint.
BYTE HidDevice_SetOutputReport_Interrupt (HID_DEVICE device, BYTE*
buffer, DWORD bufferSize)

1. device—A pointer to an HID class object returned by HidDevice_Open().
2. buffer—A byte array containing an output report. The first byte specifies the report ID.
3. bufferSize—The size of the output report including the report ID.

HID_DEVICE_SUCCESS
HID_DEVICE_NOT_FOUND
HID_DEVICE_INVALID BUFFER_SIZE
HID_DEVICE_NOT_OPENED
HID_DEVICE_TRANSFER_FAILED
HID_DEVICE_TRANSFER_TIMEOUT

SILICON LABS

Rev. 0.2 11

ANS532

4.10. HidDevice_GetlnputReport_Interrupt

Description:
Prototype:

Parameters:

Return Value:

Remarks:

This function receives an HID input report from the host to the device over the interrupt endpoint.
BYTE HidDevice GetlnputReport Interrupt (HID DEVICE device, BYTE*
buffer, DWORD bufferSize. DWORD numReports, DWORD* bytesReturned)

1. device—A pointer to an HID class object returned by HidDevice Open().

2. buffer—Returns a byte array of data containing up to numReports number of input reports.
Each report occupies HidDevice GetlnputReportBufferLength() number of bytes. The first
byte of each report buffer contains the report ID.

3. bufferSize—The size of buffer in bytes.
4. numReports—The maximum number of input reports to return.
5. bytesReturned—The number of bytes returned in buffer.

HID_DEVICE_SUCCESS

HID_DEVICE_NOT_FOUND

HID_DEVICE_INVALID_ BUFFER_SIZE

HID_DEVICE_NOT_OPENED

HID_DEVICE_TRANSFER_FAILED

HID_DEVICE_TRANSFER_TIMEOUT

Set input report interrupt timeouts by settings getReportTimeout in HidDevice_SetTimeouts().
Each input report returned in buffer is stored on boundaries set by the maximum input report buffer
size. For example, if the maximum input report buffer size as returned by
HidDevice_GetlnputReportBufferLength() is 64 and HidDevice_GetlnputReport_Interrupt() returns
2 input reports, then bytesReturned will return with 128 bytes. The first input report starts at
buffer[0], and the second input report starts at buffer[64] regardless of the actual size of the report.
To retrieve the maximum number of input reports possible, call HidDevice_GetlnputReport_Interrupt()
with bufferSize set to (HidDevice_GetlnputReportBufferLength() * HidDevice_GetMaxReportRequest())
and numReports set to HidDevice_GetMaxReportRequest().

12

Rev. 0.2

SILICON LABS

ANS532

4.11. HidDevice_SetinputReport_Control

Description:
Prototype:

Parameters:

Return Value:

Remarks:

This function sends an HID input report from the host to the device over the control endpoint.
BYTE HidDevice_ SetlnputReport Control (HID DEVICE device, BYTE* buffer,
DWORD bufferSize)

1. device—A pointer to an HID class object returned by HidDevice Open().
2. buffer—A byte array containing an output report. The first byte specifies the report ID.
3. bufferSize—The size of the output report including the report ID.

HID_DEVICE_SUCCESS

HID_DEVICE_NOT_FOUND

HID_DEVICE_UNSPUPPORTED_FUNCTION

HID_DEVICE_INVALID_BUFFER_SIZE

HID_DEVICE_NOT_OPENED

HID_DEVICE_TRANSFER_FAILED

Attempting to call this function on Windows 2000 or earlier will fail and return
HID_DEVICE_UNSUPPORTED_FUNCTION.

4.12. HidDevice_GetinputReport_Control

Description:
Prototype:

Parameters:

Return Value:

Remarks:

This function receives an HID input report from the host to the device over the control endpoint.
BYTE HidDevice_GetlnputReport_Control (HID_DEVICE device, BYTE* buffer,
DWORD bufferSize)

1. device—A pointer to an HID class object returned by HidDevice_Open().

2. buffer—Returns a byte array containing an input report with report ID. The user must call this
function with the first byte in buffer set to the report ID of the report to receive. Buffer must be
large enough to hold the input report including report ID and, in most cases, should be
allocated with a size equal to HidDevice_GetinputReportBufferLength().

3. bufferSize—The size of buffer in bytes.

HID_DEVICE_SUCCESS

HID_DEVICE_NOT_FOUND

HID_DEVICE_UNSPUPPORTED_FUNCTION

HID_DEVICE_INVALID_BUFFER_SIZE

HID_DEVICE_NOT_OPENED

HID_DEVICE_TRANSFER_FAILED

Attempting to call this function on Windows 2000 or earlier will fail and return
HID_DEVICE_UNSUPPORTED_FUNCTION.

SILICON LABS

Rev. 0.2 13

ANS532

4.13. HidDevice_GetinputReportBufferLength

Description:
Prototype:
Parameters:

Return Value:

This function returns the maximum input report size, including the report ID.
WORD HidDevice_ GetlnputReportBuffferLength (HID_DEVICE device)
1. device—A pointer to an HID class object returned by HidDevice_Open().

A return value of zero indicates that the specified device cannot be found. A non-zero value
specifies the maximum input report size including the report ID. This function should be called to
determine the appropriate buffer size for HidDevice GetlnputReport_Interrupt() and
HidDevice_GetlnputReport_Control().

4.14. HidDevice_GetOutputReportBufferLength

Description:
Prototype:
Parameters:

Return Value:

This function returns the maximum output report size including the report ID.
WORD HidDevice GetOutputReportBuffferLength (HID _DEVICE device)
1. device—A pointer to an HID class object returned by HidDevice_Open().

A return value of zero indicates that the specified device cannot be found. A non-zero value
specifies the maximum output report size, including the report ID.

4.15. HidDevice_GetFeatureReportBufferLength

Description:
Prototype:
Parameters:

Return Value:

This function returns the maximum feature report size, including the report ID.
WORD HidDevice GetFeatureReportBuffferLength (HID _DEVICE device)
1. device—A pointer to an HID class object returned by HidDevice_Open().

A return value of zero indicates that the specified device cannot be found. A non-zero value
specifies the maximum feature report size, including the report ID. This function should be called
to determine the appropriate buffer size for HidDevice_GetFeatureReport_Control().

4.16. HidDevice_GetMaxReportRequest

Description:
Prototype:
Parameters:

Return Value:

This function returns the maximum number of input reports that can be queued in the HID driver.
WORD HidDevice_GetMaxReportRequest (HID_DEVICE device)
1. device—A pointer to an HID class object returned by HidDevice_Open().

A return value of zero indicates that the specified device cannot be found. A non-zero value
specifies the maximum size of the HID driver input report queue in number of reports. This function
should be called to determine the appropriate buffer size for
HidDevice_GetlnputReport_Interrupt().

For Windows XP and later, this function returns up to 512.

For Windows 2000, this function returns up to 200.

This function cannot be called before a device is opened. See "4.1. HidDevice_Open" on page 8
for more information

14

Rev. 0.2

SILICON LABS

ANS532

4.17. HidDevice_FlushBuffers

Description:
Prototype:
Parameters:

Return Value:

Remarks:

This function deletes all pending input reports in the HID driver queue and the HID library.
BYTE HidDevice FlushBuffers (HID_DEVICE device)
1. device—A pointer to an HID class object returned by HidDevice_Open().

Returns TRUE if the function completed successfully.

Returns FALSE if the function failed or if the device does not exist.

This function first cancels pending overlapped input report reads (::Cancello()). Next, it flushes the
HID driver input report queue. Finally, it flushes the library's internal input report queue.

4.18. HidDevice_Cancello

Description:
Prototype:
Parameters:

Return Value:

Remarks:

This function cancels all pending input and output operations issued by the calling thread.
BYTE HidDevice Cancello (HID DEVICE device)
1. device—A pointer to an HID class object returned by HidDevice_Open().

Returns TRUE if the function completed successfully.
Returns FALSE if the function failed or if the device does not exist.

::Cancello() called in one thread cannot cancel reads and writes issued in another thread.
Therefore, it is necessary to «call this function in all threads that call
HidDevice_GetlnputReport_Interrupt() prior to call HidDevice_Close(). See "7. Thread Read
Access Models" on page 19 for more information.

4.19. HidDevice_GetTimeouts

Description:
Prototype:

Parameters:

Remarks:

This function returns the input and output report timeouts over the interrupt endpoint.

BYTE HidDevice GetTimeouts (HID DEVICE device, DWORD* getReportTimeout,
DWORD* setReportTimeout)

1. device—A pointer to an HID class object returned by HidDevice_Open().

2. getReportTimeout—Returns the read timeout for HidDevice GetlnputReport_Interrupt() in
milliseconds. This timeout specifies the number of milliseconds that must elapse before
HidDevice_GetlnputReport_Interrupt() will return with fewer bytes than requested with an
HID_DEVICE_TRANSFER_TIMEOUT error. A timeout of 0 ms will return immediately with
any available data.

3. setReportTimeout—Returns the write timeout for HidDevice_SetOutputReport_Interrupt() in
milliseconds. This timeout specifies the number of milliseconds that must elapse for an output report
before HidDevice_SetOutputReport_Interrupt() returns with an HID_DEVICE_TRANSFER_TIMEOUT
error.

Read and write timeouts are maintained for each device but are not persistent across
HidDevice_Open()/HidDevice_Close(). Allow for sufficient write timeouts to make sure that an
output report can be transmitted successfully.

The default get report and set report timeouts are both 1000 ms.

SILICON LABS

Rev. 0.2 15

ANS532

4.20. HidDevice_SetTimeouts

Description:
Prototype:

Parameters:

Remarks:

Description:
Prototype:
Parameters:

Return Value:

This function sets the input and output report timeouts over the interrupt endpoint. Timeouts are
used for HidDevice_GetinputReport_Interrupt() and HidDevice SetOutputReport_Interrupt().
BYTE HidDevice_SetTimeouts(HID_DEVICE device, DWORD getReportTimeout,
DWORD setReportTimeout)

1.
2.

device—A pointer to an HID class object returned by HidDevice_Open().

getReportTimeout—Sets the timeout used in HidDevice_GetlnputReport_Interrupt() in
milliseconds. This timeout specifies the number of milliseconds that must elapse before
HidDevice_GetlnputReport_Interrupt() will return fewer bytes than requested with an
HID_DEVICE_TRANSFER_TIMEOUT error. A timeout of 0 ms will return immediately with
any available data.

setReportTimeout—Sets the timeout used in HidDevice SetOutputReport_Interrupt() in
milliseconds. This timeout specifies the number of milliseconds that must elapse during an
output report before HidDevice SetOutputReport_Interrupt() will return with an
HID_DEVICE_TRANSFER_TIMEOUT error.

If get report timeouts are set to a large value and no data is received, the application may appear
unresponsive. Therefore, it is recommended to set timeouts to an appropriate value before reading
from the device.

The default value for get report and set report timeouts is 1000 ms and can be set to any number
of milliseconds from 0 to OXFFFFFFFF.

4.21. HidDevice_Close

This function closes the currently-open device.
BYTE HidDevice_Close (HID_DEVICE device)

1.

device—A pointer to an HID class object returned by HidDevice_Open().

HID_DEVICE_SUCCESS
HID_DEVICE_HANDLE_ERROR
HID_DEVICE_NOT_FOUND
HID_DEVICE_NOT_OPENED

Remarks: This function deletes the internal library input report buffer and cancels any pending input report
reads via ::Cancello(). This function is responsible for deallocating the HID class object allocated
in HidDevice_Open().

16 Rev. 0.2)

SILICON LABS

ANS532

5. Library Returns Codes

Each library function returns a BYTE return code to indicate that the function returned successfully or to describe

an error. Table 4 describes each return code.

Table 4. Return Code Descriptions

Definition Value Description
HID_DEVICE_SUCCESS 0x00 |Function returned successfully.
Indicates that the specified device index was
HID_DEVICE_NOT_FOUND 0x01 [invalid or the device does not exist or is inaccessi-
ble.
HID DEVICE NOT OPENED 0X02 Indl_cates that th_e device must be opened prior to
- - - calling the function.
HID DEVICE ALREADY OPENED 0x03 Indicates that the device is already opened and
- - - cannot be re-opened.
Indicates that a get or set report function returned
due to a timeout.
HID_DEVICE_TRANSFER_TIMEOUT 0x04 HidDevice_GetlnputReport_Interrupt() returned
with less bytes than requested.
HID DEVICE TRANSFER FAILED 0x05 The host failed to commqnlcate with the device or
- - - function parameters are incorrect.
HID_DEVICE_CANNOT_GET_HID_INFO 0X06 ﬁigl?gt retrieve device path or hidStringType is
HID_DEVICE_HANDLE_ERROR 0x07 |HID ::CreateFile() handle is invalid.
HID DEVICE INVALID BUFFER SIZE 0x08 Specified buffer is not large enough to return
- - - — requested data.
HID DEVICE SYSTEM CODE 0x09 Indicates that a system error occurred. Call Get-
- - - LastError() to retrieve the system error code.
HID_DEVICE_UNSUPPORTED_FUNCTION | 0x0A | N function is only supported on certain Win-
- - - dows versions.
HID DEVICE UNKNOWN ERROR OXFF This is the default return code value. This value
- - - should never be returned.
) Rev. 0.2 17

SILICON LABS

ANS532

6. Thread Safety

The HID library and associated functions are not thread safe. This means that calling library functions
simultaneously from multiple threads may have undesirable effects.

To use the library functions in more than one thread, the user should do the following:

1. Call HID library functions from within a critical section such that only a single function is being called at any
given time. If a function is being called in one thread, the user must prevent another thread from calling any
function until the first function returns.

2. HidDevice_GetlnputReport_Interrupt() issues a pending read request that cannot be canceled from another
thread. If the user calls HidDevice_Close() in a thread other than the one in which the read request was
created, the device will not be accessible after calling HidDevice_Close(). The thread that issued the pending
read request must return/terminate successfully before the device can be accessed again. See "7. Thread
Read Access Models" on page 19 for more information.

18 Rev. 0.2

SILICON LABS

ANS532

7. Thread Read Access Models

There are several common read access models when using the HID library functions, and, due to certain
limitations with overlapped /O, certain precautions must be taken. :Cancello() can only cancel pending 1/O
(reads/writes) issued in the same thread in which ::Cancello() is called. Due to this limitation, the user is
responsible for cancelling pending I/O in each thread before closing the device. Failure to do so will result in an
inaccessible device until the thread releases access to the device handle.

HidDevice_Close() calls ::Cancello() prior to calling ::CloseHandle(). HidDevice_GetinputReport_Interrupt() issues
a pending read request. The request completes if at least one input report is read. The request is still pending if the
operation times out. ::Cancello() cancels any pending I/O requests issued by the calling thread.

Tables 5 through 9 describe five common access models and the expected behavior:

Notes:
1. Read*—Read is still pending and was issued in the specified thread
2. Read? —Read is still pending and was issued in one of the threads (indeterminate)
3. Open—cCall HidDevice_Open()
4. Read—Call HidDevice_GetIinputReport_Interrupt()
5. Close—Call HidDevice_Close()
6. Cancel—Call HidDevice_Cancello()

Table 5. Single Thread Access Model (Safe)

Thread A Thread B Result
Open — —
Read* — —
Close — OK

Table 6. Split Thread Access Model (Unsafe)

Thread A Thread B Result
Open — —
— Read* —
Close — Error: Device inaccessible

— Terminate Thread OK: Thread relinquishes device access

Table 7. Split Thread Access Mode (Safe)

Thread A Thread B Result
Open — —
— Read* —
— Cancel —
Close — OK
) Rev. 0.2 19

SILICON LABS

ANS532

Table 8. Multi-Thread Access Model (Unsafe)

Thread A Thread B Result
Open — —
Read? Read? —
Close — If read is pending in Thread A:
OK
If read is pending in Thread B:
Error: Device inaccessible
— Terminate Thread OK: Thread relinquishes device access
Table 9. Multi-Thread Access Model (Safe)
Thread A Thread B Result
Open — _
Read? Read? —
— Cancel —
Close — OK

20

Rev. 0.2

SILICON LABS

ANS532

8. Surprise Removal

HidDevice_GetHidGuid() returns the HID GUID so that Windows applications or services can register for the
WM_DEVICECHANGE Windows message. Once registered, the application will receive device arrival and
removal notifications for HID devices. The application should retrieve the device path to filter devices. Similarly, if a
DBT_DEVICEREMOVECOMPLETE message is received, the application should check to see if the device path
matches the device path of any connected devices. If this is the case, the device was removed, and the application
should close the device. In addition, if a DBT_DEVICEARRIVAL message is received, then the application might
add the new device to a device list so that users can select any HID matching the required VID/PID. See
accompanying example code for information on how to implement surprise removal and device arrival. Search for
Knowledge Base Article # 000005173, 137957, 137956, 114055, and 311153 for programming examples for
C++(MFC), Visual Basic .NET, Visual C# WinForms, Visual C# WPF, Visual C# .NET.

Rev. 0.2 21

SILICON LABS

https://community.silabs.com/s/article/Obtaining-Device-Notification-for-USB-Device-Arrival-and-Surprise-Removal-for-C-MFC?language=en_US
https://community.silabs.com/s/article/obtaining-device-notification-for-usb-device-arrival-and-surprise-removal-for-vi?language=en_US
https://community.silabs.com/s/article/obtaining-device-notification-for-usb-device-arrival-and-surprise-removal-for-c-1?language=en_US
https://community.silabs.com/s/article/obtaining-device-notification-for-usb-device-arrival-and-surprise-removal-for-c-x?language=en_US
https://community.silabs.com/s/article/detecting-when-a-usb-device-is-connected-or-removed-in-c-net?language=en_US

Smart. Connected.
Energy-Friendly.

loT Portfolio Quality Support & Community
www.silabs.com/products www.silabs.com/quality www.silabs.com/community

Disclaimer

Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software imple-
menters using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each
specific device, and “Typical” parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon
Labs reserves the right to make changes without further notice to the product information, specifications, and descriptions herein, and does not give warranties as to the
accuracy or completeness of the included information. Without prior notification, Silicon Labs may update product firmware during the manufacturing process for security or
reliability reasons. Such changes will not alter the specifications or the performance of the product. Silicon Labs shall have no liability for the consequences of use of the infor-
mation supplied in this document. This document does notimply or expressly grant any license to design or fabricate any integrated circuits. The products are not designed or
authorized to be used within any FDA Class Il devices, applications for which FDA premarket approval is required or Life Support Systems without the specific written consent
of Silicon Labs. A “Life Support System” is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in
significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used
in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. Silicon Labs disclaims
allexpress and implied warranties and shall not be responsible or liable for any injuries or damages related to use of a Silicon Labs product in such unauthorized applications.
Note: This content may contain offensive terminology thatis now obsolete. Silicon Labs is replacing these terms with inclusive language wherever possible. For more
information, visit www.silabs.com/about-us/inclusive-lexicon-project

Trademark Information

Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labs®, SiLabs®and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy
Micro logo and combinations thereof, “the world’s most energy friendly microcontrollers”, Redpine Signals®, WiSeConnect, n-Link, ThreadArch®, EZLink®, EZRadio®, EZRadioPRO®,
Gecko®, Gecko OS, Gecko OS Studio, Precision32®, Simplicity Studio®, Telegesis, the Telegesis Logo® USBXpress®, Zentri, the Zentri logo and Zentri DMS, Z-Wave®, and others
are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered
trademark of ARM Limited. Wi-Fiis a registered trademark of the Wi-Fi Alliance. All other products or brand names mentioned herein are trademarks of their respective holders.

Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701

USA

SILICON LABS www.silabs.com

	1. Introduction
	Table 1. HID Library Include Files

	2. Library Usage
	2.1. C/C++ Projects
	2.2. Visual Basic .NET Projects
	2.3. Visual Basic 6 Projects
	2.4. Visual C# Projects

	3. SLABHIDDevice Library Functions
	Table 2. API Functions Table
	3.1. HidDevice_GetNumHidDevices
	3.2. HidDevice_GetHidString
	3.3. HidDevice_GetHidIndexedString
	3.4. HidDevice_GetHidAttributes
	3.5. HidDevice_GetHidGuid
	3.6. HidDevice_GetLibraryVersion

	4. SLABHIDDevice Library Functions for Opened Devices
	Table 3. API Functions for Opened Devices
	4.1. HidDevice_Open
	4.2. HidDevice_IsOpened
	4.3. HidDevice_GetHandle
	4.4. HidDevice_GetString
	4.5. HidDevice_GetIndexedString
	4.6. HidDevice_GetAttributes
	4.7. HidDevice_SetFeatureReport_Control
	4.8. HidDevice_GetFeatureReport_Control
	4.9. HidDevice_SetOutputReport_Interrupt
	4.10. HidDevice_GetInputReport_Interrupt
	4.11. HidDevice_SetInputReport_Control
	4.12. HidDevice_GetInputReport_Control
	4.13. HidDevice_GetInputReportBufferLength
	4.14. HidDevice_GetOutputReportBufferLength
	4.15. HidDevice_GetFeatureReportBufferLength
	4.16. HidDevice_GetMaxReportRequest
	4.17. HidDevice_FlushBuffers
	4.18. HidDevice_CancelIo
	4.19. HidDevice_GetTimeouts
	4.20. HidDevice_SetTimeouts
	4.21. HidDevice_Close

	5. Library Returns Codes
	Table 4. Return Code Descriptions

	6. Thread Safety
	7. Thread Read Access Models
	Table 5. Single Thread Access Model (Safe)
	Table 6. Split Thread Access Model (Unsafe)
	Table 7. Split Thread Access Mode (Safe)
	Table 8. Multi-Thread Access Model (Unsafe)
	Table 9. Multi-Thread Access Model (Safe)

	8. Surprise Removal

