Silicon Labs
|
Silicon Labs Community Silicon Labs Community
  • Products
    1. 8-bit MCU
    2. 32-bit MCU
    3. Bluetooth
    4. Proprietary
    5. Wi-Fi
    6. Zigbee & Thread
    7. Z-Wave
    8. Interface
    9. Isolation
    10. Power
    11. Sensors
    12. Timing
  • Development Tools
    1. Simplicity Studio
    2. Third Party Tools
  • Expert's Corner
    1. Announcements
    2. Blog
    3. General Interest
    4. Projects
How to Buy
English
  • English
  • 简体中文
  • 日本語
//
Community // Blog

Introducing New Si827x Isolated Gate Drivers

03/69/2016 | 01:50 PM
Lance Looper
Employee

Level 5


In case you missed it, last week we launched a family of isolated gate drivers specifically for power supply designs. The new Si827x ISOdriver family builds on our reputation in digital isolation and offers the highest noise immunity on the market.

 

Power per volume is the primary metric for power supply designers and in order to maximize power density it’s sometimes necessary to choose faster switching frequencies for modulation schemes. Power delivery systems use high-power semiconductor switches, such as silicon-based MOSFETs and new gallium nitride (GaN) and silicon carbide (SiC)-based MOSFETs, requiring a high-current isolated driver to control the switch. This improves system efficiencies but also produces higher noise transients that can cause signal loss or permanent damage from latch-up. The Si827x gate drivers protect power systems by offering exceptional immunity to these noise transients caused by high-speed switching.

 

The new drivers feature an EN (active high enable) pin instead of the typical DIS (active low) pin, under-voltage lockout (UVLO) fault protection, a de-glitch feature for filtering noisy inputs and highly precise dead time (DT pin) programmability. Using this DT feature, developers can precisely control the “dead time” between two switching drivers to optimize power system efficiency and safety.

 

Si827x Highlights include:

 

  • Industry’s highest noise immunity (200 kV/µs) and latch-up immunity (400 kV/µs) to support ultra-fast switching
  • The only gate drivers available operating down to 2.5 V VDD to reduce power consumption
  • Best-in-class timing specs (typical 30 ns delay) with 10x shorter propagation delay and 20x lower skew than competing gate drivers
  • Uses EN pin instead of DIS pin to ensure a safe default state
  • Accurate timing including dead-time control to maximize system efficiency and safety
  • Robust, reliable solution with stable operation over a long lifetime – up to 60 years or 10x longer than opto-based solutions

Check out the Si827x Evaluation Kit here.

  • Blog Posts
  • News and Events
  • Timing
  • xdraonl

    Level 3


    Replied May 06 2017, 7:43 AM

    The propagation delay matching of Si827x is not given in datasheet, where can i get it?

    0

Tags

  • Wireless
  • High Performance Jitter Attenuators
  • EFR32FG22 Series 2 SoCs
  • EFR32MG21 Series 2 SoCs
  • Security
  • Bluegiga Legacy Modules
  • Zigbee SDK
  • ZigBee and Thread
  • EFR32BG13 Series 1 Modules
  • Internet Infrastructure
  • Sensors
  • Wireless Xpress BGX13
  • Blue Gecko Bluetooth Low Energy SoCs
  • Z-Wave
  • Micrium OS
  • Blog Posts
  • Low Jitter Clock Generators
  • Bluetooth Classic
  • Makers
  • Flex SDK
  • Tips and Tricks
  • timing
  • Smart Cities
  • Smart Homes
  • IoT Heroes
  • Reviews
  • RAIL
  • Simplicity Studio
  • Tiny Gecko
  • EFR32MG22 Series 2 SoCs
  • Mighty Gecko SoCs
  • Timing
  • Temperature Sensors
  • Blue Gecko Bluetooth Low Energy Modules
  • Ultra Low Jitter Clock Generators
  • General Purpose Clock Generators
  • EFR32BG22 Series 2 SoCs
  • Industry 4.0
  • Giant Gecko
  • 32-bit MCUs
  • Bluetooth Low Energy
  • 32-bit MCU SDK
  • Gecko
  • Microcontrollers
  • Jitter Attenuators
  • EFR32BG21 Series 2 SoCs
  • News and Events
  • Wi-Fi
  • Bluetooth SDK
  • Community Spotlight
  • Clock Generators
  • Biometric Sensors
  • General Purpose Jitter Attenuators
  • Giant Gecko S1
  • WF200
  • Flex Gecko
  • Internet of Things
  • 8-bit MCUs
  • Wireless Jitter Attenuators
  • Isolation
  • Powered Devices
  • Power

Top Authors

  • Avatar image Siliconlabs
  • Avatar image Jackie Padgett
  • Avatar image Nari Shin
  • Avatar image lynchtron
  • Avatar image deirdrewalsh
  • Avatar image Lance Looper
  • Avatar image lethawicker

Archives

  • 2016 March
  • 2016 April
  • 2016 May
  • 2016 June
  • 2016 July
  • 2016 August
  • 2016 September
  • 2016 October
  • 2016 November
  • 2016 December
  • 2017 January
  • 2017 February
  • 2017 March
  • 2017 April
  • 2017 May
  • 2017 June
  • 2017 July
  • 2017 August
  • 2017 September
  • 2017 October
  • 2017 November
  • 2017 December
  • 2018 January
  • 2018 February
  • 2018 March
  • 2018 April
  • 2018 May
  • 2018 June
  • 2018 July
  • 2018 August
  • 2018 September
  • 2018 October
  • 2018 November
  • 2018 December
  • 2019 January
  • 2019 February
  • 2019 March
  • 2019 April
  • 2019 May
  • 2019 June
  • 2019 July
  • 2019 August
  • 2019 September
  • 2019 October
  • 2019 November
  • 2019 December
  • 2020 January
  • 2020 February
  • 2020 March
  • 2020 April
  • 2020 May
  • 2020 June
  • 2020 July
  • 2020 August
  • 2020 September
  • 2020 October
  • 2020 November
  • 2020 December
  • 2021 January
  • 2021 February
Silicon Labs
Stay Connected With Us
Plug into the latest on Silicon Labs products, including product releases and resources, documentation updates, PCN notifications, upcoming events, and more.
  • About Us
  • Careers
  • Community
  • Contact Us
  • Corporate Responsibility
  • Privacy and Terms
  • Press Room
  • Investor Relations
  • Site Feedback
  • Cookies
Copyright © Silicon Laboratories. All rights reserved.
粤ICP备15107361号
Also of Interest:
  • Bring Your IoT Designs to Life with Smart,...
  • A Guide to IoT Protocols at Works With...
  • IoT Hero Rainus Enhances the In-Store Shopping...