Silicon Labs
|
Silicon Labs Community Silicon Labs Community
  • Products
    1. 8-bit MCU
    2. 32-bit MCU
    3. Bluetooth
    4. Proprietary
    5. Wi-Fi
    6. Zigbee & Thread
    7. Z-Wave
    8. Interface
    9. Isolation
    10. Power
    11. Sensors
    12. Timing
  • Development Tools
    1. Simplicity Studio
    2. Third Party Tools
  • Expert's Corner
    1. Announcements
    2. Blog
    3. General Interest
    4. Projects
How to Buy
English
  • English
  • 简体中文
  • 日本語
//
Community // Blog

Six-Degrees of Separation

07/200/2018 | 06:15 PM
jeffreybatchelo
Employee

Level 3


It has been postulated that every human is connected to every other human with only six relationships between. It has also been proven that probabilistically, you can be in a room with 23 people and have a 50 percent chance of two people having the same birthday. These connections are all around us. It turns out that digital electronic frequencies seem to have an even tighter relationship when viewed by their fractional relationships.

Rational numbers are numbers that can be written it the form of a + b/c where a, b, & c are all integers. This is a handy way to work with frequencies because of the extensive relationships we have found between seemingly unrelated applications.

Fractional Relationships

At Silicon Labs, we see a lot of seemingly unique frequencies from our customers. Consequently, we are in a prime spot to observe relationships between frequencies.

Recently, we received a request for a Si5338 frequency plan that had the following frequencies:

Input: 185.439560440 MHz

OUT1: 148.5 MHz

OUT2: 148.351648352 MHz

OUT3: 27 MHz

Upon initial inspection, there are no nice fractional relationships between these numbers. When such complex divider values are needed, it limits the ability of our algorithms to optimize the performance. So, we dug in a bit to understand the real source of these high-precision numbers.

First, we noted that some of these frequencies look to be related to the SMPTE standard where the line data rate can be 1485Mbps or 2970Mbps. 27MHz is also used by SMPTE systems. In SMPTE, the fraction 1000/1001 is deployed to avoid interference.

Armed with the customer’s entered frequencies and our knowledge of the SMPTE standards, we begin our detective work:

185.439560440 * 1001/1000 = 185.62500000044

If we can truncate those last two digits, we would have a nice fractional value, but where did those odd values come from. Let’s truncate and find out. Often, we are looking to get to a line rate of something we have seen before. To do so, we often see line rates that are multiples of the clocks by factors of 2, 4, 8, 16, 10, or 20.

185.625000000 * 2 = 371.25

185.625000000 * 4 = 742.5

185.625000000 * 8 = 1485

185.625000000 * 16 = 2970

185.625000000 * 10 = 1856.25

185.625000000 * 20 = 3712.5

Here we have found two SMPTE-related numbers 1485 and 2970. Eureka! So:

185.439560440 is better written as 2970/16/1001*1000 or 185.4395604 4395604 4395604 (repeating)

Armed with our new knowledge, we can apply these fractions and base numbers to take full advantage of our frequency planning algorithms. To enter these values, we have created a frequency editor that can accept equations.

Pulling up CBPro for the Si5338, and proceeding to the input frequency page:

Continuing this for the outputs:

As you can see at the bottom of the window, the frequency plan is valid and the design is ok, which means it has been optimized. Entering the frequencies as they were given, yields an unrealizable plan.

This same frequency entry form is available throughout CBPro for our clock generators, jitter attenuators, and synchronization clock products.

Conclusion

By entering the input and output frequencies as the full fraction values, CBPro can best optimize to achieve the desired synchronous result (no frequency error) with the lowest jitter possible. The frequency editor in CBPro accepts multiplication, division, addition, subtraction, and even PPM addition giving you the easiest path to creating the frequencies you need in your designs. If you are unsure if the relationships exist, we are here to help you.

(CBPro can be downloaded from Silicon Labs website from http://www.silabs.com/cbpro)

  • Blog Posts
  • Low Jitter Clock Generators
  • Ultra Low Jitter Clock Generators
  • High Performance Jitter Attenuators
  • Timing

Tags

  • Wireless
  • High Performance Jitter Attenuators
  • EFR32FG22 Series 2 SoCs
  • EFR32MG21 Series 2 SoCs
  • Security
  • Bluegiga Legacy Modules
  • Zigbee SDK
  • ZigBee and Thread
  • EFR32BG13 Series 1 Modules
  • Internet Infrastructure
  • Sensors
  • Wireless Xpress BGX13
  • Blue Gecko Bluetooth Low Energy SoCs
  • Z-Wave
  • Micrium OS
  • Blog Posts
  • Low Jitter Clock Generators
  • Bluetooth Classic
  • Makers
  • Flex SDK
  • Tips and Tricks
  • timing
  • Smart Cities
  • Smart Homes
  • IoT Heroes
  • Reviews
  • RAIL
  • Simplicity Studio
  • Tiny Gecko
  • EFR32MG22 Series 2 SoCs
  • Mighty Gecko SoCs
  • Timing
  • Temperature Sensors
  • Blue Gecko Bluetooth Low Energy Modules
  • Ultra Low Jitter Clock Generators
  • General Purpose Clock Generators
  • EFR32BG22 Series 2 SoCs
  • Industry 4.0
  • Giant Gecko
  • 32-bit MCUs
  • Bluetooth Low Energy
  • 32-bit MCU SDK
  • Gecko
  • Microcontrollers
  • Jitter Attenuators
  • EFR32BG21 Series 2 SoCs
  • News and Events
  • Wi-Fi
  • Bluetooth SDK
  • Community Spotlight
  • Clock Generators
  • Biometric Sensors
  • General Purpose Jitter Attenuators
  • Giant Gecko S1
  • WF200
  • Flex Gecko
  • Internet of Things
  • 8-bit MCUs
  • Wireless Jitter Attenuators
  • Isolation
  • Powered Devices
  • Power

Top Authors

  • Avatar image Siliconlabs
  • Avatar image Jackie Padgett
  • Avatar image Nari Shin
  • Avatar image lynchtron
  • Avatar image deirdrewalsh
  • Avatar image Lance Looper
  • Avatar image lethawicker

Archives

  • 2016 March
  • 2016 April
  • 2016 May
  • 2016 June
  • 2016 July
  • 2016 August
  • 2016 September
  • 2016 October
  • 2016 November
  • 2016 December
  • 2017 January
  • 2017 February
  • 2017 March
  • 2017 April
  • 2017 May
  • 2017 June
  • 2017 July
  • 2017 August
  • 2017 September
  • 2017 October
  • 2017 November
  • 2017 December
  • 2018 January
  • 2018 February
  • 2018 March
  • 2018 April
  • 2018 May
  • 2018 June
  • 2018 July
  • 2018 August
  • 2018 September
  • 2018 October
  • 2018 November
  • 2018 December
  • 2019 January
  • 2019 February
  • 2019 March
  • 2019 April
  • 2019 May
  • 2019 June
  • 2019 July
  • 2019 August
  • 2019 September
  • 2019 October
  • 2019 November
  • 2019 December
  • 2020 January
  • 2020 February
  • 2020 March
  • 2020 April
  • 2020 May
  • 2020 June
  • 2020 July
  • 2020 August
  • 2020 September
  • 2020 October
  • 2020 November
  • 2020 December
  • 2021 January
  • 2021 February
Silicon Labs
Stay Connected With Us
Plug into the latest on Silicon Labs products, including product releases and resources, documentation updates, PCN notifications, upcoming events, and more.
  • About Us
  • Careers
  • Community
  • Contact Us
  • Corporate Responsibility
  • Privacy and Terms
  • Press Room
  • Investor Relations
  • Site Feedback
  • Cookies
Copyright © Silicon Laboratories. All rights reserved.
粤ICP备15107361号
Also of Interest:
  • Bring Your IoT Designs to Life with Smart,...
  • A Guide to IoT Protocols at Works With...
  • IoT Hero Rainus Enhances the In-Store Shopping...