Recently we had the opportunity to speak with Gabi Daniely, Chief Strategy and Marketing Officer of CoreTigo, an Israeli start-up founded by two wireless engineers with experience from companies such as Texas Instruments and Apple. In the two and a half years since CoreTigo’s inception, the company has driven the IO-Link Consortium to launch a new wireless standard developed specifically for Industrial Internet of Things (IIoT) and mission critical environments. The new IO-Link Wireless protocol helps manufacturing companies solve the universal challenge of reliable wireless solutions fit for harsh industrial requirements on the factory floor for reducing complexity. CoreTigo enables solutions that cannot be implemented with cables, increasing flexibility and mobility and adding intelligence anywhere in the most cost-effective manner. Gabi explains how CoreTigo came about and how early adopters of the standard are using it to improve their manufacturing processes and yields.

Tell me about the origin of CoreTigo, how did the company get its start?
Our two company founders are veterans of the wireless market. Our CEO ran the wireless business unit for Texas Instruments, and our VP of R&D spent time designing and developing wireless solutions at both Texas Instruments and Apple. As wireless experts, they both saw a void in the industrial market for mission-critical wireless networks. Typical wireless networks, such as Zigbee, Wi-Fi and Bluetooth, are not designed for meeting the harsh demands at the control, or actuator, level of factory automation. In these environments, machines require low latency, cable-grade reliability, and a deterministic and scalable network to manage dozens of devices within a machine area.
Based on these needs, our founders approached the IO-Link Consortium, and along with its members defined the IO-Link Wireless protocol, a new reliable wireless communication solution tailored for factory automation. With that vision in mind, CoreTigo was able to secure $14 million in Series A funding in 2018, and the IO-Link Wireless standard was officially launched in 2018 with the support of the consortium and many key industrial leading companies.
How are industrial companies using the new wireless protocol?
Machine builders, industrial equipment manufacturers and manufacturing plants are starting to use the protocol across many industrial applications where cabled systems were previously used, which greatly improves the flexibility and agility of the machinery and reduces complexity. Popular areas where IO-Link Wireless solutions are being deployed include transport track systems to reduce changeover and tooling setup time, rotating and dynamic components to add intelligence, machine retrofitting and condition monitoring for pressure, level and flow sensors and end-of-arm devices, such as grippers or vacuum pumps, on robots and collaborative robots to improve flexibility and reduce complexity.
What are the major drivers for industrial connectivity?
Industry 4.0 is the underlying macro trend driving many of the IIoT demands. Companies are seeing the convergence of information technology (IT) with operational factory floor technology and are assessing ways to update their systems and gain major efficiencies. Industrial giants are looking for ways to improve functionality of existing and aging equipment without adding more cables. As we often hear in the industry, cables are the enemy of flexibility and modularity. At the same time, companies are looking to simplify processes while increasing efficiencies as much as possible, and wireless connectivity helps them do this effectively and design new solutions and machines that were not feasible beforehand with cables.
How does Silicon Labs fit into your technology offering?
We are currently using low-power EFR32 Wireless Gecko modules within our TigoAir Low Power modules, which extends IO-Link Wireless to support low power applications even with batteries with a lifetime of 5-10 years. The IO-Link Wireless stack for devices is ready for stack integration with other vendors of industrial equipment and devices. We have plans to eventually deploy Wireless Gecko technology across all of our other solutions. An FCC/CE certified radio module will be ready by the end of the year, thus enabling smoother and faster integrations. Silicon Labs gives us the low-power processing and connectivity we need without adding another MCU or wireless SoC to the architecture, reducing our costs and footprint and keeping the design simple. Silicon Labs’ global support teams in France and Israel. have also provided us great support.
Where do you see IIoT going in the next 5-8 years?
I see a great deal of potential in the future to reduce the complexity associated with industrial manufacturing. Finding easier ways to extract data flow information from industrial processes and connect it with enterprise systems can deliver major efficiency gains for industrial operators. Many companies struggle with successfully pulling data out of the factory floor and visually seeing areas of improvement with enterprise technologies. Then when it’s time to make the improvements, it’s just as difficult to integrate intelligence back onto the factory floor. This is where IoT technology stands to make a tremendous positive impact on the industrial market.
IoT Hero CoreTigo Drives New Wireless Standard for Industrial Market
Recently we had the opportunity to speak with Gabi Daniely, Chief Strategy and Marketing Officer of CoreTigo, an Israeli start-up founded by two wireless engineers with experience from companies such as Texas Instruments and Apple. In the two and a half years since CoreTigo’s inception, the company has driven the IO-Link Consortium to launch a new wireless standard developed specifically for Industrial Internet of Things (IIoT) and mission critical environments. The new IO-Link Wireless protocol helps manufacturing companies solve the universal challenge of reliable wireless solutions fit for harsh industrial requirements on the factory floor for reducing complexity. CoreTigo enables solutions that cannot be implemented with cables, increasing flexibility and mobility and adding intelligence anywhere in the most cost-effective manner. Gabi explains how CoreTigo came about and how early adopters of the standard are using it to improve their manufacturing processes and yields.
Tell me about the origin of CoreTigo, how did the company get its start?
Our two company founders are veterans of the wireless market. Our CEO ran the wireless business unit for Texas Instruments, and our VP of R&D spent time designing and developing wireless solutions at both Texas Instruments and Apple. As wireless experts, they both saw a void in the industrial market for mission-critical wireless networks. Typical wireless networks, such as Zigbee, Wi-Fi and Bluetooth, are not designed for meeting the harsh demands at the control, or actuator, level of factory automation. In these environments, machines require low latency, cable-grade reliability, and a deterministic and scalable network to manage dozens of devices within a machine area.
Based on these needs, our founders approached the IO-Link Consortium, and along with its members defined the IO-Link Wireless protocol, a new reliable wireless communication solution tailored for factory automation. With that vision in mind, CoreTigo was able to secure $14 million in Series A funding in 2018, and the IO-Link Wireless standard was officially launched in 2018 with the support of the consortium and many key industrial leading companies.
How are industrial companies using the new wireless protocol?
Machine builders, industrial equipment manufacturers and manufacturing plants are starting to use the protocol across many industrial applications where cabled systems were previously used, which greatly improves the flexibility and agility of the machinery and reduces complexity. Popular areas where IO-Link Wireless solutions are being deployed include transport track systems to reduce changeover and tooling setup time, rotating and dynamic components to add intelligence, machine retrofitting and condition monitoring for pressure, level and flow sensors and end-of-arm devices, such as grippers or vacuum pumps, on robots and collaborative robots to improve flexibility and reduce complexity.
What are the major drivers for industrial connectivity?
Industry 4.0 is the underlying macro trend driving many of the IIoT demands. Companies are seeing the convergence of information technology (IT) with operational factory floor technology and are assessing ways to update their systems and gain major efficiencies. Industrial giants are looking for ways to improve functionality of existing and aging equipment without adding more cables. As we often hear in the industry, cables are the enemy of flexibility and modularity. At the same time, companies are looking to simplify processes while increasing efficiencies as much as possible, and wireless connectivity helps them do this effectively and design new solutions and machines that were not feasible beforehand with cables.
How does Silicon Labs fit into your technology offering?
We are currently using low-power EFR32 Wireless Gecko modules within our TigoAir Low Power modules, which extends IO-Link Wireless to support low power applications even with batteries with a lifetime of 5-10 years. The IO-Link Wireless stack for devices is ready for stack integration with other vendors of industrial equipment and devices. We have plans to eventually deploy Wireless Gecko technology across all of our other solutions. An FCC/CE certified radio module will be ready by the end of the year, thus enabling smoother and faster integrations. Silicon Labs gives us the low-power processing and connectivity we need without adding another MCU or wireless SoC to the architecture, reducing our costs and footprint and keeping the design simple. Silicon Labs’ global support teams in France and Israel. have also provided us great support.
Where do you see IIoT going in the next 5-8 years?
I see a great deal of potential in the future to reduce the complexity associated with industrial manufacturing. Finding easier ways to extract data flow information from industrial processes and connect it with enterprise systems can deliver major efficiency gains for industrial operators. Many companies struggle with successfully pulling data out of the factory floor and visually seeing areas of improvement with enterprise technologies. Then when it’s time to make the improvements, it’s just as difficult to integrate intelligence back onto the factory floor. This is where IoT technology stands to make a tremendous positive impact on the industrial market.