Silicon Labs
|
Silicon Labs Community Silicon Labs Community
  • Products
    1. 8-bit MCU
    2. 32-bit MCU
    3. Bluetooth
    4. Proprietary
    5. Wi-Fi
    6. Zigbee & Thread
    7. Z-Wave
    8. Interface
    9. Isolation
    10. Power
    11. Sensors
    12. Timing
  • Development Tools
    1. Simplicity Studio
    2. Third Party Tools
  • Expert's Corner
    1. Announcements
    2. Blog
    3. General Interest
    4. Projects
How to Buy
English
  • English
  • 简体中文
  • 日本語
//
Community // Blog

One Giant Leap in Connectivity

02/44/2020 | 03:43 PM
LeighPankonien
Employee

Level 4


First published 5.31.2016

There’s no denying the role connectivity plays in regards to devices and how efficiently they communicate information. While wireless capabilities continue to make headlines, there’s still a great deal of value in wired specifications, first and foremost with USB connections.

USB connectors are easy to confuse. They’ve come in many shapes and sizes over the years beginning with Mini, Micro, Type-A, Type-B and now Type-C. For reference, a USB type simply refers to the shape of the ports and plugs while the version, such as 1.1, 2.0, or the current USB 3.1, usually denotes speed. The Type-A connector connects into a host, such as a laptop, while the Type-B connector plugs into a peripheral device. Type-A is always the flat and wide connector shown in the figure below while Type-B can show up in many different shapes due to the differences in devices it connects into.

USB Type-C was first introduced in 2014, implemented to some degree in 2015 (more notably on Macbooks), and is increasingly becoming a standard for many devices in 2016. It’s being called “a leap forward” in connectivity and for good reason.

USB Type-C separates itself from its predecessors because it:

  • Can send or deliver up to 100W of power to charge a high-current device
  • Supports USB 3.1 with data transfer speeds of up to 10 Gbps
  • Will support up to two 4K displays at a 60Hz refresh rate
  • Maintains backwards compatibility with USB 2.0
  • Has reversible connectors so it does not matter which end is used and in what direction
  • Cuts down on waste by eliminating the need for multiple connectors

Though it can handle a wide variety of tasks that previously took multiple cables, Type-C’s versatility comes at a cost because USB’s once-simple inner workings of cables, ports, dongles, and hubs have been replaced by more complex embedded components. There are two main complications that arise when developing Type-C solutions. The first relates to power distribution. A Type-C connector can send or receive up to 100W of power, but this can be a problem for devices that don’t require that much power.

The second common roadblock when developing a Type-C solution deals with the potential for communication failures due to the increase in supported communication standards. Since communication between hosts and devices requires detecting and processing digital and analog signals, an embedded MCU is required. Silicon Labs can alleviate these issues through the creation of it’s new MCU, which integrates more functionalities in a package as small as 3X3 mm².

USB Type-C WP Image.png

Although it’s clear USB Type-C represents a new wave of enhanced connectivity, it unfortunately can cause problems for developers and designers. To learn more about how we’re simplifying Type-C development, download this whitepaper.

We’ve also released a comprehensive reference design featuring cost-effective, ultra-low-power EFM8 microcontrollers (MCUs), USB Power Delivery (PD) protocol stacks certified by the USB Implementation Forum (USB-IF), and USB Billboard Device source code.

Our reference design provides a complete solution for a USB Type-C to DisplayPort (DP) adapter, making it easy to communicate with legacy products that do not support USB-C. Available to qualified developers at no charge, the reference design includes schematics, software libraries and stacks, source code, code examples and access to Simplicity Studio™ development tools, enabling developers to design USB-C cables and adapters quickly, easily and at minimal cost.

Get all the details about the USB Type-C reference design including software stacks, schematics, documentation, tools, and EFM8 MCU information at www.silabs.com/usb-type-c.

  • Blog Posts
  • Internet of Things
  • Jacky jacky

    Level 4


    Replied Feb 29 2020, 5:22 PM
    You are right.Development in everything is increasing day by day.
    0

Tags

  • Wireless
  • High Performance Jitter Attenuators
  • EFR32FG22 Series 2 SoCs
  • EFR32MG21 Series 2 SoCs
  • Security
  • Bluegiga Legacy Modules
  • Zigbee SDK
  • ZigBee and Thread
  • EFR32BG13 Series 1 Modules
  • Internet Infrastructure
  • Sensors
  • Wireless Xpress BGX13
  • Blue Gecko Bluetooth Low Energy SoCs
  • Z-Wave
  • Micrium OS
  • Blog Posts
  • Low Jitter Clock Generators
  • Bluetooth Classic
  • Makers
  • Flex SDK
  • Tips and Tricks
  • timing
  • Smart Cities
  • Smart Homes
  • IoT Heroes
  • Reviews
  • RAIL
  • Simplicity Studio
  • Tiny Gecko
  • EFR32MG22 Series 2 SoCs
  • Mighty Gecko SoCs
  • Timing
  • Temperature Sensors
  • Blue Gecko Bluetooth Low Energy Modules
  • Ultra Low Jitter Clock Generators
  • General Purpose Clock Generators
  • EFR32BG22 Series 2 SoCs
  • Industry 4.0
  • Giant Gecko
  • 32-bit MCUs
  • Bluetooth Low Energy
  • 32-bit MCU SDK
  • Gecko
  • Microcontrollers
  • Jitter Attenuators
  • EFR32BG21 Series 2 SoCs
  • News and Events
  • Wi-Fi
  • Bluetooth SDK
  • Community Spotlight
  • Clock Generators
  • Biometric Sensors
  • General Purpose Jitter Attenuators
  • Giant Gecko S1
  • WF200
  • Flex Gecko
  • Internet of Things
  • 8-bit MCUs
  • Wireless Jitter Attenuators
  • Isolation
  • Powered Devices
  • Power

Top Authors

  • Avatar image Siliconlabs
  • Avatar image Jackie Padgett
  • Avatar image Nari Shin
  • Avatar image lynchtron
  • Avatar image deirdrewalsh
  • Avatar image Lance Looper
  • Avatar image lethawicker

Archives

  • 2016 February
  • 2016 March
  • 2016 April
  • 2016 May
  • 2016 June
  • 2016 July
  • 2016 August
  • 2016 September
  • 2016 October
  • 2016 November
  • 2016 December
  • 2017 January
  • 2017 February
  • 2017 March
  • 2017 April
  • 2017 May
  • 2017 June
  • 2017 July
  • 2017 August
  • 2017 September
  • 2017 October
  • 2017 November
  • 2017 December
  • 2018 January
  • 2018 February
  • 2018 March
  • 2018 April
  • 2018 May
  • 2018 June
  • 2018 July
  • 2018 August
  • 2018 September
  • 2018 October
  • 2018 November
  • 2018 December
  • 2019 January
  • 2019 February
  • 2019 March
  • 2019 April
  • 2019 May
  • 2019 June
  • 2019 July
  • 2019 August
  • 2019 September
  • 2019 October
  • 2019 November
  • 2019 December
  • 2020 January
  • 2020 February
  • 2020 March
  • 2020 April
  • 2020 May
  • 2020 June
  • 2020 July
  • 2020 August
  • 2020 September
  • 2020 October
  • 2020 November
  • 2020 December
  • 2021 January
  • 2021 February
Silicon Labs
Stay Connected With Us
Plug into the latest on Silicon Labs products, including product releases and resources, documentation updates, PCN notifications, upcoming events, and more.
  • About Us
  • Careers
  • Community
  • Contact Us
  • Corporate Responsibility
  • Privacy and Terms
  • Press Room
  • Investor Relations
  • Site Feedback
  • Cookies
Copyright © Silicon Laboratories. All rights reserved.
粤ICP备15107361号
Also of Interest:
  • Bring Your IoT Designs to Life with Smart,...
  • A Guide to IoT Protocols at Works With...
  • IoT Hero Rainus Enhances the In-Store Shopping...