Official Blog of Silicon Labs

    Publish
     
      • New Sub-GHz and BLE Solution Simplifies Industrial IoT

        Lance Looper | 06/164/2018 | 01:32 PM

        This week, we’ve introduced a Wireless Gecko software solution created to simplify industrial and commercial IoT applications using sub-GHz wireless connections by adding Bluetooth connectivity. The new hardware and software solution enables simultaneous sub-GHz and 2.4 GHz Bluetooth low energy connectivity for commercial and industrial IoT applications, such as smart metering, home and building automation, and commercial lighting.

        This is important for the industrial and commercial sectors for several reasons – for one, it’ll make it much easier for people working in these environments to set-up, control, and monitor sub-GHz IoT devices using Bluetooth low energy mobile apps.

        Sub-GHz wireless protocols are used extensively in industrial and commercial settings because many of them require a combination of energy efficiency, long battery life, and extended range for remote sensor nodes. Proprietary sub-GHz protocols allow developers to optimize their wireless solution to their specific needs instead of conforming to a standard that might put additional constraints on network implementation. With our new software solution, sub-GHz protocols can still be utilized for their benefits, but users can also easily manage the system using Bluetooth mobile apps on a variety of devices, such as tablets or smart phones.

        Sub-GHz environments are typically low-data-rate systems, such as simple point-to-point connections to large mesh networks and low-power wide area networks (LPWAN). By adding Bluetooth with low energy connectivity to wireless networks in the sub-GHz band, developers can deliver new capabilities such as faster over-the-air (OTA) updates and deploy scalable, location-based service infrastructure with Bluetooth beacons.

         

        Single Chip Reduces Cost by 40 Percent

        IoT developers stand to gain tremendous development benefits by avoiding the complexity of two-chip wireless architectures. By using a single chip with both sub-GHz and BLE connectivity, developers can simplify hardware and software development, which can speed time-to-market and reduce bill-of-materials (BOM) cost and size by up to 40 percent.

        Accenture estimates industrial IoT could add $14.2 trillion to the global economy by 2030, making the deployment potential of this solution especially massive. Any new technology developments such as this one that helps developers control and monitor industrial and commercial devices and data more easily leads to efficiency and economic gains for both businesses and the users.

        Mobile control applications are often a crucial piece of industrial and commercial automation, giving system operators a quick and easy way to control equipment. For instance, commercial lighting depends heavily on mobile devices, which control lighting on/off schedules, energy efficient modes and rules, and dimming based on occupancy using ambient light sensors. Often times, the mobile app may be the only control interface installers, designers and site managers have for project commissioning and configuration.

        Bluetooth connectivity allows the device apps and interface to be simple, which can make a difference in user adoption, as many lighting and commercial controls can be complex and difficult to manage.

        Our new solution will clearly yield impressive benefits for both developers and the users of the industrial applications. Fortunately, the new multiprotocol software is now available using Silicon Labs’ EFR32MG and EFR32BG Wireless Gecko SoCs. Check out more details here if you’re working on a product that could benefit from the solution.

         

      • Simplify Low-Power, Cloud-Connected Development

        Lance Looper | 02/54/2018 | 08:24 AM

        For the upcoming Embedded World tradeshow in Nuremberg, Germany, the Silicon Labs MCU team is showing off some unique ways to ease the challenges of developing cloud-connected applications. The demo consists of the EFM32 Giant Gecko 11 MCU, which is running Micrium OS and connects to Amazon Web Services via the new XBee3 cellular module from Digi International.

         

        This particular demo is quite simple – a closed-loop system with an MCU monitoring a temp sensor and controlling a fan. However, the real-world use cases that these building blocks and tools can scale to serve are much more profound.

        For example, many smart city applications including bridge sensors, parking meters, waste management sensors, and others often consist of portable sensor devices that require seamless long-range connectivity to the cloud. They may be battery powered with user demands of 10+ year battery life. They may have lots of sensor inputs and extra features like button inputs and local displays. Finally, they might need to be designed quickly, but with a long field-upgradeable lifetime in mind. These are the types of applications that this demo speaks to, with Micrium OS, Giant Gecko 11, and Digi’s XBee3.

        Micrium OS is running on the MCU and helps modularize the application functions. It’s helping the MCU maintain communication with the cellular module, monitor the temp sensor, drive the TFT display, and update control settings when local push buttons are pressed. By using Micrium, these various pieces can easily be divided and coded in parallel without having to worry about any messy integration at the end. In fact, this is exactly what the Embedded World demo team did – three different development teams in three different cities built the demo, and Micrium was the underlying glue that made it seamlessly come together.

        Another challenge being addressed here is the connectivity piece. As devices are now adding wireless connectivity, there are lots of hurdles to clear: RF design in some cases, FCC certifications, understanding wireless networking, security, and more. Not only does Silicon Labs offer homegrown, low power SoCs and modules, but now Digi helps add simple cellular connectivity. The Digi XBee3 is a plug-and-play NB-IoT module that has built-in security and is pin-compatible with 3G and LTE-M modules. It’s programmable via MicroPython and comes pre-certified so developers can focus more on the application itself.

        This brings us to the developer’s main focus, the application. The Giant Gecko 11 is a new 32-bit energy friendly microcontroller from Silicon Labs, and our the most capable yet. It helps simplify complex, cloud-connected applications with its large on-chip memory (2MB/512kB), lots of flexible sensor interfaces, SW and pin compatibility with other EFM32 MCUs, and unique low power capability to help prolong battery life. For example, not only does Giant Gecko 11 allow for autonomous analog and sensing in “Stop Mode” (1.6 uA), but it also has Octal SPI interface for external data logging, which could be used to reduce cellular transmission duty cycling.

        There is one more unique offering in this demo. Considering that cellular connectivity might not be the solution for all IoT applications, the SW compatibility of Giant Gecko 11 and all EFM32s with Silicon Labs Wireless Geckos makes it easy to migrate to another wireless SoC or module, if needed. For example, some use cases and markets may use NB-IoT (such as this demo), while others might need their own proprietary sub-GHz solution (Flex Gecko).

        For more information about what we’re doing at Embedded World, click here: https://www.silabs.com/products/wireless/internet-of-things.

      • Embedded World 2018

        Lance Looper | 02/32/2018 | 11:08 AM

        Trade show season is in full swing, and we’re looking forward to our upcoming trip to Nürnberg, Germany for Embedded World 2018. With over a thousand exhibitors and more than 30,000 attendees, this is the premier event for embedded systems design in the world. And Silicon Labs will be there showing off the latest silicon, software, and solutions that have made us a leader in IoT.

        If you’re there, plan on coming by Stand 4A.128 to check out the following demos. And if you want to meet with us, register here.

        Wireless

        Come discover why our newest Wi-Fi chips and modules with best in class power and sensitivity are the ideal solution for IoT and other embedded applications. We'll also show you how the advanced security features in these devices, like built-in secure link, secure debug and secure boot protect help your devices and code.

        MCU/Micrium

        Highly capable, low power systems can be hard to develop, especially when adding wireless connectivity. We’re working to solve this challenge. When your application needs long-range wireless, innovative features, and longer battery-life, our new EFM32 Giant Gecko MCU and the pre-certified Digi XBee3 smart modem come to the rescue. Stop by and see how these solutions, along with Micrium OS and advanced development tools address this challenge in IoT.

        Isolation

        Isolation is critical in wired communication, protecting both hardware and humans operating the hardware from high voltages. This demo will show two industrial EFM8 microcontrollers communicating through Silicon Labs’ isolators for a more robust system.

        Proprietary Wireless

        Silicon Labs’ multiprotocol solutions enable advanced connectivity without increased cost or complexity. We’ll be showing off our latest innovations in dynamic multiprotocol, combining Bluetooth and Proprietary Sub-GHz in a single multiprotocol, multi-band wireless SoC. 

        Bluetooth

        See how our Bluetooth solutions seamlessly sync with Apple HomeKit and Bluetooth LE applications. With our Blue Gecko and voice over Bluetooth software and hardware, you can enhance your third party Bluetooth enabled devices.  

        Mesh Networking

        Silicon Labs is the industry leader in mesh networking. With Zigbee, Thread, Bluetooth mesh and Multiprotocol solutions, Silicon Labs can help customers select the right mesh technology for their application. Come learn about the various mesh protocols and see how Silicon Labs hardware, software, tools and reference designs can get you to market faster. 

        Securely Managed IoT Solutions

        Silicon Labs is showcasing a commercial-grade managed solution for connected product manufacturers. It is illustrated here with a Silicon Lab’s ZigBee SoC, a reference gateway for OEMs and a cloud-based Device Management Service. Go from concept to market-ready IoT solution faster than ever. 

         

        Silicon Labs experts will also be speaking on the following topics:

        Feb. 27th

        • What is an IoT OS? - Øivind Loe; 9:30am-10
        • How Do You Select Which IoT Protocol to Use? - Matt Saunders; Noon - 12:30       
        • Security in Manufacturing: Closing the Backdoor in IoT Products - Josh Norem; 2:30pm - 3
        • Understanding Advanced Bluetooth Angle Estimation Techniques for RT Locationing - Sauli Lehtimaki; 4pm-4:30
        • Dotdot Unifies Legacy Device Networks – Mark Tekippe; 4pm-4:30

         

        Feb. 28th

        • The IoT Requires Upgradable Security – Lars Lydersen; 11:30am – Noon
        • ARM Cortex-M and RTOSs Are Meant for Each Other - Jean Labrosse; 11:30am – Noon
        • Unraveling Mesh Networking Options: Benchmarking Zigbee, Thread, and Bluetooth Mesh Protocol Stacks – Tom Pannell; Noon-12:30

         

        March 1

        • Debugging Live Cortex-M Based Embedded Systems – Jean Labrosse; 4pm-4:30