Official Blog of Silicon Labs

    Publish
     
      • New Sub-GHz and BLE Solution Simplifies Industrial IoT

        Lance Looper | 06/164/2018 | 01:32 PM

        This week, we’ve introduced a Wireless Gecko software solution created to simplify industrial and commercial IoT applications using sub-GHz wireless connections by adding Bluetooth connectivity. The new hardware and software solution enables simultaneous sub-GHz and 2.4 GHz Bluetooth low energy connectivity for commercial and industrial IoT applications, such as smart metering, home and building automation, and commercial lighting.

        This is important for the industrial and commercial sectors for several reasons – for one, it’ll make it much easier for people working in these environments to set-up, control, and monitor sub-GHz IoT devices using Bluetooth low energy mobile apps.

        Sub-GHz wireless protocols are used extensively in industrial and commercial settings because many of them require a combination of energy efficiency, long battery life, and extended range for remote sensor nodes. Proprietary sub-GHz protocols allow developers to optimize their wireless solution to their specific needs instead of conforming to a standard that might put additional constraints on network implementation. With our new software solution, sub-GHz protocols can still be utilized for their benefits, but users can also easily manage the system using Bluetooth mobile apps on a variety of devices, such as tablets or smart phones.

        Sub-GHz environments are typically low-data-rate systems, such as simple point-to-point connections to large mesh networks and low-power wide area networks (LPWAN). By adding Bluetooth with low energy connectivity to wireless networks in the sub-GHz band, developers can deliver new capabilities such as faster over-the-air (OTA) updates and deploy scalable, location-based service infrastructure with Bluetooth beacons.

         

        Single Chip Reduces Cost by 40 Percent

        IoT developers stand to gain tremendous development benefits by avoiding the complexity of two-chip wireless architectures. By using a single chip with both sub-GHz and BLE connectivity, developers can simplify hardware and software development, which can speed time-to-market and reduce bill-of-materials (BOM) cost and size by up to 40 percent.

        Accenture estimates industrial IoT could add $14.2 trillion to the global economy by 2030, making the deployment potential of this solution especially massive. Any new technology developments such as this one that helps developers control and monitor industrial and commercial devices and data more easily leads to efficiency and economic gains for both businesses and the users.

        Mobile control applications are often a crucial piece of industrial and commercial automation, giving system operators a quick and easy way to control equipment. For instance, commercial lighting depends heavily on mobile devices, which control lighting on/off schedules, energy efficient modes and rules, and dimming based on occupancy using ambient light sensors. Often times, the mobile app may be the only control interface installers, designers and site managers have for project commissioning and configuration.

        Bluetooth connectivity allows the device apps and interface to be simple, which can make a difference in user adoption, as many lighting and commercial controls can be complex and difficult to manage.

        Our new solution will clearly yield impressive benefits for both developers and the users of the industrial applications. Fortunately, the new multiprotocol software is now available using Silicon Labs’ EFR32MG and EFR32BG Wireless Gecko SoCs. Check out more details here if you’re working on a product that could benefit from the solution.

         

      • IoT Hero Play Impossible Puts a New Spin on Playtime

        Lance Looper | 02/47/2018 | 09:26 AM

        Play Impossible has reinvented the ball by connecting it to phones and tablets. They’ve managed to do this while maintaining the look and feel like a ball found on any gymnasium floor. Launched in October of last year, Play Impossible won first place at the Last Gadget Standing competition at CES in December. With rave reviews from USA Today, CNN, and Mashable, Play Impossible’s Gameball is capturing the hands and minds of kids as it provides another way to play ball with the modern insight of today’s connected devices. Silicon Labs had the opportunity to sit down with cofounder and CTO Kevin Langdon to hear how the company got its start and what he sees for the future.

         

        How did Play Impossible come about?

        All of the founders of the company are dads. And as parents, we have all struggled with the amount of time our kids spend on devices. This particular problem was the impetus for the company - how do we get our kids up off the couch in active play and doing what we call active play. Active play is physical and involves movement, but it’s also social and creative in nature. These are important things that many kids today aren’t getting enough of, and there are plenty of studies saying this is only getting worse. Getting kids to move and play is what Play Impossible is all about.

         

        The quality of Gameball is amazing - it’s a real ball.

        Yes. If you couldn’t see the charging part, most people would not know there are electronics inside of the ball. The quality of the ball was important to us, but that aspect of the product definitely was not in our wheelhouse, and we didn’t want to reinvent the process. So we partnered with Baden Sports, which specializes in sports equipment, to build the ball.

         

        What were some of the original design requirements when you set out to create the ball?

        We really wanted to create something with a reasonable price point, especially when it’s sitting on a shelf next to $5 balls in a retail setting. The connection range of the device was critical as well. We needed a Bluetooth to stay connected as far as you could throw the ball. Silicon Labs played a big role in helping us do this. Power was another issue – creating a solution that didn’t get in the way in terms of charging.

         

        What was Silicon Labs’ value proposition in the beginning?

        I first started looking at Blue Gecko when I was working on another product for SkyGolf. And then with Gameball, we looked at a lot of modules and realized the range and low-power functions were two pieces that we knew Silicon Labs could help with.

         

        Were there any unforeseen challenges that you came across, such as weight, size, etc.

        The hardest part for us was getting the durability right with all of the electronics inside. We also came up with a unique solution for the power. There is no battery in the ball, it runs entirely on super capacitors. We needed to do that for both cost reasons and to maintain the durability. I’m pretty happy with the solution we came up with - it’s a real jaw dropper when people see our ball charge up in 20 seconds.

         

        What was the Last Gadget Standing competition at CES like?

        There were hundreds of applicants and they narrowed it down to 10 gadgets on stage. I had no expectations of being selected, but when we were, we were honored. One of the gadgets was a Star Wars VR gadget, and it was two months after Star Wars had hit movie theaters. But it went really well and was a lot of fun. The host, David Pogue, was tough and asked a bunch of questions, but he loved the product.

         

        What types of pressures are you under to be innovative – is it developing new games, cost of goods, talent? It’s definitely creating new games. It’s a combination of making the ball new again. Anyone who has a kid knows kids typically like a new toy for a few days, but then on the fourth day, the toy tends to be thrown into the closet. We want to make sure our product is played with a long time beyond those four days. The new games we create make the ball new again and give the kid a reason to get the Gameball back. We are driven to create hit games that are what everyone is talking about.

         

        Is all of the production for Gameball done in house?

        When we first started, we hired an experienced gaming designer to build the game, as it’s definitely not a traditional game. We had to do a lot of heavy prototyping and understand the software and hardware capabilities. We had to figure out what the product would be capable of doing socially and with Bluetooth and power. We definitely pushed the limits in terms of what we could do with those functionalities. For example, with a lot of IoT products, real time doesn’t matter. Of course it’s always important to be quick, but real time isn’t critical. With us, if you look at other playables on the market with Bluetooth, I don’t think there are any products as fast as Gameball. The game requires feedback from your fingers on the ball as quickly as possible to get the gestures from the beginning with the ball.

         

        Where do you see the future of IoT going? And where do you see it expanding for the everyday person?

        Right now, expectations are low among the average consumer of what IoT is all about. When our product is sitting on a shelf at a retail location, no matter how much we put on that box, there is little a consumer can understand about the product until they actually play with it. It’s going to take years for consumers to change and expect connectivity in everything. The nice thing is it’ll be much easier at that point for businesses such as ours. But today, it’s a critical issue for us in terms of marketing and sales. We see ourselves as a software platform that can interact with many different devices. Gameball is just the first of many devices and accessories that will change how we play in the future.

      • Selecting the Best Mesh Networking Standard

        Lance Looper | 02/43/2018 | 10:23 AM

        The benefits of mesh technology continue to gain traction among IoT developers as end-users experience sizeable application performance gains from IoT devices tapping this type of wireless interconnection network.

        In the new whitepaper, “Selecting the Appropriate Wireless Mesh Network Technology,” we give IoT developers much-needed advice into considerations required for selecting wireless mesh networks for IoT applications, such as lighting systems, retail beacon systems, or building or home automation.  

        Mesh networks use connected devices as nodes to extend connectivity, shortening proximity ranges for connectivity and allowing device-to-device communication often without the need of a cloud gateway. For instance, the connectivity range for lighting systems is extended every time a new light is introduced to the system, enabling any light switch action to stay within the mesh network instead of being transmitted over a cloud gateway. One of the main benefits of mesh networks is their ability to remove latency issues and speed device application performance.

        The new whitepaper hits briefly on some of the applications benefiting from mesh networks, yet focuses mainly on explaining the nuances of integrating IoT devices into wireless mesh networks.

        Interoperability with already deployed wireless protocols, such as Zigbee and Bluetooth, is discussed in length in the paper, along with best practices using the Thread mesh protocol. Different service providers have requirements for a specific protocol and/or multiple protocols; therefore, designers must be aware of these details when selecting the appropriate connectivity solution. Many existing devices use Zigbee, and for new devices based on a technology such as Bluetooth mesh, an interoperability strategy either through the end device or gateway supporting multiple protocols needs to be considered. Several other important interoperability insights are discussed in the paper, as well as the importance of ensuring the entire connectivity ecosystem is addressed and adaptation of IP at the gateway is successful, as needed.

        Another valuable theme conveyed is the use of wireless standards and how to use the protocols depending on the type of device and application. Of the three standards discussed in the paper, the Thread mesh standard is the only protocol based on IPv6, providing several unique benefits, such as end-to-end routing and addressability on the same or across networks. Development tips are also discussed, such as the fact that Bluebooth low energy can be combined with Zigbee to simplify device setup via Bluetooth commissioning, using smart phones for Zigbee devices or to provide the Bluetooth connectivity needed to support Apple Homekit.

        Silicon Labs has a multiprotocol software and hardware solution designed to solve many of the issues detailed in this article, which helps designers design a single product supporting multiple wireless connectivity protocols. This can be the same device capable of connectivity to multiple protocols in the field, or a device with the ability to be configured in the field or factory to one of a number of different wireless protocols.

        As is often the case, one protocol may not be able to meet the needs of all products and markets, though this paper provides a fair amount of insight into which one to consider depending on the type of application the designer is tackling.

        Download the whitepaper.

         

         

         

         

      • Embedded World 2018

        Lance Looper | 02/32/2018 | 11:08 AM

        Trade show season is in full swing, and we’re looking forward to our upcoming trip to Nürnberg, Germany for Embedded World 2018. With over a thousand exhibitors and more than 30,000 attendees, this is the premier event for embedded systems design in the world. And Silicon Labs will be there showing off the latest silicon, software, and solutions that have made us a leader in IoT.

        If you’re there, plan on coming by Stand 4A.128 to check out the following demos. And if you want to meet with us, register here.

        Wireless

        Come discover why our newest Wi-Fi chips and modules with best in class power and sensitivity are the ideal solution for IoT and other embedded applications. We'll also show you how the advanced security features in these devices, like built-in secure link, secure debug and secure boot protect help your devices and code.

        MCU/Micrium

        Highly capable, low power systems can be hard to develop, especially when adding wireless connectivity. We’re working to solve this challenge. When your application needs long-range wireless, innovative features, and longer battery-life, our new EFM32 Giant Gecko MCU and the pre-certified Digi XBee3 smart modem come to the rescue. Stop by and see how these solutions, along with Micrium OS and advanced development tools address this challenge in IoT.

        Isolation

        Isolation is critical in wired communication, protecting both hardware and humans operating the hardware from high voltages. This demo will show two industrial EFM8 microcontrollers communicating through Silicon Labs’ isolators for a more robust system.

        Proprietary Wireless

        Silicon Labs’ multiprotocol solutions enable advanced connectivity without increased cost or complexity. We’ll be showing off our latest innovations in dynamic multiprotocol, combining Bluetooth and Proprietary Sub-GHz in a single multiprotocol, multi-band wireless SoC. 

        Bluetooth

        See how our Bluetooth solutions seamlessly sync with Apple HomeKit and Bluetooth LE applications. With our Blue Gecko and voice over Bluetooth software and hardware, you can enhance your third party Bluetooth enabled devices.  

        Mesh Networking

        Silicon Labs is the industry leader in mesh networking. With Zigbee, Thread, Bluetooth mesh and Multiprotocol solutions, Silicon Labs can help customers select the right mesh technology for their application. Come learn about the various mesh protocols and see how Silicon Labs hardware, software, tools and reference designs can get you to market faster. 

        Securely Managed IoT Solutions

        Silicon Labs is showcasing a commercial-grade managed solution for connected product manufacturers. It is illustrated here with a Silicon Lab’s ZigBee SoC, a reference gateway for OEMs and a cloud-based Device Management Service. Go from concept to market-ready IoT solution faster than ever. 

         

        Silicon Labs experts will also be speaking on the following topics:

        Feb. 27th

        • What is an IoT OS? - Øivind Loe; 9:30am-10
        • How Do You Select Which IoT Protocol to Use? - Matt Saunders; Noon - 12:30       
        • Security in Manufacturing: Closing the Backdoor in IoT Products - Josh Norem; 2:30pm - 3
        • Understanding Advanced Bluetooth Angle Estimation Techniques for RT Locationing - Sauli Lehtimaki; 4pm-4:30
        • Dotdot Unifies Legacy Device Networks – Mark Tekippe; 4pm-4:30

         

        Feb. 28th

        • The IoT Requires Upgradable Security – Lars Lydersen; 11:30am – Noon
        • ARM Cortex-M and RTOSs Are Meant for Each Other - Jean Labrosse; 11:30am – Noon
        • Unraveling Mesh Networking Options: Benchmarking Zigbee, Thread, and Bluetooth Mesh Protocol Stacks – Tom Pannell; Noon-12:30

         

        March 1

        • Debugging Live Cortex-M Based Embedded Systems – Jean Labrosse; 4pm-4:30

         

      • IoT Hero DeviceRadio Levels Playing Field for IoT Innovation

        Lance Looper | 01/22/2018 | 05:32 PM

        IoT Hero DeviceRadio Levels Playing Field for IoT Innovation

        Just before the holidays, Silicon Labs had the chance to sit down with Christian Klemetsson, the founder of Swedish-based start-up DeviceRadio. The company has created a horizontal connectivity layer of technology that sits on top of various protocols supporting IoT products, such as Wi-Fi, LoRa, Bluetooth, etc. The seamless layer removes the need for specific IoT design expertise, giving companies and designers of all backgrounds immediate ability to build IoT products from the ground up, regardless of designer expertise.

        Tell me about DeviceRadio – how did it come about?

        The company started out as a hobby project. At the time, I was killing all of my houseplants and it was getting expensive to replace them. I have an electronics background, so I wanted to build some sort of solution to monitor the plants with an application on my phone. I quickly realized that building something cheap, simple, and with long battery life wasn’t available. The solutions I found were based on technology built for other purposes. For example, Bluetooth, at least at the time a few years ago, wasn’t built for IoT, only wireless peripherals. So I created my own radio protocol specifically for IoT and added encryption and plug and play along with additional features. Two and a half years ago, I found the Silicon Labs/Digi-Key competition and entered the device I had just built. I ended up being one of the winners and received $10,000 worth of components from Silicon Labs. I also received media attention in Sweden from the electronics press, and the overall feedback was that I was on the right track – there was a possible missing piece in IoT. From that starting point, I started DeviceRadio.

         

        Was your IoT radio protocol the first one you’ve seen on the market?

        At that point, (2014) there wasn’t anything specifically for IoT. There were protocols for low-power communications, such as Z-Wave and peripheral protocols, such as Bluetooth and Wi-Fi, but nothing for IoT.

        What I did was transform the protocol into something that could be placed on top of existing protocols, which would provide encryption, plug and play, abstraction, etc. Regardless if you’re using Bluetooth, Wi-Fi, 4G, etc., it would all be the same. Our layer goes on top of whatever protocols you’re using, making everything seamless and consistent. 

        The product is sort of like the Internet, but specifically for devices and their sensor data and signals. We create the mechanism to move sensor data between each other and provide the integration to cloud platforms and services.

         

        You call this horizontal connectivity, right? How would you explain the value of this concept to a non-developer?

        I think it’s easier to talk about the value of Internet connected devices to help non-developers understand the value of our product. When working with today’s technologies to build connected devices, a lot of custom development and expertise is required. You need to know about security, servers, scaling, protocols, etc., and hook everything up to an IoT platform. This process becomes limiting and IoT development ends up being only available to a select few companies with this level of expertise.

        What we’re trying to do is democratize and hide the complexity of IoT by placing a horizontal layer on top of everything. This means if you’re a product company, your developers can create an IoT product without relying on exclusive and hard-to-find talent.

        Think about it from a macro perspective – western countries are all trying to increase efficiency, reduce environmental impact, and care for a large aging population. But developed countries are still the minority - the rest of the world doesn’t have basic services or our standard of living. Our resources are limited if we want to bring the entire world up to our living standards. The only way to solve these big problems is with technology. I think IoT can grow core technologies to do so much more. But in order for this to happen, IoT needs to be available to all companies, not just experts.

         

        What exactly does the horizontal layer include?

        We host an infrastructure for customers that can be replicated and takes care of access control and gets data to the right place. Our vertical communication layer is a software library that designers place on top of their protocol layers and hardware. By using our software library, designers don’t have to think about cloud APIs, Internet connectivity, etc.

        We are giving designers the opportunity to create something fast without thinking much about what technology to use. Designers can create a prototype on their hardware and focus entirely on the benefit and business value of the device up front, worrying about technology and scaling requirements much later on in the process. Designers have the freedom to stretch the product further without having to rewrite the apps and alter the code.

         

        Have you started selling the product?

        Right now we’re doing small pilot and proof of concept projects. We also have additional funding from angel investors and government grants. We’re still in the development phase and we want to make sure we’re building the right product. Our pilot projects are giving us critical insights. Our goal is to increase the number of devices using DeviceRadio by 10-fold every six months.

         

        What are some of the design challenges you have run into while building the product?

        From a technical standpoint, there were plenty of challenges. But the biggest challenge I have seen is an awareness problem - getting the right awareness and feedback circulating among companies about IoT. There is so much hype and confusion because everyone wants to be a part of IoT. But the companies that can benefit the most don’t really know it exists and what the benefits are – I think that’s a big challenge.

         

        So they don’t understand what’s possible?

        Exactly, a lot of the IoT media attention is around must-have killer applications solving luxury problems, such as connecting a water bottle or something. One of the companies I spoke with recently is building drones that work with emergency services to deliver heart defibrillators in a fraction of the time they were previously delivered, using IoT to save lives.

         

        What Silicon Labs products are you using?

        The Silicon Labs Blue Gecko BGM123, but we also use your 8-bit processors.

         

        Where do you see the future of IoT going in the next 5-8 years?

        Even though there are some cool IoT start-ups and things happening, it’s really going to be about existing companies discovering how to leverage IoT in a way that’s seamless. If you’re building connected washing machines, it should work as a normal washing machine, but then have additional connected features or benefits. It needs to be a gradient, where we move from unconnected to a connected world, and eventually an interconnected one. Right now it’s vertical. The same company that builds the IoT product owns the servers, apps, etc., making everything isolated. In 5-10 years, you’ll have multiple companies building the hardware, IoT enablement technologies, and software services and apps, allowing people to utilize products from multiple companies in ways we can’t even imagine at the moment.

         

         

         

      • IoT Hero Revolar: Keeping Loved Ones Safe with the Tap of a Button

        deirdrewalsh | 10/283/2017 | 10:30 AM

        Silicon Labs recently had the opportunity to sit down with Andrea Perdomo to discuss the personal safety company she co-founded, Revolar. Perdomo, who immigrated to the U.S. from Colombia as a child, shares her personal inspiration behind the product and explains some of the design challenges she experienced launching a simple yet powerful IoT technology that alerts loved ones if the user is in danger.

         

        Banner-rev.jpg

         

        Can you tell us a little bit about your company Revolar?

        Revolar is a personal safety technology company. We created a small device that you clip onto your clothing, key chain, handbag, etc. The device is for those moments where you just need to connect with your loved one. The device is connected to your phone via Bluetooth. There are three different alert levels. The first is a “hey, I’m home or I’m safe” alert. Two clicks is a yellow alert, which is for when you are uncomfortable or just want someone to be with you virtually. And the third alert is for full blown emergencies. We launched our first product in 2015 and launched the new version in April of this year.

         

        What prompted you to create the technology and the company?

        My co-founder, Jackie Ros, and I were close friends before we started the company together. Jackie’s younger sister was the ultimate inspiration for Revolar. Her sister was assaulted twice by the age of 17. In both circumstances, her sister didn’t have time to reach for her phone and call for help. Jackie wanted to create a magic button that her sister could press that would let people know where she was and that she needed help. And that’s pretty much what we did. We realized nothing like this existed yet. There were products such as Life Alert and 24/7 trackers for your kids, but nothing in the middle. We had no technology background at all, but we figured out how to do it.

         

        I’m originally from Colombia and I moved to the U.S. for safety and security reasons after my grandmother was kidnapped for eight months. She’s OK now, but if she would have had Revolar, we would have known her last whereabouts and known something was wrong. Then we could have started looking sooner. Instead, we went a whole month without knowing where she was.

         

        What were the circumstances? Was she held for ransom?

        Yes, ransom. It was back in the 90s – everybody was getting kidnapped left and right. And my Dad said, “This is it, we can’t live here anymore.” So I’ve been surrounded by the mentality of “stay safe” or “don’t talk to strangers.” Moving to the U.S., it’s definitely safer here. But at the same time, Revolar is for those moments where you just can’t predict it. We started Revolar in Denver – just the two of us – and we slowly grew our team. I went to business school and I’ve always said you don’t know how to start your own business until you do it. We eventually figured it out and found a team of advisors and investors who believed in what we were doing.

         

        What kind of stories and feedback have you received from the users?

        We have learned that our customer base is broad – we have male and female users from every age group above 13 years old. So customization of the experience is important. Not everybody is the same – a red alert for one person might be totally different for someone who has food allergies versus someone who is a runner. So we started enhancing our software.  Now users can customize messages and change contacts for each alert level. We also learned that people were using Revolar just on the weekends or when they thought something would happen. So in our new version we created ways people can use the device regularly and not just when they need it. For example, the new version will beep so you can find your keys or phone. We also activated step-tracking for active users who want to use Revolar to count steps.

         

        That’s great you’re learning how people are really using it.

        Interestingly enough, people are using it for reasons that I never thought of. I kid you not, I know people are using it to let friends know what bar they’re at. Or if they go on a hike, they use it to show people what hike they went on. Or they take check-ins while they are shopping to remember where they were.

         

        Is there a way to aggregate the data about where people of certain ages congregate or use their devices most frequently?

        When we talk to police or governing bodies of cities or universities, we always get that question. They say, “You’re telling me that we will know when people are feeling vulnerable or uncomfortable?” A perfect example is if we’re getting a bunch of yellow or red alerts from a certain fraternity at a college campus. We know a lot of this information is sensitive and personal to our customers and we want to respect everyone’s privacy. But at the same time, if we can get our users to let us know why they are using Revolar, we can help people in the future.

         

        Can you tell us about the process of building the device?

        Our proof of concept was built by an engineer we contracted with in Colorado. Within three months, we had a functioning prototype. It was jankie and we had to unplug it to set off the alert. We also had to convert our phones to Androids because that was the only way to build the app.  We later brought on an advisor who was both an electrical and a mechanical engineer. In two weeks, he built the prototype we ended up using in the first version of our product. We then found an industrial designer to contract for us and that part was fun – making sure the design was pretty. Once we started the manufacturing process, our contract manufacturer brought on the CTO and started putting all of the pieces together.

         

        Was the design of the product a challenge since it hadn’t been done before? Or was it a process smooth?

        Oh, no. It was really hard. I remember every engineer I talked to said “Oh, that’s easy, we can do that.” But then there was always something. One of the challenges was size. The battery life was another challenge. And the button, making sure the button was concave enough to remove the risk of false alerts. And features – there were so many features we wanted, but we couldn’t compromise the size or battery life. Initially, we thought it would be a great idea to have four buttons. Then we learned how much it would cost and how much it would drain the battery. Most of the Bluetooth chips that existed at the time powered cell phones or sent  messages with high-bandwidth, and we didn’t need all of that. We ended up going with Bluetooth Low Energy because everything else would have taken longer to make. It took us over a year to have the final product.

         

        What specific Silicon Labs products are in the device?

        The Wireless Blue Gecko SoC. The product helped us achieve a longer battery life and create our small form factor.

         

        Where do you see IoT going in the next 5-8 years?

        I think we’re going to start seeing  people consolidate IoT. Especially as we hear people say they don’t want to charge another thing – they want devices to do multiple things. Most people have no idea what IoT means – I’d say 80 percent of the world or more. I still run across people who don’t know what Bluetooth is – or what a wearable is. So although technology is moving fast, there is still a big gap in education. I also think we’ll see wearables and IoT in places that you would never imagine, such as clothing and handbags. I believe tech will become fashion. Probably not in the next 5-8 years, but in the next 20.

         

         

         

         

      • Silicon Labs Bluetooth Implementations Unaffected by BlueBorne

        Lance Looper | 09/257/2017 | 10:39 AM

        A collection of Bluetooth vulnerabilities named “BlueBorne” has just been made public by the security research company Armis. The vulnerabilities are not in the Bluetooth standard itself, but rather in the specific implementations of the Bluetooth standard. The Silicon Labs Bluetooth implementation is different from the affected implementations. Therefore, products based on our Bluetooth software are immune to BlueBorne.

         

        This has been disclosed responsibly, which means that vendors have had time to issue security patches. Therefore, please update and patch all Bluetooth-products based on Android, Windows, iOS or Linux! And if in doubt, follow best practice and update all smart products regardless of protocol and software platform.

         

         

        As a note, fighting BlueBorne shows the importance of being able to software upgrade connected devices, as discussed here:

        http://www.newelectronics.co.uk/electronics-technology/the-iot-requires-upgradable-security/156211/

         

        References:

        https://www.armis.com/blueborne/

        https://www.wired.com/story/turn-off-bluetooth-security/

        https://techcrunch.com/2017/09/12/new-bluetooth-vulnerability-can-hack-a-phone-in-ten-seconds/

      • IoT Hero Deep Freeze Fishing: Taking Customers out of the Cold

        deirdrewalsh | 08/213/2017 | 09:30 AM

        We had a wonderful opportunity to speak with Brad Zdroik, Founder of Deep Freeze Fishing. A leader in the emerging IoT development occurring in the outdoor sports market, Deep Freeze Fishing helps fishermen and women avoid the cold while ice fishing by providing an alert system for their lines, freeing them to monitor catches from afar.

         

        Banner-freeze.jpg

         

        So for people not acquainted with Deep Freeze Fishing, tell us about yourself. What’s the elevator pitch explanation of what you do?
        We manufacture and sell ice fishing equipment. We’re based in central Wisconsin, and we sell products throughout the northern third of the U.S. and up into Canada as well. We started off with an ice skimmer that clears slush out of your ice augur hole in one scoop, and that’s evolved into the current One Shot Skimmer Pro Edition. But our connected BlueTipz product is now our most popular offering.

         

        How does BlueTipz work exactly? What’s going on under the hood?
        BlueTipz is a tip-up alert for ice anglers. Instead of having to stare at your flag all the time waiting and waiting for the fish to bite, you can instead attach our BlueTipz transmitter on the flag. When the tip-up receives a strike and the flag goes up, a sensor in our device pings your phone, freeing you to be inside your fishing shack keeping warm for longer stretches of time until right when you need to actually take care of your line.

         

        BlueTipz also allows you to be much more flexible during night fishing. Not only do we have a light on the tip-up that lights up, but you can also name individual tip-ups within the app so you know exactly which one has gotten a strike; it definitely saves you some stumbling around in the cold and dark. That’s a great benefit especially in the states that allow you have up to 10–15 lines going at once.

         

        And what’s the story of how you arrived at a solution for ice fishing diehards? It’s definitely a unique niche. How did Deep Freeze Fishing even come about?
        I actually went to school for electrical engineering and did my corporate cubicle stint and was just feeling restless. I moved back home to central Wisconsin kind of searching for what to do. I always loved the sport of ice fishing, and just fiddling around with my Dad, we created the One Shot Skimmer product that represents Deep Freeze’s beginning, though certainly not very techy of course.

         

        Around the same time, smartphone apps were beginning to ramp up, and there were a couple other products beginning to hit the market that provided tip-up alerts. But my brother Ryan and I weren’t crazy about any of them and thought they could work much, much better. So we decided to build our own, and that is how BlueTipz was born.

         

        How would you say your solution has evolved since 2012 when you started out, as well as your design challenges over time?
        The core solution has actually remained the same since we started. It’s become more of a matter of putting more high-quality, sophisticated hardware pieces inside as technology has gotten better since we started out in 2012. That has let us extend battery life over time and continue to be able to keep working in temperatures as low as -20° to -30° F. Being able to withstand the brutal open cold is hands-down what’s always driving us. If a component can’t take the cold, we can’t use it.

        We also have about a 600-foot range from BlueTipz to your phone, and that’s grown from our original capabilities. We’ve had to make sure the signal can make it through a typical fishing shack and the human body, so we’ve definitely invested in boosting the signal itself and always make sure the Bluetooth module can do its job.

         

        What Silicon Labs’ product are you using in BlueTipz? And why did you select it?
        We started out with the Bluegiga BLE112 and have actually transitioned over to the Bluegiga BLE121LR to get the extended signal range. It’s a good value and it can withstand the extreme cold. We couldn’t be happier with it.

         

        What do see in the future for Deep Freeze Fishing?
        Ice fishing is obviously a niche market within fishing; we hope to develop some applications for open-water fishing as that is obviously a substantially larger market. We feel the whole space is lacking in terms of IoT development.

         

        In closing, we always ask our IoT Heroes one Bonus Question: Where do you see the collective IoT heading in the next 5–8 years in your opinion?
        As I said, we think even just regular fishing is vastly lacking in connected development that could really be meaningful and helpful for end-users. The industry is just behind all the amazing things we see on the news. I think we are really going to witness a blossoming of applications across the board in the coming years for outdoor sports users, and that’s exciting.



         

      • Bluetooth Mesh by the Numbers

        Lance Looper | 07/206/2017 | 04:50 PM

        Bluetooth Mesh infographic.jpg

      • Extending Bluetooth with Mesh Networking

        Lance Looper | 07/199/2017 | 11:27 AM

        With 15 years’ experience in 802.15.4 networking and more than 100 million mesh devices shipped, we’re bringing our extensive expertise to bear on helping developers simplify mesh design and take advantage of the opportunities that many-to-many networking bring to the IoT market.

         

        Today we’re announcing a comprehensive suite of software and hardware supporting the new Bluetooth mesh specification. Our new software and SDK for Bluetooth development supports Bluetooth mesh and Bluetooth 5 functionality so developers can add mesh communication to low energy devices.

         home-mesh-network-horizontal.jpeg

         

        The Benefits of Mesh Networking

        Mesh networking, which is now available for Bluetooth low energy devices, enables many-to-many (m:m) communication. This makes it ideally suited for creating large-scale node networks and great for building and smart home automation, asset tracking, and sensor networks. With building and smart homes, for example, devices can communicate directly with each other, so flipping on a light switch no longer involves routing communication through a router or gateway. End-consumers already know what it’s like to flip a switch and have a light come on instantly, so moving to a smart system needs to be able to duplicate that experience without any perceived lag. As we see more and more mainstream adoption of smart home applications, user experience is critical to growth in the market.

         

        For lighting systems, deployment and management can be simplified with mesh. The extended connectivity range means lights can be deployed at a greater distance from a hub vs a star network. A hub or gateway can be placed in one location and connected lights deployed. As each light is deployed the range of communication grows, allowing a single gateway to effectively cover a larger area.

         

        Beaconing is another area where mesh networking offers significant performance benefits.  Used for retail marketing or asset tracking, beacons can be more easily managed with a mesh network because they are not required to be within range of a phone.

         

        How We Can Help

        Our certified modules, including the world’s smallest Bluetooth SiP module (BGM11S), can help accelerate time-to-market and maintain software compatibility with the latest EFR32BG13 Blue Gecko SoCs. With Blue Gecko SoCs, companies can bring products to market that take advantage of the full capabilities of Bluetooth 5 and Bluetooth mesh connectivity and support over-the-air (OTA) updates with on-chip memory.

         

        Silicon Labs' Blue Gecko Bluetooth Wireless Starter Kit provides you with Bluetooth 5 and Bluetooth mesh connectivity with the on-board EFR32BG13 SoC as has debug capabilities over USB and Ethernet providing an uncompromised developer experience. We also provide developers with a Bluetooth mesh stack for Android, which allows smart phones to provision, configure, and control mesh nodes. And since we provide the mesh stack, customers do not need to write this again, further simplifying development and accelerating time-to-market.

         

        Other features include:

         

        • Faster time-to-market: Choose from a variety of our certified wireless modules and SoCs, including the world’s smallest Bluetooth system-in-package (SiP) module (BGM11S) and the latest EFR32BG13 Blue Gecko SoCs. Blue Gecko SoCs offer large memory options to support over-the-air (OTA) updates as well as advanced features such as hardware security acceleration, capacitive sensing, low-power sensor interfaces and enhanced RF performance.

         

        • Simplify development: Our mobile application makes it possible for designers to verify the operation of Bluetooth mesh-based implementations with a commercially supported Bluetooth mesh library and source code to streamline design. Designers can also use our mesh stack in their own applications without needing to develop this themselves.

         

        • Productivity: Optimize mesh networking device designs with Simplicity Studio, which includes patented network analysis and packet trace technology, energy profiling and visual application configuration. Software compatibility across our portfolio of wireless SoCs and modules enables broad software reuse and reduced development time and cost.

         

        For more information about Silicon Labs’ Bluetooth mesh development tools, software stack, SoCs, modules and starter kits, visit www.silabs.com/bluetooth-mesh

         

        siliconlabs-infographic-jul17_part3.jpg