Over and over, customers tell us they want a wireless link to just work so they can move on and focus on the application they're designing. This week, we delivered on this challenge with the introduction of Wireless Xpress, which gives designers the freedom to go from out of box to prototype within a few hours – versus months – with no software development necessary.
Wireless Xpress provides a configuration-based development experience with everything developers need, including certified Bluetooth® 5 Low Energy (LE) and Wi-Fi® modules, integrated protocol stacks and easy-to-use tools supported by the Silicon Labs Gecko OS operating system.
The new solution simplifies wireless development and eliminates the daunting task of working in numerous and complicated wireless development interfaces. Today’s IoT development teams are often burdened with importing numerous stacks of software, dealing with hundreds of APIs and complex RF integration obstacles, along with writing hundreds of hours of code. Because of these complexities, wireless development is hard to come by, and IoT companies often need to outsource the development, an extremely costly and time-intensive process that slows down time to market. Wireless Xpress removes the need for wireless development since we’ve already done the work for you.
Then there’s cloud connectivity – an onerous challenge for design teams to build from the ground up. Wireless Xpress provides instant cloud connectivity and has built-in firmware updates, along with the ability to retrieve updates and push them out to devices in the field. This functionality removes the need for our customers to pay for subscription-based services to ensure these updates are managed.
Wireless Xpress addresses all of these challenges head-on without a big stack. We take on as much firmware responsibility as possible, with all configuration occurring in the Gecko API. Wireless Gecko is not codeable, but configurable, freeing designers from the headache of wireless design by getting it all in one box.
Putting Application First, Versus Network
Another challenge solved by the new solution, and especially beneficial for low-power applications, is MCU processing constraints. An MCU in a typical wireless design is handling all of the network processing demands versus application needs, creating a situation where customers are often paying more than they need for an MCU. Wireless Xpress offloads the embedded host processing from the MCU and handles processing demands inside the package, reducing the processing performance required and optimizing the chip-set. With Wireless Xpress, you can use a bare bone 8-bit MCU for applications that would have otherwise needed a 32-bit because of RAM, flash, etc. demands.
Support Down to the Silicon
With the Wi-Fi and Bluetooth modules, Silicon Labs is able to go all the way down to the silicon to find a problem. When you look at other pre-programmed modules on the market, what you find is module vendors are not SoC designers – the silicon in these products is from other companies. Therefore, in the support structure, problems tend to be punted to the underlying silicon vendor. This structure really goes against the ease of use experience. Wireless Xpress gives customers one point of contact for wireless design, making it much easier for support and troubleshooting. It’s our silicon – we control every part of the flow, giving us the advantage to optimize design better than anyone on the market.
Our Bluetooth and Wi-Fi modules are pre-programmed, pre-qualified and are pin for pin compatible with our portfolio of products. And they all run through the Gecko Xpress API, which we have already tested to ensure its reliability and flexibility. We’re taking care of the wireless interface on behalf of the customer and giving them back the 3-6 months it would take to build all of the connectivity from scratch.
So many of our customers seeking wireless connectivity are long-standing, established companies in markets that don’t have the in-house resources nor budget to invest in wireless connectivity talent – these companies’ main agenda is to make exceptional products for their markets. Wireless Xpress gives these companies the opportunity to obtain the wireless expertise they need in one package – giving time back to the developers to worry about their own customer needs – instead of complex wireless scenarios that demand too much time and money.
Wireless Xpress is the latest culmination of our strong customer relationships – we listen and design accordingly. Stay tuned as Silicon Labs continues to deliver the IoT solutions designers want to get innovative and high-performing products to the market as fast as possible.
Play Impossible has reinvented the ball by connecting it to phones and tablets. They’ve managed to do this while maintaining the look and feel like a ball found on any gymnasium floor. Launched in October of last year, Play Impossible won first place at the Last Gadget Standing competition at CES in December. With rave reviews from USA Today, CNN, and Mashable, Play Impossible’s Gameball is capturing the hands and minds of kids as it provides another way to play ball with the modern insight of today’s connected devices. Silicon Labs had the opportunity to sit down with cofounder and CTO Kevin Langdon to hear how the company got its start and what he sees for the future.
How did Play Impossible come about?
All of the founders of the company are dads. And as parents, we have all struggled with the amount of time our kids spend on devices. This particular problem was the impetus for the company - how do we get our kids up off the couch in active play and doing what we call active play. Active play is physical and involves movement, but it’s also social and creative in nature. These are important things that many kids today aren’t getting enough of, and there are plenty of studies saying this is only getting worse. Getting kids to move and play is what Play Impossible is all about.
The quality of Gameball is amazing - it’s a real ball.
Yes. If you couldn’t see the charging part, most people would not know there are electronics inside of the ball. The quality of the ball was important to us, but that aspect of the product definitely was not in our wheelhouse, and we didn’t want to reinvent the process. So we partnered with Baden Sports, which specializes in sports equipment, to build the ball.
What were some of the original design requirements when you set out to create the ball?
We really wanted to create something with a reasonable price point, especially when it’s sitting on a shelf next to $5 balls in a retail setting. The connection range of the device was critical as well. We needed a Bluetooth to stay connected as far as you could throw the ball. Silicon Labs played a big role in helping us do this. Power was another issue – creating a solution that didn’t get in the way in terms of charging.
What was Silicon Labs’ value proposition in the beginning?
I first started looking at Blue Gecko when I was working on another product for SkyGolf. And then with Gameball, we looked at a lot of modules and realized the range and low-power functions were two pieces that we knew Silicon Labs could help with.
Were there any unforeseen challenges that you came across, such as weight, size, etc.
The hardest part for us was getting the durability right with all of the electronics inside. We also came up with a unique solution for the power. There is no battery in the ball, it runs entirely on super capacitors. We needed to do that for both cost reasons and to maintain the durability. I’m pretty happy with the solution we came up with - it’s a real jaw dropper when people see our ball charge up in 20 seconds.
What was the Last Gadget Standing competition at CES like?
There were hundreds of applicants and they narrowed it down to 10 gadgets on stage. I had no expectations of being selected, but when we were, we were honored. One of the gadgets was a Star Wars VR gadget, and it was two months after Star Wars had hit movie theaters. But it went really well and was a lot of fun. The host, David Pogue, was tough and asked a bunch of questions, but he loved the product.
What types of pressures are you under to be innovative – is it developing new games, cost of goods, talent? It’s definitely creating new games. It’s a combination of making the ball new again. Anyone who has a kid knows kids typically like a new toy for a few days, but then on the fourth day, the toy tends to be thrown into the closet. We want to make sure our product is played with a long time beyond those four days. The new games we create make the ball new again and give the kid a reason to get the Gameball back. We are driven to create hit games that are what everyone is talking about.
Is all of the production for Gameball done in house?
When we first started, we hired an experienced gaming designer to build the game, as it’s definitely not a traditional game. We had to do a lot of heavy prototyping and understand the software and hardware capabilities. We had to figure out what the product would be capable of doing socially and with Bluetooth and power. We definitely pushed the limits in terms of what we could do with those functionalities. For example, with a lot of IoT products, real time doesn’t matter. Of course it’s always important to be quick, but real time isn’t critical. With us, if you look at other playables on the market with Bluetooth, I don’t think there are any products as fast as Gameball. The game requires feedback from your fingers on the ball as quickly as possible to get the gestures from the beginning with the ball.
Where do you see the future of IoT going?And where do you see it expanding for the everyday person?
Right now, expectations are low among the average consumer of what IoT is all about. When our product is sitting on a shelf at a retail location, no matter how much we put on that box, there is little a consumer can understand about the product until they actually play with it. It’s going to take years for consumers to change and expect connectivity in everything. The nice thing is it’ll be much easier at that point for businesses such as ours. But today, it’s a critical issue for us in terms of marketing and sales. We see ourselves as a software platform that can interact with many different devices. Gameball is just the first of many devices and accessories that will change how we play in the future.
Official Blog of Silicon Labs
Zero Programming Required - IoT Wireless Development Just Got a Lot Easier
Over and over, customers tell us they want a wireless link to just work so they can move on and focus on the application they're designing. This week, we delivered on this challenge with the introduction of Wireless Xpress, which gives designers the freedom to go from out of box to prototype within a few hours – versus months – with no software development necessary.
Wireless Xpress provides a configuration-based development experience with everything developers need, including certified Bluetooth® 5 Low Energy (LE) and Wi-Fi® modules, integrated protocol stacks and easy-to-use tools supported by the Silicon Labs Gecko OS operating system.
The new solution simplifies wireless development and eliminates the daunting task of working in numerous and complicated wireless development interfaces. Today’s IoT development teams are often burdened with importing numerous stacks of software, dealing with hundreds of APIs and complex RF integration obstacles, along with writing hundreds of hours of code. Because of these complexities, wireless development is hard to come by, and IoT companies often need to outsource the development, an extremely costly and time-intensive process that slows down time to market. Wireless Xpress removes the need for wireless development since we’ve already done the work for you.
Then there’s cloud connectivity – an onerous challenge for design teams to build from the ground up. Wireless Xpress provides instant cloud connectivity and has built-in firmware updates, along with the ability to retrieve updates and push them out to devices in the field. This functionality removes the need for our customers to pay for subscription-based services to ensure these updates are managed.
Wireless Xpress addresses all of these challenges head-on without a big stack. We take on as much firmware responsibility as possible, with all configuration occurring in the Gecko API. Wireless Gecko is not codeable, but configurable, freeing designers from the headache of wireless design by getting it all in one box.
Putting Application First, Versus Network
Another challenge solved by the new solution, and especially beneficial for low-power applications, is MCU processing constraints. An MCU in a typical wireless design is handling all of the network processing demands versus application needs, creating a situation where customers are often paying more than they need for an MCU. Wireless Xpress offloads the embedded host processing from the MCU and handles processing demands inside the package, reducing the processing performance required and optimizing the chip-set. With Wireless Xpress, you can use a bare bone 8-bit MCU for applications that would have otherwise needed a 32-bit because of RAM, flash, etc. demands.
Support Down to the Silicon
With the Wi-Fi and Bluetooth modules, Silicon Labs is able to go all the way down to the silicon to find a problem. When you look at other pre-programmed modules on the market, what you find is module vendors are not SoC designers – the silicon in these products is from other companies. Therefore, in the support structure, problems tend to be punted to the underlying silicon vendor. This structure really goes against the ease of use experience. Wireless Xpress gives customers one point of contact for wireless design, making it much easier for support and troubleshooting. It’s our silicon – we control every part of the flow, giving us the advantage to optimize design better than anyone on the market.
Our Bluetooth and Wi-Fi modules are pre-programmed, pre-qualified and are pin for pin compatible with our portfolio of products. And they all run through the Gecko Xpress API, which we have already tested to ensure its reliability and flexibility. We’re taking care of the wireless interface on behalf of the customer and giving them back the 3-6 months it would take to build all of the connectivity from scratch.
So many of our customers seeking wireless connectivity are long-standing, established companies in markets that don’t have the in-house resources nor budget to invest in wireless connectivity talent – these companies’ main agenda is to make exceptional products for their markets. Wireless Xpress gives these companies the opportunity to obtain the wireless expertise they need in one package – giving time back to the developers to worry about their own customer needs – instead of complex wireless scenarios that demand too much time and money.
Wireless Xpress is the latest culmination of our strong customer relationships – we listen and design accordingly. Stay tuned as Silicon Labs continues to deliver the IoT solutions designers want to get innovative and high-performing products to the market as fast as possible.
Learn more at silabs.com silabs.com/products/wireless/xpress.
IoT Hero Play Impossible Puts a New Spin on Playtime
Play Impossible has reinvented the ball by connecting it to phones and tablets. They’ve managed to do this while maintaining the look and feel like a ball found on any gymnasium floor. Launched in October of last year, Play Impossible won first place at the Last Gadget Standing competition at CES in December. With rave reviews from USA Today, CNN, and Mashable, Play Impossible’s Gameball is capturing the hands and minds of kids as it provides another way to play ball with the modern insight of today’s connected devices. Silicon Labs had the opportunity to sit down with cofounder and CTO Kevin Langdon to hear how the company got its start and what he sees for the future.
How did Play Impossible come about?
All of the founders of the company are dads. And as parents, we have all struggled with the amount of time our kids spend on devices. This particular problem was the impetus for the company - how do we get our kids up off the couch in active play and doing what we call active play. Active play is physical and involves movement, but it’s also social and creative in nature. These are important things that many kids today aren’t getting enough of, and there are plenty of studies saying this is only getting worse. Getting kids to move and play is what Play Impossible is all about.
The quality of Gameball is amazing - it’s a real ball.
Yes. If you couldn’t see the charging part, most people would not know there are electronics inside of the ball. The quality of the ball was important to us, but that aspect of the product definitely was not in our wheelhouse, and we didn’t want to reinvent the process. So we partnered with Baden Sports, which specializes in sports equipment, to build the ball.
What were some of the original design requirements when you set out to create the ball?
We really wanted to create something with a reasonable price point, especially when it’s sitting on a shelf next to $5 balls in a retail setting. The connection range of the device was critical as well. We needed a Bluetooth to stay connected as far as you could throw the ball. Silicon Labs played a big role in helping us do this. Power was another issue – creating a solution that didn’t get in the way in terms of charging.
What was Silicon Labs’ value proposition in the beginning?
I first started looking at Blue Gecko when I was working on another product for SkyGolf. And then with Gameball, we looked at a lot of modules and realized the range and low-power functions were two pieces that we knew Silicon Labs could help with.
Were there any unforeseen challenges that you came across, such as weight, size, etc.
The hardest part for us was getting the durability right with all of the electronics inside. We also came up with a unique solution for the power. There is no battery in the ball, it runs entirely on super capacitors. We needed to do that for both cost reasons and to maintain the durability. I’m pretty happy with the solution we came up with - it’s a real jaw dropper when people see our ball charge up in 20 seconds.
What was the Last Gadget Standing competition at CES like?
There were hundreds of applicants and they narrowed it down to 10 gadgets on stage. I had no expectations of being selected, but when we were, we were honored. One of the gadgets was a Star Wars VR gadget, and it was two months after Star Wars had hit movie theaters. But it went really well and was a lot of fun. The host, David Pogue, was tough and asked a bunch of questions, but he loved the product.
What types of pressures are you under to be innovative – is it developing new games, cost of goods, talent? It’s definitely creating new games. It’s a combination of making the ball new again. Anyone who has a kid knows kids typically like a new toy for a few days, but then on the fourth day, the toy tends to be thrown into the closet. We want to make sure our product is played with a long time beyond those four days. The new games we create make the ball new again and give the kid a reason to get the Gameball back. We are driven to create hit games that are what everyone is talking about.
Is all of the production for Gameball done in house?
When we first started, we hired an experienced gaming designer to build the game, as it’s definitely not a traditional game. We had to do a lot of heavy prototyping and understand the software and hardware capabilities. We had to figure out what the product would be capable of doing socially and with Bluetooth and power. We definitely pushed the limits in terms of what we could do with those functionalities. For example, with a lot of IoT products, real time doesn’t matter. Of course it’s always important to be quick, but real time isn’t critical. With us, if you look at other playables on the market with Bluetooth, I don’t think there are any products as fast as Gameball. The game requires feedback from your fingers on the ball as quickly as possible to get the gestures from the beginning with the ball.
Where do you see the future of IoT going? And where do you see it expanding for the everyday person?
Right now, expectations are low among the average consumer of what IoT is all about. When our product is sitting on a shelf at a retail location, no matter how much we put on that box, there is little a consumer can understand about the product until they actually play with it. It’s going to take years for consumers to change and expect connectivity in everything. The nice thing is it’ll be much easier at that point for businesses such as ours. But today, it’s a critical issue for us in terms of marketing and sales. We see ourselves as a software platform that can interact with many different devices. Gameball is just the first of many devices and accessories that will change how we play in the future.