Silicon Labs' sub-GHz reference designs for EFR32 Series 1 chip family (EFR32xG1x) utilize an external ceramic balun in the RF-FE matching network. This matching approach is documented and well-detailed in the application note AN923.
Since the EFR32 wireless Gecko has differential TX and RX ports, the matching circuit has to have a balun function too, upon the impedance matching, so the standard 4-element matching balun approach can be applied here as well as shown in the application notes AN369/643 (however, these are discussed with other radios). The impedance goals for the matching network for EFR32 can be found in AN923.
Some extra details for simulations: TX bonding wire inductance is around 2 ... 2.5 nH; RX bonding wire inductance is around 1 ... 1.5 nH. LNA capacitance is around 1 ... 1.1 pF; PA capacitance is adjustable but it is recommended to use the min. value of it for the best efficiency which is around 2.5 pF. Impedance goals are e.g. 125 ohms in TX mode for +20 dBm running at 3.3 V and for +13/14 dBm too running from the on-chip DCDC converter (1.7 ... 1.8 V); and 500 ... 600 ohms in RX mode.
Here is a recommended schematic topology for a full discrete match in TX-RX direct-tie configuration:
- differential-to-differential L-C match for the first section of RX path [LGATE; CSER-1; CSER-2]
- 4-element matching balun approach [L1-1; L1-2; L2; C1; C2] + common mode suppressor [CH] applied on the TX path (+ rest part of RX match) + LPF [CHF0/1/2; LHF0/1]
Here is a recommended schematic topology for a full discrete match in split (separate TX and RX paths) configuration:
The split matching configuration can easily be re-used for designs with external SAW filter, FEM or RF switch utilized.
The common mode suppressor (CH) improves the balun function of circuit and can also be tuned for a specific even harmonic (typically 2nd or H2) where enhanced suppression can be achieved by the given notch filters composed by the L1-1 -- CH and L1-2 -- CH series resonances to GND.
The component values of LDC (RF choke inductor), CC (RF bypass - DC block capacitor), LGATE, CSER and LPF elements can be found in the application note AN923.
The simulated component values (simulated only, so bench tuning can likely be required) of the discrete matching balun networks - applicable for both schematics shown above - are summarized here:
RX path:
TX path: (L1 here below is shown as total value, so L1 = L1-1 + L1-2; while L1-1 = L1-2)
The available reference matching networks for the EFR32 wireless Gecko family (EFR32xG1x) at the sub-GHz frequency region utilize the so-called direct-tie topology where the TX and RX paths are directly connected to each other without using external RF switch. In order to be able to insert a SAW filter / RF switch or FEM into this matching structure it is recommended to separate the TX and RX paths, since it is not suggested utilizing SAW filter in the TX path, because of:
- the expected power efficiency degradation in TX mode due to the considerable insertion loss of the SAW filters,
- SAW filters are typically designed for low power levels, i.e. would yield TX power limitation,
- SAW filters typically do have weaker attenuation at the higher frequencies, i.e. at the RF harmonics, so discrete LPF would always be recommended.
The recommended schematic structure for EFR32 with SAW filter is shown below.
- TX path matching structure is kept from the reference radio board designs available, and the recommended component values here should be the values shown in AN923 plus 1.5...2nH for the series inductors, if those series inductors are placed close to the TX pins, despite as it is on our reference radio board designs due to the direct-tie TX-RX topology. The parallel capacitor should have the same value as shown in AN923.
- The order of the LPF section may be changed based on the power level, harmonic suppression requirements.
- RX path match utilizes a standard 4-element discrete matching balun network, similarly as detailed in AN643. Simulated component values are shown in the table below.
- RF switch is also being used in order to separate the TX and RX paths' matches, while being connected to the same antenna port.
- SAW filter's separate matching network may not be needed (LW1, LW2, CW1, CW2, CW3 and CW4) - refer to the given SAW filter datasheet.
For designs that use RF switch only, then the above schematic can be used without having the SAW filter and its matching components (LW1/2, CW1/2/3/4) mounted. However, a series RF bypass / DC blocking capacitor can be suggested between the 4-element discrete balun SE port and RF switch.
A typical design with FEM is being shown in the figure below. Here, the RF switch can basically be replaced by the FEM while the SAW filter is not shown below, but can be utilized between the FEM RX ports, if applicable. The recommended placement of SAW filter in FEM (with LNA) designs is between the separate RX ports of FEM that ensures the following order of RF blocks in the receiver path: Antenna --> discrete LPF (required due to TX harmonic suppression reasons) --> SAW filter --> FEM LNA --> 4-element discrete matching balun network --> EFR32 LNA. This approach will ensure robust receiver operation in an even noisy environment. Despite the fact that in a non-noisy environment, better link budget could be achieved if the SAW filter were placed between the 4-element matching balun and FEM LNA, Silicon Labs do recommend to use the approach described above, since introducing LNA in the receiver path in general yields however better sensitivity, but worse linearity and blocking performance. If the non-noisy environment can be ensured then the SAW filter is not necessary in the design.
For discrete matching solution on the TX path as well (i.e. eliminating the external ceramic balun between the EFR32 and FEM), please refer to the following KBA link reference.
Proprietary Knowledge Base
Discrete matching solutions for EFR32 Series 1 sub-GHz designs
Silicon Labs' sub-GHz reference designs for EFR32 Series 1 chip family (EFR32xG1x) utilize an external ceramic balun in the RF-FE matching network. This matching approach is documented and well-detailed in the application note AN923.
However, mostly due to cost reasons, full discrete matching designs might be more desirable. The KBA shows several options about how to apply a matching network for EFR32xG1x devices with utilizing SMD discrete components only. Design details on these solutions are also discussed in application note AN1180: https://www.silabs.com/documents/public/application-notes/an1180-efr32-series-1-sub-ghz-discrete-matching-solutions.pdf
Since the EFR32 wireless Gecko has differential TX and RX ports, the matching circuit has to have a balun function too, upon the impedance matching, so the standard 4-element matching balun approach can be applied here as well as shown in the application notes AN369/643 (however, these are discussed with other radios). The impedance goals for the matching network for EFR32 can be found in AN923.
Some extra details for simulations: TX bonding wire inductance is around 2 ... 2.5 nH; RX bonding wire inductance is around 1 ... 1.5 nH. LNA capacitance is around 1 ... 1.1 pF; PA capacitance is adjustable but it is recommended to use the min. value of it for the best efficiency which is around 2.5 pF. Impedance goals are e.g. 125 ohms in TX mode for +20 dBm running at 3.3 V and for +13/14 dBm too running from the on-chip DCDC converter (1.7 ... 1.8 V); and 500 ... 600 ohms in RX mode.
Here is a recommended schematic topology for a full discrete match in TX-RX direct-tie configuration:
- differential-to-differential L-C match for the first section of RX path [LGATE; CSER-1; CSER-2]
- 4-element matching balun approach [L1-1; L1-2; L2; C1; C2] + common mode suppressor [CH] applied on the TX path (+ rest part of RX match) + LPF [CHF0/1/2; LHF0/1]
Here is a recommended schematic topology for a full discrete match in split (separate TX and RX paths) configuration:
- TX path: 4-element matching balun approach [L1-1; L1-2; L2; C1; C2] + common mode suppressor [CH] applied + LPF [CHF0/1/2; LHF0/1]
- RX path: 4-element matching balun approach [LR1; LR2; CR1; CR2]
The split matching configuration can easily be re-used for designs with external SAW filter, FEM or RF switch utilized.
The common mode suppressor (CH) improves the balun function of circuit and can also be tuned for a specific even harmonic (typically 2nd or H2) where enhanced suppression can be achieved by the given notch filters composed by the L1-1 -- CH and L1-2 -- CH series resonances to GND.
The component values of LDC (RF choke inductor), CC (RF bypass - DC block capacitor), LGATE, CSER and LPF elements can be found in the application note AN923.
The simulated component values (simulated only, so bench tuning can likely be required) of the discrete matching balun networks - applicable for both schematics shown above - are summarized here:
RX path:
TX path: (L1 here below is shown as total value, so L1 = L1-1 + L1-2; while L1-1 = L1-2)
Reference design package with measurement report is available for the direct-tie matching solution described above under the following link: https://www.silabs.com/documents/public/schematic-files/EFR32xG1x_DISC_REF_DES_A00.zip
These designs shown above are single- and typically narrow-band solutions, especially in the RX path due to the higher-Q impedance transformation needed. For dual-, multi- or wide-band matching solutions please refer to the application note AN1180: https://www.silabs.com/documents/public/application-notes/an1180-efr32-series-1-sub-ghz-discrete-matching-solutions.pdf
How to insert a SAW filter / RF switch / FEM into the EFR32 Series 1 sub-GHz reference matching networks
The available reference matching networks for the EFR32 wireless Gecko family (EFR32xG1x) at the sub-GHz frequency region utilize the so-called direct-tie topology where the TX and RX paths are directly connected to each other without using external RF switch. In order to be able to insert a SAW filter / RF switch or FEM into this matching structure it is recommended to separate the TX and RX paths, since it is not suggested utilizing SAW filter in the TX path, because of:
- the expected power efficiency degradation in TX mode due to the considerable insertion loss of the SAW filters,
- SAW filters are typically designed for low power levels, i.e. would yield TX power limitation,
- SAW filters typically do have weaker attenuation at the higher frequencies, i.e. at the RF harmonics, so discrete LPF would always be recommended.
The recommended schematic structure for EFR32 with SAW filter is shown below.
- TX path matching structure is kept from the reference radio board designs available, and the recommended component values here should be the values shown in AN923 plus 1.5...2nH for the series inductors, if those series inductors are placed close to the TX pins, despite as it is on our reference radio board designs due to the direct-tie TX-RX topology. The parallel capacitor should have the same value as shown in AN923.
- The order of the LPF section may be changed based on the power level, harmonic suppression requirements.
- RX path match utilizes a standard 4-element discrete matching balun network, similarly as detailed in AN643. Simulated component values are shown in the table below.
- RF switch is also being used in order to separate the TX and RX paths' matches, while being connected to the same antenna port.
- SAW filter's separate matching network may not be needed (LW1, LW2, CW1, CW2, CW3 and CW4) - refer to the given SAW filter datasheet.
For designs that use RF switch only, then the above schematic can be used without having the SAW filter and its matching components (LW1/2, CW1/2/3/4) mounted. However, a series RF bypass / DC blocking capacitor can be suggested between the 4-element discrete balun SE port and RF switch.
A typical design with FEM is being shown in the figure below. Here, the RF switch can basically be replaced by the FEM while the SAW filter is not shown below, but can be utilized between the FEM RX ports, if applicable. The recommended placement of SAW filter in FEM (with LNA) designs is between the separate RX ports of FEM that ensures the following order of RF blocks in the receiver path: Antenna --> discrete LPF (required due to TX harmonic suppression reasons) --> SAW filter --> FEM LNA --> 4-element discrete matching balun network --> EFR32 LNA. This approach will ensure robust receiver operation in an even noisy environment. Despite the fact that in a non-noisy environment, better link budget could be achieved if the SAW filter were placed between the 4-element matching balun and FEM LNA, Silicon Labs do recommend to use the approach described above, since introducing LNA in the receiver path in general yields however better sensitivity, but worse linearity and blocking performance. If the non-noisy environment can be ensured then the SAW filter is not necessary in the design.
For discrete matching solution on the TX path as well (i.e. eliminating the external ceramic balun between the EFR32 and FEM), please refer to the following KBA link reference.
https://www.silabs.com/community/wireless/proprietary/knowledge-base.entry.html/2018/11/06/discrete_matchingso-IKyv