

AN986: BLUETOOTH® A2DP AND AVRCP
PROFILES

GETTING STARTED GUIDE

Monday, 18 March 2019

Document Revision: 2.2

Silicon Labs

VERSION HISTORY

Date Edited Comment

1.0 First version

1.1 Added chapter 3.5.4

1.2
Updated to reflect the changes in iWRAP5, corrected errors in chapter 3.1,
detailed chapter 3.5.3

1.3 iWRAP5 release updates

1.4 Added AVRCP RAW, iOS behaviour details

1.5 AAC info added to chapter 5, generic iWRAP6 release updates in chapter 2

1.6
iWRAP6 beta release updates: AVRCP 1.5 Controller commands, AVRCP
browsing

1.7
iWRAP6 Release Candidate updated: AVRCP 1.5 Target commands (RSP,
NFY), added notifications and absolute volume subsection with examples.
Restructured most topics and subtopics.

1.8 Update AVRCP PDU events, examples and some minor changes.

1.9
Added information about possibility to enable AVRCP Target and Controller
role in the same time

2.0 Added aptX Low Latency feature description

2.1 Updated AVRCP RSP command and related target events

2.2 Updated references

Silicon Labs

TABLE OF CONTENTS

1 Introduction 4

1.1 Advanced Audio Distribution Profile 4

1.2 Audio/video Remote Control Profile 5

2 iWRAP firmware overview 6

3 Using A2DP and AVRCP with iWRAP 8

3.1 Configuring A2DP 8

3.2 Configuring AVRCP 8

3.3 Example configurations 10

3.4 Service discovery 13

3.5 Connection establishment 14

3.6 Connection termination 16

4 AVRCP notifications and absolute volume control 17

4.1 Notifications general concepts 17

4.2 Absolute volume control general concepts 17

4.3 Notifications and absolute volume control workflow 17

5 AVRCP browsing 19

5.1 Browsing general concepts 19

5.2 Browsing workflow 20

6 A2DP and AVRCP command reference 22

6.1 A2DP commands 22

6.2 AVRCP passthrough commands 23

6.3 AVRCP PDU 24

6.4 AVRCP RSP 30

6.5 AVRCP NFY 33

6.6 AVRCP BROWSE 35

6.7 AVRCP {raw} detail 42

7 iWRAP commands related to audio 45

8 Power saving 46

9 Audio quality improvement 47

9.1 Enabling AAC Audio Codec for A2DP 47

9.2 Enabling aptX Audio Codec for A2DP 47

9.3 Enabling aptX Low Latency Audio Codec for A2DP 48

9.4 Routing the A2DP Audio to I2S (External Codec) 48

10 References 49

Silicon Labs

Page 4 of 50

1 Introduction

This application note discusses Bluetooth Advanced Audio Distribution Profile (A2DP) and Bluetooth
Audio/video Remote Control Profile (AVRCP) their advantages and how these profiles can be used. Also
practical examples are given how the A2DP and AVRCP profiles are used with the iWRAP firmware.

1.1 Advanced Audio Distribution Profile

A2DP describes how stereo-quality audio can be streamed from a media source to a sink. The audio source is
the music player and the audio sink is the wireless headset or wireless stereo speakers.

The profile defines two roles of an audio device: source and sink.

• A2DP Source – A device is the source when it acts as a source of a digital audio stream that is
delivered to the SINK of the piconet.

• A2DP Sink – A device is the sink when it acts as a sink of a digital audio stream delivered from the
SOURCE on the same piconet.

A2DP defines the protocols and procedures that realize distribution of audio content of high-quality in mono or
stereo on ACL channels. The term “advanced audio,” therefore, should be distinguished from “Bluetooth
audio,” which indicates distribution of narrow band voice on SCO channels as defined in the baseband
specification.

A2DP profile includes mandatory support for low complexity sub-band codec (SBC) and supports optionally
MPEG-1,2 Audio, MPEG-2,4 AAC, ATRAC or other codecs.

The audio data is compressed in a proper format for efficient use of the limited bandwidth. Surround sound
distribution is not included in the scope of this profile.

Figure 1: Typical A2DP use case

Source: [1]

A2DP

A2DP sink A2DP source

Silicon Labs

Page 5 of 50

1.2 Audio/video Remote Control Profile

AVRCP is designed to provide a standard interface to control TVs, Hi-Fi equipment, or others to allow a single
remote controller (or other device) to control all the A/V equipment to which a user has access. It may be used
in concert with A2DP or VDP.

Basically your action manipulates the control. You can adjust menu functions that are already commonly used,
such as adjusting the brightness of your TV or hue, or a VCR timer, as well as audio functions like sound
adjustments, play, pause, skip, etc.

The AVRCP defines two roles, that of a controller and target device.

• Controller – The controller is typically considered the remote control device.

• Target – The target device is the one whose characteristics are being altered.

In a “walkman” type media player scenario, the control device may be a headset that allows tracks to be
skipped and the target device would be the actual medial player.

In AVRCP, the controller translates the detected user action to the A/V control signal, and then transmits it to
a remote Bluetooth enabled device. The functions available in a conventional infrared remote controller can be
realized in this profile. AVRCP Browsing enables browsing media content on a media library –aware player.

Figure 2: Typical AVRCP use case

Source: [2]

AVRCP

AVRCP target AVRCP controller

Silicon Labs

Page 6 of 50

2 iWRAP firmware overview

iWRAP is an embedded firmware running entirely on the RISC processor of WT11i, WT12, WT32, WT32i and
WT41 modules. It implements the full Bluetooth protocol stack and many Bluetooth profiles. All software
layers, including application software, run on the internal RISC processor in a protected user software
execution environment known as a Virtual Machine (VM).

The host system can interface to iWRAP firmware through one or more physical interfaces, which are also
shown in the figure below. The most common interfacing is done through the UART interface by using the
ASCII commands that iWRAP firmware supports. With these ASCII commands, the host can access Bluetooth
functionality without paying any attention to the complexity, which lies in the Bluetooth protocol stack. GPIO
interface can be used for event monitoring and command execution. PCM, SPDIF, I2S or analog interfaces
are available for audio. The available interfaces depend on the used hardware.

The user can write application code to the host processor to control iWRAP firmware using ASCII commands
or GPIO events. In this way, it is easy to develop Bluetooth enabled applications.

On WT32 and WT32i, there is an extra DSP processor available for data/audio processing.

Host Controller Interface

L2CAP / eL2CAP

RFCOMM

SDP Audio

iWRAP

Link Manager

Baseband

Radio

UART

GPIO / AIO

PCM / I
2
S / SPDIF

Analogue

Host + application

iWRAP

Hardware

Figure 3: iWRAP Bluetooth Stack

Silicon Labs

Page 7 of 50

In the figure above, a Bluetooth module with iWRAP firmware could be connected to a host system for
example through the UART interface. The options are:

• If the host system has a processor, software can be used to control iWRAP by using ASCII based
commands or GPIO events.

• If there is no need to control iWRAP, or the host system does not need a processor, iWRAP can be
configured to be totally transparent and autonomous, in which case it only accepts connections or
automatically opens them.

• GPIO lines that Bluetooth modules offer can also be used together with iWRAP to achieve additional
functionality, such as Carrier Detect or DTR signaling.

• Audio interfaces can be used to transmit audio over a Bluetooth link.

Silicon Labs

Page 8 of 50

3 Using A2DP and AVRCP with iWRAP

This chapter instructs the A2DP and AVRCP usage and configuration with the iWRAP firmware.

3.1 Configuring A2DP

The A2DP profile has only one configuration: whether it is a Sink or a Source. The Sink receives and decodes
audio and renders it through one of the audio interfaces of the module. The Source encodes audio, usually
received from the ADC or a digital audio interface, and sends it over the Bluetooth link.

To configure iWRAP as the Sink:

SET PROFILE A2DP SINK

To configure iWRAP as the Source:

SET PROFILE A2DP SOURCE

3.2 Configuring AVRCP

The AVRCP profile has two distinct roles, Controller and Target, as described in the first chapter. The
Controller always initiates all commands, the Target responds. The Target can send a notification event to the
Controller when some variable changes on the Target, but only for events the Controller has previously
registered to receive.

In addition to these two roles, AVRCP defines four categories of A/V control commands. Support in the
Controller role means support for sending the commands; in the Target role it means support for receiving
them.

In iWRAP6, the SET PROFILE AVRCP setting has an additional field (compared with earlier versions of
iWRAP): supported categories. The four distinct categories of devices, with their respective mandatory
AVRCP commands:

- Category 1: Player/Recorder - must support PLAY and PAUSE

- Category 2: Monitor/Amplifier - must support VOLUP and VOLDN (volume up and down)

- Category 3: Tuner - must support CHUP and CHDN (channel up and down)

- Category 4: Menu - must support MSELECT, MUP, MDN, MLEFT, MRIGHT (menu select and
directions)

The syntax is:

SET PROFILE AVRCP {CONTROLLER | TARGET} {features} [{CONTROLLER | TARGET}
{features}]

Bits 0-3 in the features bit field denote support for Categories 1-4, respectively. At least one Category must be
supported.

Bit 4 enable browsing option which is available currently only for controller role. The rest of the bits are
reserved for future additions.

Note:

If {features} filed is empty, all possible features are being enabled.

Silicon Labs

Page 9 of 50

In some cases it's also possible that both devices function as Controllers and Targets. iWRAP can
broadcasts more than one AVRCP role instance in its SDP record, e.g. it can be Target and Controller in the
same time. It is also possible that iWRAP can send Controller commands successfully even when configured
as the Target.

For example, if iWRAP is configured as an A2DP Sink + AVRCP Target which supports Absolute Volume
control, and an iOS device acts as the A2DP Source, the iOS device will control iWRAP's volume with the
media player's volume slider, and will still accept AVRCP commands such as Play, Pause and Stop from
iWRAP. In this scenario iWRAP can be thought of as an amplifier or headset capable of locally adjusting
output gain, but which also has a panel or buttons for sending Play, Pause etc. commands. The iOS device
will adjust its volume level to maximum (that is, no digital attenuation), and let the A2DP Sink adjust the gain
locally. This achieves optimal sound quality, as digital gain slightly degrades the audio signal. In case when
iWrap device has possibility to control volume level and playback status (Play, Pause, etc.) it is recommended
to configure both AVRCP Target and Controller role.

Silicon Labs

Page 10 of 50

3.3 Example configurations

3.3.1 A2DP Sink and AVRCP Controller

Perhaps the most common use case for A2DP and AVRCP is the wireless headset with simple remote control
capabilities: playing, pausing and volume control. The A2DP Sink enables audio streaming from an audio
source, whereas AVRCP Controller facilitates over-the-air control of the audio stream.

A2DP Sink is enabled with iWRAP command:

 SET PROFILE A2DP SINK

AVRCP controller with support for controlling a player/amplifier application is enabled with command:

SET PROFILE AVRCP CONTROLLER 3

In order that mobile phones, tablets and PCs recognize the device as a wireless headset the Bluetooth Class
of Device (CoD) must be configured to reflect the device’s capabilities. Some devices may not be able to
discover and connect the A2DP unless the CoD is properly set.

The A2DP specification mandates that for the A2DP Sink, the Rendering Service bit (0x040000) is set. It is
also recommended to set the Audio Service bit (0x200000) and to set the Major Device Class to Audio/Video
(0x000400).

The Minor Device Class should be set according to what type of device is in question, for example
Headphones (0x000018) and Hi-Fi Audio Device (0x000028). The combined CoD is 0x240438.

Class of device is configured with the iWRAP command:

 SET BT CLASS 240438

Finally a reset is needed to for the profiles to become active.

SET PROFILE A2DP SINK

SET PROFILE AVRCP CONTROLLER 3

SET BT CLASS 240438

RESET

3.3.2 A2DP Source and AVRCP Target

Another very common scenario is an audio source which can be remote controlled, such as a home stereo
system.

Much like in the previous example, “SET PROFILE A2DP SOURCE” and “SET PROFILE AVRCP TARGET
7” must be issued to enable the profiles. In this case, Categories 1 through 3 are supported; a radio tuner is
also included in the stereo system.

As in the previous example, the Class of Device must be set properly. In the case of A2DP Source, the
specification mandates the use of the Capturing Service bit (0x080000). The Audio Service (0x200000) and
Audio/Video Major Device Class (0x000400) should be used, but they are not mandatory.

A common example Minor Device Class is Hi-Fi Audio Device (0x000028). The combined CoD is then
0x280428.

Silicon Labs

Page 11 of 50

Finally a reset is needed to for the A2DP profile to become active.

SET PROFILE A2DP SOURCE

SET PROFILE AVRCP TARGET 7

SET BT CLASS 280428

RESET

3.3.3 A2DP Sink and AVRCP Target

In this case, iWRAP is a device that outputs audio, has a volume control and is capable of adjusting audio
gain locally, but has no panel with play, pause or other control buttons. An example is a speaker system that
receives audio from a phone, and the phone has full control over the audio stream.

SET PROFILE A2DP SINK

SET PROFILE AVRCP TARGET 2

SET BT CLASS 240428

RESET

3.3.4 A2DP Sink and AVRCP Target and Controller

In this case, iWRAP is a device that outputs audio, has a volume control and is capable of adjusting audio
gain locally, but it also has a panel with play, pause or other control buttons. An example is a speaker system
that receives audio from a phone, and the both devices has full control over the audio stream.

SET PROFILE A2DP SINK

SET PROFILE AVRCP CONTROLLER 3 TARGET 2

SET BT CLASS 240428

RESET

3.3.5 Security configuration

To be able to pair with other Bluetooth enabled devices the Bluetooth security needs to be properly
configured. iWRAP support Secure Simple Pairing (SSP) defined in Bluetooth 2.1 + EDR specification, and
the use of it is mandatory, but PIN code pairing is also supported to enable pairing with legacy devices.

In order to enable SSP and PIN code pairing, the following configuration commands are needed:

“SET BT SSP 3 0” This enables SSP “just works” mode, where no PIN code entry or passkey
verification is needed. To enable the optional man-in-the-middle protection,
please refer to iWRAP user guide.

“SET BT AUTH * <pin>” This command enables PIN code pairing, to support pairing with legacy defines.
<pin> is the desired PIN code, which can be 1-16 alphanumeric characters.

Finally a reset is needed to for the security settings profile to become active.

Silicon Labs

Page 12 of 50

Below is an example how to enable SSP just works and PIN code pairing in iWRAP.

SET BT SSP 3 0

SET BT AUTH * 0000

RESET

Silicon Labs

Page 13 of 50

3.4 Service discovery

Bluetooth technology enables wireless service discovery, so you can find out the capabilities the remote
device supports. Wireless service discovery uses the Bluetooth Service Discovery Profile (SDP).

With iWRAP the service discovery is performed with command: “SDP {bd_addr} {uuid}”.

bd_addr Bluetooth device address of the remote device.

uuid Universally unique identifier. Refers to the Bluetooth profile one
wants to discover. For A2DP sink the uuid is 110B, for A2DP
source 110A for AVRCP target 110C and for AVRCP controller
110E.

Below is an example how to perform a service discovery to an A2DP sink.

SDP 00:07:80:81:66:6f 110B

SDP 00:07:80:81:66:6f < I SERVICENAME S "Stereo Headset" > < I PROTOCOLDESCRIPTORLIST < <
U L2CAP I 19 > < U 0019 I 100 > > >

SDP

Stereo Headset = Service name

19 = L2CAP psm for A2DP sink

Below is an example how to perform a service discovery to a A2DP source.

SDP 00:07:80:93:0c:aa 110A

SDP 00:07:80:93:0c:aa < I SERVICENAME S "Stereo Audio" > < I PROTOCOLDESCRIPTORLIST < < U
L2CAP I 19 > < U 0019 I 100 > > >

SDP

Below is an example how to perform a service discovery to a AVRCP controller.

SDP 00:07:80:93:0c:aa 110C

SDP 00:07:80:81:66:6f < I SERVICENAME S "A/V Controller" > < I PROTOCOLDESCRIPTORLIST < < U
L2CAP I 17 > < U 0017 I 104 > > >

SDP

A/V Controller = Service name

17 = L2CAP psm for A2DP source

Below is an example how to perform a service discovery to a AVRCP target..

SDP 00:07:80:93:0c:aa 110E

SDP 00:07:80:93:0c:aa < I SERVICENAME S "A/V Target" > < I PROTOCOLDESCRIPTORLIST < < U
L2CAP I 17 > < U 0017 I 103 > > >

SDP

Silicon Labs

Page 14 of 50

3.5 Connection establishment

3.5.1 A2DP connection

A2DP profile requires two connections, one for a control channel and second for a data channel. However
iWRAP automatically sets up both the connections so the user does not need to worry about setting up two
channels.

The A2DP connection is opened, typical to iWRAP, with a CALL command:

“CALL {bd_addr} 19 A2DP”

bd_addr Bluetooth device address of the remote device.

Below is an example how to set up an A2DP connection.

CALL 00:07:80:81:66:6f 19 A2DP

CALL 0

CONNECT 0 A2DP 19

CONNECT 1 A2DP 19

A2DP STREAMING START 0

A typical indications of outgoing call and successful connection are received (CALL and CONNECT). Two
connection events are typically received indicating the establishment of control and data channels.

Also typically a third event is received indicating that A2DP streaming is started:

“A2DP STREAMING START {link_id}”

link_id Numeric connection identifier which started streaming.

Note:

iWRAP allows you to set up several simultaneous A2DP connections. However, only one of the connections
can be streaming audio at a time.

Silicon Labs

Page 15 of 50

3.5.2 AVRCP connection

The AVRCP connection is opened, typical to iWRAP, with a CALL command:

“CALL {bd_addr} 17 AVRCP”

bd_addr Bluetooth device address of the remote device.

Below is an example how to set up an AVRCP connection.

CALL 00:07:80:81:66:6f 17 AVRCP

CALL 2

CONNECT 2 AVRCP 17

Typical indications for outgoing call and successful connection are received (CALL and CONNECT) and in the
case of when the connection establishment is not successful CALL and NO CARRIER events are received.

Note that since the Controller supports browsing, some devices may automatically connect the browsing
channel even if iWRAP does not request it. If browsing functionality is not needed, the browsing channel can
be ignored or closed.

Silicon Labs

Page 16 of 50

3.6 Connection termination

3.6.1 A2DP connection

The A2DP connection is simply closed with iWRAP command “CLOSE {link_id}”. One should always
terminate the first A2DP connection (control channel) and not second connection (data channel). Terminating
the control channel makes iWRAP also terminate the data channel.

Below is an example of A2DP connection termination.

CLOSE 0

A2DP STREAMING STOP 0

NO CARRIER 0 ERROR 0

NO CARRIER 1 ERROR 0

Typically first an indication of A2DP streaming stop is received:

 “A2DP STREAMING STOP {link_id}”

link_id Numeric connection identifier of link which started streaming.

Then normal NO CARRIER events are received for both A2DP connections.

3.6.2 AVRCP connection

The AVRCP connection is simply closed with iWRAP command “CLOSE {link_id}”. If there is a browsing
connection open, iWRAP will automatically close the browsing connection first, and then the main AVRCP
connection.

Below is an example of AVRCP connection termination.

CLOSE 2

NO CARRIER 2 ERROR 0

Then normal NO CARRIER event is received.

Silicon Labs

17

4 AVRCP notifications and absolute volume control

As of iWRAP5, the Controller supports notifications. As of iWRAP6, both the Controller and Target support
notifications and absolute volume control.

4.1 Notifications general concepts

In AVRCP, the Controller always initiates all transactions, and the Target responds. For events that happen
due to internal events on the Target, or due to user interface, the Target can send notifications. The Controller
must initially request for a notification, and when due to an internal event or user interaction something
changes on the Target, it will send a notification to the Controller.

The Controller must first ask the Target what kinds of events it supports. Then it may register to receive
notifications of one or more of the supported events.

4.2 Absolute volume control general concepts

In AVRCP specification version 1.4, the concept of absolute volume was introduced. Instead of just relative
volume commands: volume up and volume down, which cannot take into consideration whether the Target is
already at its maximum or minimum volume level, it is also now possible to set and read the volume level of
the Target device in percentage. Notifications and absolute volume control work hand in hand, as
demonstrated in the next subsection.

4.3 Notifications and absolute volume control workflow

For absolute volume control, it is assumed in the specification that the A2DP Sink is the AVRCP Target.
Between two iWRAPs. one configured as Sink+Target and the other as Source+Controller, the exchange
might look something like this:

Device A, Source + Controller, connects and sends Get Capabilities PDU 0x10, asking for supported
events 0x03

CALL 00:07:80:bb:bb:bb 17 AVRCP

CALL 0

CONNECT 0 AVRCP 17

CALL 00:07:80:bb:bb:bb 19 A2DP

CALL 1

CONNECT 1 A2DP 19

CONNECT 2 A2DP 19

A2DP STREAMING START 1

@0 AVRCP PDU 10 3

Device B, Sink + Target receives the connections and the Get Capabilities PDU. It responds with three
events: track changed 0x01, playback status changed 0x02, and (absolute) volume changed 0x0d:

RING 0 00:07:80:aa:aa:aa 17 AVRCP

RING 1 00:07:80:aa:aa:aa 19 A2DP

Silicon Labs

18

RING 2 00:07:80:aa:aa:aa 19 A2DP

A2DP STREAMING START 1

AVRCP 0 PDU_GET_CAPABILITIES 3

@0 AVRCP RSP 1 2 d

Device A receives the response for Get Capabilities. Seeing that the other device supports them, it
registers for volume changed notifications:

AVRCP 0 PDU_GET_CAPABILITIES_RSP EVENT COUNT 3 TRACK_CHANGED
PLAYBACK_STATUS_CHANGED VOLUME_CHANGED

@0 AVRCP PDU 31 d

Device B must now immediately respond with an interim response, which tells the Controller the current
value of the volume on the Target, which is 55% of maximum:

AVRCP 0 PDU_REGISTER_NOTIFICATION 1 VOLUME_CHANGED 0

@0 AVRCP NFY INTERIM 1 d 55

Device A receives the interim response, and now it knows the volume is at 55%. It wants to change the
volume to 61%:

AVRCP 0 PDU_REGISTER_NOTIFICATION_RSP INTERIM VOLUME_CHANGED 55

@0 AVRCP PDU 50 61

Device B receives the command, but since it can only change volume in 5% increments, it adjusts its
volume to the closest number, 60%, and reports it back to the Controller. Note that this will not trigger a
volume changed notification, because the Controller requested for the change.

AVRCP 0 PDU_SET_ABSOLUTE_VOLUME 61

@0 AVRCP RSP 60

Device A now sees the volume was set to 60%, and adjusts its own volume display accordingly.

AVRCP 0 PDU_SET_ABSOLUTE_VOLUME_RSP 60

The user of Device B turns back the volume by one step, bringing it down to 55%. This must be notified to
the Controller, and triggers a Changed notification. Note that the transaction label (first parameter after the
INTERIM string) is the same as in the original request.

@0 AVRCP NFY CHANGED 1 d 55

Now, if Device A still wants to monitor the volume level on Device B, it must register for another
notification, because as per the AVRCP specification all notifications are triggered only once.

Silicon Labs

19

5 AVRCP browsing

Browsing is a feature introduced in AVRCP specification version 1.4. iWRAP6 implements AVRCP version 1.5
Controller, so browsing is supported on the Controller side.

AVRCP browsing is used to navigate the virtual file system on any media player on the Target, where
browsing is supported. AVRCP browsing facilitates listing and selecting media players, navigating up and
down folders and listing folder contents, retrieving information about items on the player, and searching for
specific items.

5.1 Browsing general concepts

5.1.1 Browsing channel

Browsing is done over a separate L2CAP channel, which is opened after the regular AVRCP channel has
been established. All regular AVRCP commands will still be sent over the regular AVRCP channel. The
browsing channel is only used for retrieving information about media on the Target device; all other actions,
such as adding found items to the now playing list, will still be executed over the regular AVRCP channel.

Either the Controller or the Target can open the browsing channel, and the channel can be opened and closed
on demand, or more commonly, kept open as long as the regular AVRCP link is open. The browsing channel
must be closed before the regular AVRCP link is closed.

The browsing channel’s connection type in the iWRAP LIST output is AVRCP, but its L2CAP PSM number is
0x001b, whereas the PSM of the regular AVRCP connection is 0x0017.

5.1.2 UIDs and UID counter

Every item on a browsing-capable player has a unique 128-bit UID that is valid over both AVRCP channels.
Any item discovered over the browsing channel can be addressed with regular AVRCP PDUs (for example,
PDU 0x74, PLAY_ITEM) by using the discovered UID.

A media item’s UID may change if more media items are added to or removed from the player’s virtual
filesystem. The UID counter is a mechanism to keep track of UID changes. Every time the Controller sends a
AVRCP BROWSE LIST or AVRCP BROWSE SEARCH browsing command, the Target returns, along with
other data, the current value of the UID counter. Every Controller command that addresses media items by
UID must also include the last UID counter value the Controller has received.

If the UID counter values do not match (that is, something has been added, removed, or changed on the
player’s virtual filesystem), the Target will reject the command with status 0x05, UIDs changed. The Controller
should then repeat the LIST command it used to retrieve the UID of the item.

Silicon Labs

20

5.2 Browsing workflow

Since a Target can have multiple media players that support browsing, the first step is to get a list of media
players and select a player for browsing.

Example: open AVRCP and AVRCP browsing links, and request the first 16 items on the media player list,
then set the player with ID 0x0001 as the browsed player.

CALL 00:ff:00:bb:aa:cc 17 AVRCP

CALL 0

CONNECT 0 AVRCP 17

@0 AVRCP BROWSE OPEN

CONNECT 1 AVRCP 1b

@0 AVRCP BROWSE LIST 0 0 f ff

AVRCP_BROWSE 1 GET_FOLDER_ITEMS UIDC 0000 ITEMS 0001 < PLAYER ID 0001 TYPE 01
SUBTYPE 00000000 PLAY_STATUS STOPPED FEATURES 0000000000b7011c0200000000000000
NAME 0005 Music >

@0 AVRCP BROWSE SETPLAYER 1

AVRCP_BROWSE 1 SET_BROWSED_PLAYER UIDC 0000 COUNT 00000005 FOLDERS 00

Note:

If the AVRCP browse channel is already open (for example opened up by the phone) the AVRCP BROWSE
OPEN will return syntax error.

After a player is selected for browsing, it’s time to retrieve the folder listing and start looking for media to play.

@0 AVRCP BROWSE LIST 1 0 f ff

AVRCP_BROWSE 1 GET_FOLDER_ITEMS UIDC 0000 ITEMS 0005 < FOLDER < UID
0400000000000000 TYPE ARTISTS PLAYABLE NO NAME 0007 Artists > FOLDER < UID
0500000000000000 TYPE TITLES PLAYABLE NO NAME 0005 Songs > FOLDER < UID
0600000000000000 TYPE ALBUMS PLAYABLE NO NAME 0006 Albums > FOLDER < UID
0900000000000000 TYPE ARTISTS PLAYABLE NO NAME 0009 Composers > FOLDER < UID
0a00000000000000 TYPE GENRES PLAYABLE NO NAME 0006 Genres > >

Suppose we want to navigate directly to the songs folder and select some items to put in the playing queue.
The songs folder contains 1509 items.

@0 AVRCP BROWSE PATH 0 1 0500000000000000

AVRCP_BROWSE 1 CHANGE_PATH COUNT 000005e5

Silicon Labs

21

Next, let’s list 3 media items starting from the 2nd item, and ask for all attributes.

@0 AVRCP BROWSE LIST 1 1 3 ff

AVRCP_BROWSE 3 GET_FOLDER_ITEMS UIDC 0000 ITEMS 0003 < < MEDIA UID 9b1afa9f4c12ce59
TYPE AUDIO NAME 0003 ABC ATTRIBUTES 01 < < TITLE NAME 0003 ABC > > > < MEDIA UID
2bf8243352cebe67 TYPE AUDIO NAME 000a About Life ATTRIBUTES 01 < < TITLE NAME 000a About
Life > > > < MEDIA UID b0bdea9e7ecb5224 TYPE AUDIO NAME 0008 Absorbed ATTRIBUTES 01 < <
TITLE NAME 0008 Absorbed > > > >

Now we’ll start playing the song titled “ABC”.

@0 AVRCP PDU 74 1 9b1afa9f4c12ce59 0

AVRCP 0 PLAY_ITEM_RSP OK

Let’s search for an album called “Rain Dogs” to put in the playback queue, and then retrieve the 10 first
search results.

@0 AVRCP BROWSE SEARCH “rain dogs”

AVRCP_BROWSE 1 SEARCH UIDC 0000 COUNT 0000001b

@0 AVRCP BROWSE LIST 3 0 9 0

AVRCP_BROWSE 1 GET_FOLDER_ITEMS UIDC 0000 ITEMS 000a < < MEDIA UID 0e24d548196f8e70
TYPE AUDIO NAME 0016 Anywhere I Lay My Head ATTRIBUTES 01 < < TITLE NAME 0016 Anywhere I
Lay My Head > > > < MEDIA UID 8942c6d007e09367 TYPE AUDIO NAME 0010 Big Black Mariah
ATTRIBUTES 01 < < TITLE NAME 0010 Big Black Mariah > > > < MEDIA UID 884472822381fb9b TYPE
AUDIO NAME 000a Blind Love ATTRIBUTES 01 < < TITLE NAME 000a Blind Love > > > < MEDIA UID
06eec7217eed9522 TYPE AUDIO NAME 0011 Bride of Rain Dog ATTRIBUTES 01 < < TITLE NAME 0011
Bride of Rain Dog > > > < MEDIA UID bab8b9091baf783a TYPE AUDIO NAME 000e Cemetery Polka
ATTRIBUTES 01 < < TITLE NAME 000e Cemetery Polka > > > < MEDIA UID 04bb90d8c8c54d00 TYPE
AUDIO NAME 000a Clap Hands ATTRIBUTES 01 < < TITLE NAME 000a Clap Hands > > > < MEDIA UID
163f19ccd93ee837 TYPE AUDIO NAME 000f Diamonds & Gold ATTRIBUTES 01 < < TITLE NAME 000f
Diamonds & Gold > > > < MEDIA UID f73b53fa79c152b0 TYPE AUDIO NAME 0016 Do You Close Your
Eyes ATTRIBUTES 01 < < TITLE NAME 0016 Do You Close Your Eyes > > > < MEDIA UID
97526ba94b21557c TYPE AUDIO NAME 000e Downtown Train ATTRIBUTES 01 < < TITLE NAME 000e
Downtown Train > > > < MEDIA UID db0b9bfc5abaa800 TYPE AUDIO NAME 000f Gun Street Girl
ATTRIBUTES 01 < < TITLE NAME 000f Gun Street Girl > > > >

Let’s add the first song in the search results to the playback queue.

@0 AVRCP PDU 90 2 0e24d548196f8e70 0

AVRCP 0 ADD_TO_NOW_PLAYING_RSP OK

Silicon Labs

22

6 A2DP and AVRCP command reference

This chapter contains general information and tips about the iWRAP and A2DP profile for the implementers.

6.1 A2DP commands

The table below lists the possible A2DP commands. See iWRAP user guide for exact details.

Command Function

A2DP STREAMING START Starts A2DP streaming

A2DP ATREAMING STOP Stops A2DP streaming

Table 1: Supported A2DP commands

Silicon Labs

23

6.2 AVRCP passthrough commands

The table below lists the possible AVRCP passthrough commands.

Note:

Not all devices support all commands. For example, iOS devices do not support remote volume control using
AVRCP UP, or AVRCP DN, or AVRCP MUTE commands. This is a limitation of iOS and not an iWRAP
firmware problem.

Command Description

AVRCP UP Volume up

AVRCP DN Volume down

AVRCP MUTE Mute

AVRCP STOP Stop

AVRCP PLAY Play

AVRCP PAUSE Pause

AVRCP REWIND Rewind

AVRCP FAST_FORWARD Fast Forward

AVRCP FORWARD Forward (next song)

AVRCP BACKWARD Backward (previous song)

AVRCP {raw} AVRCP command in raw hex mode. (See section 6.7)

Available codes:

00-13, 20-2c, 30-37, 40-4b, 50-51, 71-75 and 7e

AVRCP PDU {PDU_ID} [parameters] PDU_ID

 AVRCP PDU ID

parameters

 AVRCP PDU parameters

Please refer to the following page for available PDU_IDs and
parameters.

Table 2: Available AVRCP commands

Note: See iWRAP user guide for more details and examples of how to use the AVRCP commands.

Silicon Labs

24

6.3 AVRCP PDU

6.3.1 Syntax

AVRCP PDU command is used by the AVRCP Controller to send metadata request Protocol Data Units to the
Target.

Synopsis

AVRCP PDU {PDU_ID} [parameters]

PDU ID Description and parameters

10
Get capabilities command. Query for events or Company_ID’s the Target supports.

Parameters:

2

Query supported Company_ID’s.

3

Query supported events.

11 List player application settings. No parameters.

12
List possible values for a player application setting.

Parameters:

{setting_id}

See list at the end of this command’s description.

13
Get current values of player application settings.

Parameters:

{number of settings}

Number of following parameters.

Followed by:

{setting_id}

See list at the end of this command’s description.

14
Set current values of player application settings.

Parameters:

{number of settings}

Silicon Labs

25

Number of setting_id-value-pairs that follow.

Followed by:

{setting_id} {value}

See list at the end of this command’s description.

20
Get attributes of the currently playing track.

Parameters:

{number of attributes}

Number of attributes that follow. If zero, list all available information.

Followed by (unless number of attributes is zero):

[attribute_id]

See list at the end of this command’s description.

30 Get the playing status, length and position of the current track. No parameters.

31
Register notification of events. This will request the Target to notify us when a track
is changed for instance.

Parameters:

{event_id}

See list at the end of this command’s description.

50
Set the absolute volume on the target device.

Parameters:

{volume}

The requested volume level in percentage, range 0-100.

60
Set the addressed player. If the Target has multiple media players in the media
player list, you can select which player should receive the AVRCP commands.

Parameters:

{Player ID}

 The ID of the player

74

90

74: Start playing a track immediately.

90: Add track to the now playing list (playback queue).

Parameters:

{scope}

0: Media player list
1: Virtual filesystem
2: Search results

Silicon Labs

26

3: Now playing list

{UID}

UID of the media item. Use the browsing channel to discover UIDs.

{UID counter}

Latest UID counter value received. See section 3.5.1.2 for details.

Note: The AVRCP profile specification contains the details of the possible PDU ID and a detailed description
of the parameters.

Note: Not all the AVRCP commands are supported by the AVRCP target devices and most of them actually
implement only a small subset of all the available commands.

6.3.2 Events

AVRCP PDU command may return the following events

Events

AVRCP {link_id} {PDU_ID name}_RSP [parsed data]

AVRCP {link_id} RSP PDU_ID {PDU_ID}, data: [unparsed data]

AVRCP {link_id} {PDU_ID name}_RSP REJ

Silicon Labs

27

6.3.3 List of IDs

List of supported attribute_ids, event_ids, setting_ids, and their respective values.

Type ID Explanation

Attribute 0x01 Song title

Attribute 0x02 Artist

Attribute 0x03 Album title

Attribute 0x04 Track number in numeric ASCII text

Attribute 0x05 Total number of tracks on album in numeric ASCII text

Attribute 0x06 Genre

Attribute 0x07 Playing time in milliseconds in numeric ASCII text

Setting

0x01

Equalizer setting, values:

0x01 Off

0x02 On

Setting

0x02

Repeat setting, values:

0x01 Off

0x02 Single track

0x03 All tracks

0x04 Group

Setting

0x03

Shuffle setting, values:

0x01 Off

0x02 All tracks

0x03 Group

Setting

0x04

Scan setting, values:

0x01 Off

0x02 All tracks

0x03 Group

Event 0x01 Playback status changed

Event 0x02 Track changed

Silicon Labs

28

Event 0x03 Track reached end

Event 0x04 Track reached start

Event 0x05 Playback position changed

Event 0x06 Battery status changed

Event 0x07 System status changed

Event 0x08 Player application setting changed

Event 0x09 Now playing changed

Event 0x0a Available players changed

Event 0x0b Addressed players changed

Event 0x0c UIDs changed

Event 0x0d Volume changed

Silicon Labs

29

6.3.4 Examples

Those examples assume that AVRCP is on link 3.

Query supported AVRCP events.

AVRCP PDU 10 3

AVRCP 3 GET_CAPABILITIES_RSP EVENT COUNT 3 PLAYBACK_STATUS_CHANGED
TRACK_CHANGED PLAYBACK_POSITION_CHANGED

Ask the Target about its player application settings, their possible values and change a value.

AVRCP PDU 11

AVRCP 3 LIST_APPLICATION_SETTING_ATTRIBUTES_RSP COUNT 2 REPEAT SHUFFLE

AVRCP PDU 12 2

AVRCP 3 LIST_APPLICATION_SETTING_VALUES_RSP COUNT 3 1 2 3

AVRCP PDU 13 1 2

AVRCP 3 GET_APPLICATION_SETTING_VALUE_RSP COUNT 1 REPEAT OFF

AVRCP PDU 14 1 2 2

AVRCP 3 SET_APPLICATION_SETTING_VALUE_RSP OK

AVRCP PDU 13 1 2

AVRCP 3 GET_APPLICATION_SETTING_VALUE_RSP COUNT 1 REPEAT SINGLE_TRACK

Ask the Target about the title and artist of the song that is currently playing and ask it to notify us if the
playback status changes.

AVRCP PDU 20 2 1 2

AVRCP 3 GET_ELEMENT_ATTRIBUTES_RSP COUNT 2 TITLE 24 “Cold Women and Warm Beer”
ARTIST 16 “The Black League”

AVRCP PDU 31 1 1

AVRCP 3 REGISTER_NOTIFICATION_RSP INTERIM PLAYBACK_STATUS_CHANGED PLAYING

(the interim response is received right after the request to confirm we were registered for notification)

AVRCP 3 REGISTER_NOTIFICATION_RSP CHANGED PLAYBACK_STATUS_CHANGED PAUSED

(the changed response is received when the playing status changes)

Silicon Labs

30

6.4 AVRCP RSP

6.4.1 Syntax

AVRCP RSP is used by the Target to respond to a received AVRCP Controller PDU command. All PDU
commands must be responded to. Passthrough commands (PLAY, PAUSE etc.) will be handled automatically
by iWRAP, and require no user interaction.

The required parameters depend on which PDU the AVRCP RSP is responding to.

Synopsis

AVRCP RSP [parameters]

PDU received Description and parameters

GET_CAPABILITIES 2
The Controller is querying for supported Company IDs

AVRCP RSP [id0 id1 …]

[id0 id1 …]

List of IrDA Company IDs. Usually, the list can be left
empty, as iWRAP will automatically fill in the Bluetooth SIG
company ID.

GET_CAPABILITIES 3
The Controller is querying for supported Event IDs

AVRCP RSP [id0 id1 …]

[id0 id1 …]

List of events supported for notifications. These are listed
in 6.3.3 “List of IDs”.

LIST_APPLICATION_SETTING
_ATTRIBUTES

The Controller is querying for supported player application setting
attributes.

AVRCP RSP [id0 id1 …]

[id0 id1 …]

List of supported settings’ IDs. These are listed in 6.3.3
“List of IDs”.

LIST_APPLICATION_SETTING
_VALUES {id}

The Controller is querying for set of possible values for the requested
player application setting ID {id}.

AVRCP RSP [val0 val1 …]

[val0 val1 …]

List of possible values for requested setting ID. These are
listed in 6.3.3 “List of IDs”.

Silicon Labs

31

GET_APPLICATION_SETTING
_VALUE {count} [id0 id1 …]?

The Controller is querying for the current values set on the target for the
provided player application setting IDs. {count} is a number of IDs Target
is queried about.

AVRCP RSP [val0 val1 …]

[val0 val1 …]

List of currently set player application values on the target
for the corresponding requested player application setting
IDs. These values shall be from set
of possible values returned in response to
LIST_APPLICATION_SETTING_VALUES command.

SET_APPLICATION_SETTING
_VALUE {count} [id0 val0 id1
val1 …]?

The Controller requests to set the list of player application setting values
(val0 val1 …) on the target device for the corresponding defined list of
player application setting IDs (id0 id1 …). If setting IDs and values are
correct, target sends the accept answer. {count} is a number of IDs
Target is requested to set values of.

Otherwise SET_APPLICATION_SETTING_VALUE event with ILLEGAL
or UNKNOWN parameter is received and target sends the reject answer.

GET_ELEMENT_ATTRIBUTES
{count} [id0 id 1 …]

Get attributes of the current track. The first response parameter should
be the same count of attributes asked in the PDU. The rest of the
parameters are a list containing pairs of numeric IDs and quote-enclosed
strings, which contain the IDs and the the text values of the attributes
asked. The attribute IDs are listed in 6.3.3 “List of IDs”.

AVRCP RSP {count} [id0 “value0” id1 “value1” …]

{count}

Number of following attributes.

[id0 “value0” id1 “value1” …]

ID-text pairs of attributes. The maximum length for any
single attribute value is 255 bytes (excluding the enclosing
quotes).

GET_PLAY_STATUS
The Controller is querying for the current playing status and track
playback position.

AVRCP RSP {length} {position} {status}

{length}

Length of the current track in milliseconds, hexadecimal
format. If no track is selected or song length reporting is
not supported, return 0xffffffff.

{position}

Playback position of the current track in milliseconds,
hexadecimal format. If no track is selected or playback
position reporting is not supported, return 0xffffffff.

Silicon Labs

32

{status}

Playback status:

0 - Stopped

1 - Playing

2 - Paused

3 - Fast forwarding

4 - Rewinding

SET_ABSOLUTE_VOLUME
{volume}

The Controller set the absolute volume level. The exact volume level
which was set must be reported back, due to the Target possibly having
different volume adjustment granularity than the Controller.

AVRCP RSP {volume}

{volume}

The volume that was set on the Target.

6.4.2 Examples

Controller asks for three 3 attributes of the current song: 1 (the title), 2 (artist) and 3 (album). Target
responses with track details:

AVRCP 0 PDU_GET_ELEMENT_ATTRIBUTES 3 1 2 3

AVRCP RSP 3 1 “Some Title” 2 “Some Artist” 3 “Some Album”

Controller asks for the supported settings. Target responses that settings 1 (Equalizer) and 2 (Repeat) are
supported:

AVRCP 0 LIST_APPLICATION_SETTING_ATTRIBUTES

AVRCP RSP 1 2

Controller asks for the supported values of Equalizer setting (0x01). Target responses that available values for
Equalizer setting are 1 (Off) and 2 (On) values after:

AVRCP 0 LIST_APPLICATION_SETTING_VALUES 1

AVRCP RSP 1 2

Controller asks for current values of 0x02 settings: Equalizer (0x01) and Repeat (0x02). Target responses that
Equalizer is set to 1 (Off) and Repeat is set to 2 (Single track):

AVRCP 0 GET_APPLICATION_SETTING_VALUE 02 01 02?

AVRCP RSP 1 2

Controller sets on Target 0x02 settings: 0x01 (Equalizer) to 0x01 (Off) and 0x02 (Repeat) to 0x01 (Off):

AVRCP 0 SET_APPLICATION_SETTING_VALUE 02 01 01 02 01

Silicon Labs

33

6.5 AVRCP NFY

6.5.1 Syntax

AVRCP NFY is used by the Target to respond to a received notification request. Each notification request
must be responded to immediately with an AVRCP NFY INTERIM command, and when the notification is
triggered, it must be reported with AVRCP NFY CHANGED.

Each AVRCP command-response pair carries its own transaction label to help the Controller differentiate
between responses received from the Target. The transaction label in both the NFY INTERIM and NFY
CHANGED responses must match that of the original notification request. With other commands,
iWRAP will automatically handle the updating of the transaction label, but in the notification commands, the
user must supply it, because iWRAP cannot know when an event that triggers a NFY CHANGED will happen.

Notification request event format:

AVRCP {link_id} PDU_REGISTER_NOTIFICATION {transaction_label} {event} {parameter}

Currently, the parameter is not used in any supported notification, but may be used in the future.

Synopsis

AVRCP NFY {INTERIM | CHANGED} {transaction_label} {event_ID} [value]

Event registered Description and parameters

PLAYBACK_STATUS_CHANGED
0

{event_ID}

 1

[value]

Status of playback, see list under GET_PLAY_STATUS
in 6.3.1 “AVRCP PDU Syntax”

TRACK_CHANGED 0 {event_ID}

 2

[value]

0 – no track is currently selected

1 – a track is currently selected

VOLUME_CHANGED 0 {event_ID}

 d

[value]

Silicon Labs

34

Current volume level on Target, percentage in decimal.

6.5.2 Examples

Respond with playback status changes.

AVRCP 0 PDU_REGISTER_NOTIFICATION 4 PLAYBACK_STATUS_CHANGED 0

AVRCP NFY INTERIM 4 1 0 (transaction label 4, playback status changed, status “stopped”)

(user presses Play on the Target device, playback status changes to “playing”)

AVRCP NFY CHANGED 4 1 1

Silicon Labs

35

6.6 AVRCP BROWSE

6.6.1 Syntax

AVRCP BROWSE is used to browse an AVRCP Target’s virtual filesystem.

Synopsis

AVRCP BROWSE {cmd [params]}

cmd Description and parameters

OPEN
Open the browsing channel, if it’s not already present. The browsing channel can be
closed with the CLOSE command when necessary, and it will not automatically close
the regular AVRCP link. The browsing channel can be used immediately after it has
opened.

Parameters:

None

LIST
Lists items in a given scope. The start_item and end_item parameters are used to
retrieve the folder contents in chunks, if all items do not fit inside a single packet.

Parameters:

{scope}

0: Media player list
1: Virtual filesystem
2: Search results
3: Now playing list

{start_item}

The running number of the first item inside the folder to retrieve.

{end_item}

The running number of the last item to retrieve.

{number_of_attributes}

Number attributes to retrieve for the items.
0: All attributes
ff: No attributes

[attribute_list]

Sequence of attributes; omit if number_of_attributes is 0 or ff. The
supported values for attribute IDs are listed in the table in chapter
6.3.3

Silicon Labs

36

SETPLAYER
Selects the player to browse. A Target may have multiple players, so the player must
be selected prior to browsing its virtual filesystem.

Parameters:

{ID}

16-bit hexadecimal ID of the player

PATH
Navigate up or down inside the virtual folder structure.

Parameters:

{UID_counter}

UID counter – see the description in chapter 3.5

{direction}

0: up – folder UID is omitted, as it’s implicitly known
1: down

[folder_UID]

UID of the target folder (omitted if direction is 0)

GET
Get attributes of an item

Parameters:

{scope}

0: Media player list
1: Virtual filesystem
2: Search results
3: Now playing list

{UID_counter}

UID counter – see the description in chapter 5.1

{UID}

UID of the item

{number_of_attributes}

Number attributes to retrieve for the items.
0: All attributes
ff: No attributes

[attribute_list]

Sequence of attributes; omit if number_of_attributes is 0 or ff. The
supported values for attribute IDs are listed in the table in chapter
6.3.3

SEARCH
Search for all items containing the search string. No wildcards are accepted. The
search results will appear in the search results scope.

Silicon Labs

37

Parameters:

{“search_string”}

String enclosed in quotes.

6.6.2 Response data format

The only response for AVRCP BROWSE OPEN is the browsing channel opening or failing to open.

The response for AVRCP BROWSE LIST contains the current value of the UID Counter and a list of items,
which can be of three distinct types: Player, Folder or Media.

For example, an AVRCP BROWSE LIST which asks for items #4, #5 and #6 in the current virtual filesystem
folder, and the title and artist attribute (if applicable), response may look like this:

Silicon Labs

38

@1 AVRCP BROWSE LIST 1 4 6 2 1 2

AVRCP_BROWSE 1 GET_FOLDER_ITEMS UIDC 0042 ITEMS 0004 < FOLDER < UID
0000000000000010 TYPE TITLES PLAYABLE YES NAME 0009 “Favorites” > < FOLDER UID
0000000000000020 TYPE ARTISTS PLAYABLE NO NAME 0007 “Artists” > < MEDIA UID
000000000000003f TYPE AUDIO NAME 000c “SomeSong.mp3” ATTRIBUTES 0002 < < TITLE NAME
0008 “SomeSong” > < ARTIST NAME 000a “SomeArtist” > > > >

The response for AVRCP BROWSE SETPLAYER returns the current UID Counter, the count of items in the
current folder, and if the current folder is not the root folder (for example, a player might start browsing in a
folder called /Artists/Albums/ by default), the count and names of the folders leading to the current folder from
the root.

Example: select a player with ID 2 as the browsed player. The player has 32 media items, and it is currently in
the folder /Playlists/Favorite/

@1 AVRCP BROWSE SETPLAYER 2

AVRCP_BROWSE 1 SETPLAYER UIDC 0001 COUNT 00000020 FOLDERS 02 < NAME 0009 “Playlists”
NAME 0008 “Favorite” >

The response for AVRCP BROWSE PATH returns the count of items in the current folder.

Example: browse down into a folder with UID 0x0000000000000022, when the last received UID Counter
value was 0x0042.

@1 AVRCP BROWSE PATH 42 1 22

AVRCP_BROWSE 1 SETPLAYER UIDC 0001 COUNT 00000020 FOLDERS 02 < NAME 0009 “Playlists”
NAME 0008 “Favorite” >

The response for AVRCP BROWSE GET returns a list of attributes.

Silicon Labs

39

Example: get all attributes for an item with UID 0x33 in the virtual filesystem, last received UID Counter value
0x0042.

@1 AVRCP BROWSE GET 1 42 33 0

AVRCP_BROWSE 1 GET ATTRIBUTES 0003 < < TITLE NAME 0004 “Song” > < ARTIST NAME 0006
“Artist” > < ALBUM NAME 0005 “Album” > >

The response for AVRCP BROWSE SEARCH returns the current UID Counter value and the number of
search results that are now in the Search Results scope.

Example: search for all items containing the string “abcd”; 3 items match. More information about the
matching items can be retrieved with AVRCP BROWSE LIST in the search results scope.

@1 AVRCP BROWSE SEARCH “abcd”

AVRCP_BROWSE 1 SEARCH UIDC 0042 COUNT 0003

6.6.3 Errors

Every browsing command with the exception of AVRCP BROWSE OPEN can return an error code, or in the
case of AVRCP BROWSE SEARCH, a General Reject, if the Target does not support searching, which is an
optional feature.

@1 AVRCP BROWSE SEARCH “abcd”

AVRCP_BROWSE 1 GENERAL_REJECT 0f

If a command fails for some other reason, for instance if the UIDs have changed on the Target, which
happens when media files are modified on, or added to or removed from, the Target’s filesystem.

@1 AVRCP BROWSE GET 1 42 33 0

AVRCP_BROWSE 1 GET ERROR 05

Silicon Labs

40

The error codes are listed in the following table:

Status code Explanation

0x00 Invalid command – the Target did not understand the command

0x01
Invalid parameter – the command was recognized, but one or more of the
parameters were not

0x02
Parameter content error – a parameter was recognized, but contained invalid
content, for example the Controller tried to change a supported setting to an
unsupported value

0x03
Internal error – the command was understood, but could not be completed due to
some internal condition

0x04 Success – this value will never be reported in an error

0x05
UIDs changed – the UID Counter issued by the Controller did not match Target’s
UID Counter number. The Controller should refresh its cached UIDs.

0x06 The command ID is reserved

0x07 Invalid direction – applicable only for AVRCP BROWSE PATH

0x08 Not a directory – applicable only for AVRCP BROWSE PATH

0x09 Does not exist – no such media item or folder found with requested UID

0x0a Invalid scope

0x0b
Out of bounds – a parameter was too large, for example the AVRCP BROWSE
LIST end_item parameter was larger than the number of items in the folder

0x0c Item not playable – the Controller attempted to play a folder that is not playable

0x0d
Media in use – some media cannot be played if they are in use, for example a CD
or DVD

0x0e Now playing list full – cannot add any more items to the now playing list

0x0f
Search not supported – search is an optional feature, and all Targets may not have
implemented it

0x10
Search in progress – cannot start another search before the previous search is
finished

0x11 Invalid player ID – applicable only for AVRCP BROWSE SETPLAYER

0x12 Player not browseable – while the Target supports browsing, the selected player

Silicon Labs

41

cannot be browsed

0x13
Player not addressed – the Target has multiple players, and does not know which
player should receive the command; the Controller should use AVRCP PDU 60 to
select the addressed player

0x14 No valid search results

0x15 No available players – no player can complete the request at the moment

0x16
Addressed player changed – the addressed player has changed for some internal
reason, such as the user switching off a media player and starting another on the
Target

Silicon Labs

42

6.7 AVRCP {raw} detail

The “AVRCP {raw}” command is used to send raw AVRCP press/release codes instead of using the shortcut
commands such as “AVRCP PLAY” or “AVRCP FAST_FORWARD” to accomplish the same goals. The
shortcut commands are, in fact, simply automated press/release combinations of each command code. It is
possible to achieve the same functionality with two unique {raw} commands, and this also gives you more
control over functions which benefit from more precisely timed “press” and “release” actions, such as rewind
and fast-forward.

The list of supported AVRCP command codes and their meanings are in the table below. Remember that you
must send a “release” command to correspond with every “press” command in order to ensure
proper functionality.

Each command code has a 7-bit value, ranging between 0x00 and 0x7F. The 8th bit (0x80) is a mask which is
used to indicate whether it is a “press” code (8th bit cleared) or a “release” code (8th bit is set).

Note:

Not all devices support all command code. For example, iOS devices do not support remote volume control
using 0x41, 0x42, or 0x43 commands. This is a limitation of iOS and not an iWRAP firmware problem.

Press code (hex) Release code (hex) Description

00 80 Select

01 81 D-pad up

02 82 D-pad down

03 83 D-pad left

04 84 D-pad right

05 85 D-pad up/right

06 86 D-pad down/right

07 87 D-pad up/left

08 88 D-pad down/left

09 89 Root menu

0A 8A Setup menu

0B 8B Contents menu

0C 8C Favourites menu

0D 8D Exit

0x0E – 0x1F reserved

20 A0 0 number entry

Silicon Labs

43

21 A1 1 number entry

22 A2 2 number entry

23 A3 3 number entry

24 A4 4 number entry

25 A5 5 number entry

26 A6 6 number entry

27 A7 7 number entry

28 A8 8 number entry

29 A9 9 number entry

2A AA Dot (.) entry

2B AB Enter

2C AC Clear

0x2D – 0x2F reserved

30 B0 Channel up

31 B1 Channel down

32 B2 Previous channel

33 B3 Sound select

34 B4 Input select

35 B5 Display information

36 B6 Help

37 B7 Page up

38 B8 Page down

0x39 – 0x3F reserved

40 C0 Power

41 C1 Volume up

42 C2 Volume down

43 C3 Mute

Silicon Labs

44

44 C4 Play

45 C5 Stop

46 C6 Pause

47 C7 Record

48 C8 Rewind

49 C9 Fast-forward

4A CA Eject

4B CB Forward (next track)

4C CC Backward (previous track)

0x4D – 0x4F reserved

50 D0 Angle

51 D1 Subtitle

0x52 – 0x70 reserved

71 F1 F1 function key

72 F2 F2 function key

73 F3 F3 function key

74 F4 F4 function key

75 F5 F5 function key

Below is an example of using AVRCP {raw} to pause playback:

AVRCP 46

AVRCP C6

A2DP STREAMING STOP 0

Below is an example of using AVRCP {raw} to rewind the track position:

AVRCP 48

[track rewinds until next command is sent, specific behavior depends on media device]

AVRCP C8

Silicon Labs

45

7 iWRAP commands related to audio

PLAY - Command PLAY is used to generate tones or beeps.

VOLUME - Changes the volume level (audio output gain).

SET CONTROL AUDIO - This command controls the physical interface routing
 of audio on WT32. The command is also used to enable
 or disable multiple SCO support.

SET CONTROL CODEC - This command controls the preference of A2DP audio

codecs, channel modes and sampling rates for A2DP.

SET CONTROL GAIN - SET CONTROL GAIN is used to control the internal input

 and output gain.

SET CONTROL MICBIAS - SET CONTROL MICBIAS controls the linear regulator that
 drives current through the dedicated mic bias pin.

SET CONTROL PCM - This command configures the physical PCM hardware

 interface settings and PCM data format.

SET CONTROL RINGTONE - Configures a ring tone which is used with HFP or HSP
 profile if the Audio Gateway does not provide an in-
 band ring tone.

SET CONTROL PREAMP - Enables or disables the 20dB microphone pre-amplifier.

Please refer to iWRAP user guide for exact documentation of the listed commands.

NOTE:

The pre-amplifier MUST be turned off in A2DP source device to prevent the low frequencies being cut out.

Silicon Labs

46

8 Power saving

iWRAP offers two power saving options. Sniff mode, which can be used to save power for active Bluetooth
connections and deep sleep more which puts the internal processor into a reduced duty cycle mode. Please
refer to iWRAP user guide for more information about sniff and deep sleep modes. One should be very careful
when using sniff mode with an active A2DP connection. Sniff mode will reduce the data transmission rate and
therefore affect the robustness of an audio link. When sniff mode is used with A2DP audio “clipping” is more
likely to occur then without power saving.

One should also know that when Bluetooth connections are in active mode i.e. no power saving in use the
master device uses 3-4 times less power then a slave device. Therefore for battery powered applications it
might be useful to configure the device as a master rather then a slave.

Silicon Labs

47

9 Audio quality improvement

The sub-band coding (SBC) used to encode or decode the A2DP audio is a lossy audio codec and some of
the audio data is lost when it’s transmitted over a Bluetooth link. For some applications like high end headsets
and headphones or audio amplifiers this may not be acceptable.

Alternative audio codecs can be used to encode or decode the audio stream and provide better quality or
lower latency Bluetooth audio. Such codes are for example MP3, AAC, aptX or aptX Low Latency. MP3 codec
is however not generally supported by Bluetooth enabled cell phones, tablets and PCs. AAC codec is
supported in the latest generation of Apple devices. aptX codec on the other hand has received the widest
market adoption and is supported by my many cell phones, tablets, PCs and headsets.

AAC codec support is available by default from iWRAP6 onwards in all firmware builds (and also upon request
for iWRAP5 audio firmware builds). However, the usage of the codec in the end product requires a separate
license and it has an extra license fee. For more information, please see
http://www.vialicensing.com/licensing/aac-fees.aspx.

aptX codec provides a nearly lossless audio quality and therefore is ideal to be used in Hi-Fi audio
applications and products where high quality Bluetooth audio is needed. The highest quality of Bluetooth
audio is provided by aptX Low Latency codec that significantly decreases the Bluetooth latency. iWRAP
supports aptX and aptX Low Latency codecs, but because they are 3rd party codecs and have an extra
license fee, they’re not included in the generic firmware builds. For more information about aptX and aptX Low
Latency codecs, please contact https://www.silabs.com/about-us/contact-sales.

9.1 Enabling AAC Audio Codec for A2DP

One of the optional audio codecs with Bluetooth A2DP is AAC. AAC is supported at the moment by Apple iOS
devices and provides better audio quality compared to the regular SBC codec. WT32i supports the AAC audio
codec and it can be enabled with the following iWRAP commands.

SET CONTROL CODEC AAC JOINT_STEREO 44100 0

SET CONTROL CODEC SBC JOINT_STEREO 44100 1

The first command enables the AAC codec in stereo mode and 44.1kHz sampling rate and priority 0 (highest).
The second command enables the mandatory SBC codec in stereo mode and also 44.1kHz sampling rate and
priority 1 (lower). With this configuration AAC is the preferred codec, but if the remote device does not support
it SBC will be used instead.

Note: iWRAP contains AAC technology which incorporates intellectual property owned by numerous third
parties. Supply of this product does not convey a license under the relevant intellectual property of those third
parties nor imply any right to use this product in any finished end user or ready-to-use final product. An
independent license for such use is required. For details, please visit http://www.vialicensing.com.

9.2 Enabling aptX Audio Codec for A2DP

aptX is another optional audio codec for Bluetooth A2DP. aptX is supported by newer Android devices and it
also provides better quality audio compared to the regular SBC codec. The feature is available only for WT32i
modules. The aptX audio codec can be enabled in special builds with the following iWRAP commands.

SET CONTROL CODEC APT-X JOINT_STEREO 44100 0

SET CONTROL CODEC SBC JOINT_STEREO 44100 1

Note: aptX requires a special license and is only included in a separate iWRAP build. To enable it, you need
to flash the aptX build and add a valid license key. Please contact Bluegiga technical support
(https://www.silabs.com/support) for further information on how to obtain a license key.

http://www.vialicensing.com/licensing/aac-fees.aspx
https://www.silabs.com/about-us/contact-sales
http://www.vialicensing.com/
https://www.silabs.com/support

Silicon Labs

48

9.3 Enabling aptX Low Latency Audio Codec for A2DP

aptX Low Latency is another optional audio codec for Bluetooth A2DP. It offers a Bluetooth latency
of approximately 40 ms (far less than the standard Bluetooth latency) and meets the recommended latency for
audio applications. aptX Low Latency feature supports A2DP Source mode and is available only for WT32i
modules.

The aptX Low Latency audio codec can be enabled in special builds with the following iWRAP commands:

SET CONTROL CODEC APT-X_LL JOINT_STEREO 44100 0

SET CONTROL CODEC APT-X JOINT_STEREO 44100 1

SET CONTROL CODEC SBC JOINT_STEREO 44100 2

Note: aptX Low Latency requires a special license and is only included in a separate iWRAP build. To enable
it, you need to flash the aptX Low Latency build and add a valid license key. Please contact Bluegiga technical
support (https://www.silabs.com/support) for further information on how to obtain a license key.

9.4 Routing the A2DP Audio to I2S (External Codec)

iWRAP6 adds basic support for configuring an external I2S audio codec without requiring an external MCU.
The commands controlling this are “SET CONTROL AUDIO” and “SET CONTROL EXTCODEC”.

The WT32i development kit contains an external I2S audio codec (Texas Instruments TLV320AIC32IRHB),
which connects to the WT32i’s I2S interface as well the I2C interface. To try out the external codec, the
following iWRAP configurations are needed.

SET CONTROL AUDIO INTERNAL I2S EVENT 32

SET CONTROL EXTCODEC PRE 30 18 0200918000008A1037000100008000000FF07C7C787C7C78 30 04
25C01400 30 0a 28C00000000000008000 30 03 330F00 30 05 3F00800F00 30 04 6500A200

RESET

The first command routes the A2DP audio to the I2S interface instead of the DAC and configures I2S to use
32 bits per sample to suit the clocking requirements of the TI codec. The second command contains the codec
configuration parameters that iWRAP send to the TI codec over I2C interface when A2DP streaming is
enabled or disabled.

https://www.silabs.com/support

Silicon Labs

49

10 References

[1] The Bluetooth SIG, A2DP Profile overview, URL: https://www.bluetooth.com/specifications/profiles-
overview

[2] The Bluetooth SIG, AVRCP Profile overview, URL:
https://www.bluetooth.com/specifications/profiles-overview

https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=457083
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=457083
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=457082

Simplicity Studio

One-click access to MCU and

wireless tools, documentation,

software, source code libraries &

more. Available for Windows,

Mac and Linux!

IoT Portfolio

www.silabs.com/IoT
SW/HW

www.silabs.com/simplicity
Quality

www.silabs.com/quality
Support and Community

community.silabs.com

http://www.silabs.com

Silicon Laboratories Inc.

400 West Cesar Chavez

Austin, TX 78701

USA

Disclaimer

Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or

intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical"

parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes

without further notice to the product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information.

Without prior notification, Silicon Labs may update product firmware during the manufacturing process for security or reliability reasons. Such changes will not alter the specifications or the

performance of the product. Silicon Labs shall have no liability for the consequences of use of the information supplied in this document. This document does not imply or expressly grant

any license to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any FDA Class III devices, applications for which FDA premarket

approval is required or Life Support Systems without the specific written consent of Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or

health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon

Labs products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering

such weapons. Silicon Labs disclaims all express and implied warranties and shall not be responsible or liable for any injuries or damages related to use of a Silicon Labs product in such

unauthorized applications.

Trademark Information

Silicon Laboratories Inc.® , Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®,

EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®, Gecko®, Gecko

OS, Gecko OS Studio, ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® , Zentri, the Zentri logo and Zentri DMS, Z-Wave®,

and others are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered

trademark of ARM Limited. Wi-Fi is a registered trademark of the Wi-Fi Alliance. All other products or brand names mentioned herein are trademarks of their respective holders.

