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1 Introduction 

This application note discusses Bluetooth Advanced Audio Distribution Profile (A2DP) and Bluetooth 
Audio/video Remote Control Profile (AVRCP) their advantages and how these profiles can be used. Also 
practical examples are given how the A2DP and AVRCP profiles are used with the iWRAP firmware. 

1.1 Advanced Audio Distribution Profile 

A2DP describes how stereo-quality audio can be streamed from a media source to a sink. The audio source is 
the music player and the audio sink is the wireless headset or wireless stereo speakers. 

The profile defines two roles of an audio device: source and sink. 

• A2DP Source – A device is the source when it acts as a source of a digital audio stream that is 
delivered to the SINK of the piconet. 

• A2DP Sink – A device is the sink when it acts as a sink of a digital audio stream delivered from the 
SOURCE on the same piconet. 

A2DP defines the protocols and procedures that realize distribution of audio content of high-quality in mono or 
stereo on ACL channels. The term “advanced audio,” therefore, should be distinguished from “Bluetooth 
audio,” which indicates distribution of narrow band voice on SCO channels as defined in the baseband 
specification. 

A2DP profile includes mandatory support for low complexity sub-band codec (SBC) and supports optionally 
MPEG-1,2 Audio, MPEG-2,4 AAC, ATRAC or other codecs. 

The audio data is compressed in a proper format for efficient use of the limited bandwidth. Surround sound 
distribution is not included in the scope of this profile. 

 

 

Figure 1: Typical A2DP use case 

Source: [1] 

A2DP 

A2DP sink A2DP source 
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1.2 Audio/video Remote Control Profile 

AVRCP is designed to provide a standard interface to control TVs, Hi-Fi equipment, or others to allow a single 
remote controller (or other device) to control all the A/V equipment to which a user has access. It may be used 
in concert with A2DP or VDP. 

Basically your action manipulates the control. You can adjust menu functions that are already commonly used, 
such as adjusting the brightness of your TV or hue, or a VCR timer, as well as audio functions like sound 
adjustments, play, pause, skip, etc. 

The AVRCP defines two roles, that of a controller and target device. 

• Controller – The controller is typically considered the remote control device. 

• Target – The target device is the one whose characteristics are being altered. 

In a “walkman” type media player scenario, the control device may be a headset that allows tracks to be 
skipped and the target device would be the actual medial player. 

In AVRCP, the controller translates the detected user action to the A/V control signal, and then transmits it to 
a remote Bluetooth enabled device. The functions available in a conventional infrared remote controller can be 
realized in this profile. AVRCP Browsing enables browsing media content on a media library –aware player. 

 

Figure 2: Typical AVRCP use case 

Source: [2] 

AVRCP 

AVRCP target AVRCP controller 
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2 iWRAP firmware overview 

iWRAP is an embedded firmware running entirely on the RISC processor of WT11i, WT12, WT32, WT32i and 
WT41 modules. It implements the full Bluetooth protocol stack and many Bluetooth profiles. All software 
layers, including application software, run on the internal RISC processor in a protected user software 
execution environment known as a Virtual Machine (VM). 

The host system can interface to iWRAP firmware through one or more physical interfaces, which are also 
shown in the figure below. The most common interfacing is done through the UART interface by using the 
ASCII commands that iWRAP firmware supports. With these ASCII commands, the host can access Bluetooth 
functionality without paying any attention to the complexity, which lies in the Bluetooth protocol stack. GPIO 
interface can be used for event monitoring and command execution. PCM, SPDIF, I2S or analog interfaces 
are available for audio. The available interfaces depend on the used hardware. 

The user can write application code to the host processor to control iWRAP firmware using ASCII commands 
or GPIO events. In this way, it is easy to develop Bluetooth enabled applications. 

On WT32 and WT32i, there is an extra DSP processor available for data/audio processing. 

Host Controller Interface

L2CAP / eL2CAP

RFCOMM

SDP Audio

iWRAP

Link Manager

Baseband

Radio

UART 

GPIO / AIO

PCM / I
2
S / SPDIF

Analogue

Host + application

iWRAP

Hardware

 

Figure 3: iWRAP Bluetooth Stack 
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In the figure above, a Bluetooth module with iWRAP firmware could be connected to a host system for 
example through the UART interface. The options are: 

• If the host system has a processor, software can be used to control iWRAP by using ASCII based 
commands or GPIO events. 

• If there is no need to control iWRAP, or the host system does not need a processor, iWRAP can be 
configured to be totally transparent and autonomous, in which case it only accepts connections or 
automatically opens them. 

• GPIO lines that Bluetooth modules offer can also be used together with iWRAP to achieve additional 
functionality, such as Carrier Detect or DTR signaling. 

• Audio interfaces can be used to transmit audio over a Bluetooth link. 
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3 Using A2DP and AVRCP with iWRAP 

This chapter instructs the A2DP and AVRCP usage and configuration with the iWRAP firmware. 

3.1 Configuring A2DP 

The A2DP profile has only one configuration: whether it is a Sink or a Source. The Sink receives and decodes 
audio and renders it through one of the audio interfaces of the module. The Source encodes audio, usually 
received from the ADC or a digital audio interface, and sends it over the Bluetooth link. 

To configure iWRAP as the Sink: 

SET PROFILE A2DP SINK 

To configure iWRAP as the Source: 

SET PROFILE A2DP SOURCE 

3.2 Configuring AVRCP 

The AVRCP profile has two distinct roles, Controller and Target, as described in the first chapter. The 
Controller always initiates all commands, the Target responds. The Target can send a notification event to the 
Controller when some variable changes on the Target, but only for events the Controller has previously 
registered to receive. 

In addition to these two roles, AVRCP defines four categories of A/V control commands. Support in the 
Controller role means support for sending the commands; in the Target role it means support for receiving 
them. 

In iWRAP6, the SET PROFILE AVRCP setting has an additional field (compared with earlier versions of 
iWRAP): supported categories. The four distinct categories of devices, with their respective mandatory 
AVRCP commands: 

- Category 1: Player/Recorder - must support PLAY and PAUSE 

- Category 2: Monitor/Amplifier - must support VOLUP and VOLDN (volume up and down) 

- Category 3: Tuner - must support CHUP and CHDN (channel up and down) 

- Category 4: Menu - must support MSELECT, MUP, MDN, MLEFT, MRIGHT (menu select and 
directions) 

The syntax is: 

SET PROFILE AVRCP {CONTROLLER | TARGET} {features} [{CONTROLLER | TARGET} 
{features}] 

Bits 0-3 in the features bit field denote support for Categories 1-4, respectively. At least one Category must be 
supported.  

Bit 4 enable browsing option which is available currently only for controller role. The rest of the bits are 
reserved for future additions. 

 

Note: 

If {features} filed is empty, all possible features are being enabled. 

 

 

 

 



 

 

Silicon Labs 

Page 9 of 50 

In some cases it's also possible that both devices function as Controllers and Targets. iWRAP can  
broadcasts more than one AVRCP role instance in its SDP record, e.g. it can be Target and Controller in the 
same time. It is also possible that iWRAP can send Controller commands successfully even when configured 
as the Target.  

For example, if iWRAP is configured as an A2DP Sink + AVRCP Target which supports Absolute Volume 
control, and an iOS device acts as the A2DP Source, the iOS device will control iWRAP's volume with the 
media player's volume slider, and will still accept AVRCP commands such as Play, Pause and Stop from 
iWRAP. In this scenario iWRAP can be thought of as an amplifier or headset capable of locally adjusting 
output gain, but which also has a panel or buttons for sending Play, Pause etc. commands. The iOS device 
will adjust its volume level to maximum (that is, no digital attenuation), and let the A2DP Sink adjust the gain 
locally. This achieves optimal sound quality, as digital gain slightly degrades the audio signal. In case when 
iWrap device has possibility to control volume level and playback status (Play, Pause, etc.) it is recommended 
to configure both AVRCP Target and Controller role. 
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3.3 Example configurations 

3.3.1 A2DP Sink and AVRCP Controller 

Perhaps the most common use case for A2DP and AVRCP is the wireless headset with simple remote control 
capabilities: playing, pausing and volume control. The A2DP Sink enables audio streaming from an audio 
source, whereas AVRCP Controller facilitates over-the-air control of the audio stream. 

A2DP Sink is enabled with iWRAP command: 

 SET PROFILE A2DP SINK  

 

AVRCP controller with support for controlling a player/amplifier application is enabled with command: 

SET PROFILE AVRCP CONTROLLER 3 

 

In order that mobile phones, tablets and PCs recognize the device as a wireless headset the Bluetooth Class 
of Device (CoD) must be configured to reflect the device’s capabilities. Some devices may not be able to 
discover and connect the A2DP unless the CoD is properly set. 

The A2DP specification mandates that for the A2DP Sink, the Rendering Service bit (0x040000) is set. It is 
also recommended to set the Audio Service bit (0x200000) and to set the Major Device Class to Audio/Video 
(0x000400).  

The Minor Device Class should be set according to what type of device is in question, for example 
Headphones (0x000018) and Hi-Fi Audio Device (0x000028). The combined CoD is 0x240438. 

Class of device is configured with the iWRAP command: 

 SET BT CLASS 240438 

 

Finally a reset is needed to for the profiles to become active. 

SET PROFILE A2DP SINK 

SET PROFILE AVRCP CONTROLLER 3 

SET BT CLASS 240438 

RESET 

 

3.3.2 A2DP Source and AVRCP Target 

Another very common scenario is an audio source which can be remote controlled, such as a home stereo 
system. 

Much like in the previous example, “SET PROFILE A2DP SOURCE” and “SET PROFILE AVRCP TARGET 
7” must be issued to enable the profiles. In this case, Categories 1 through 3 are supported; a radio tuner is 
also included in the stereo system. 

As in the previous example, the Class of Device must be set properly. In the case of A2DP Source, the 
specification mandates the use of the Capturing Service bit (0x080000). The Audio Service (0x200000) and 
Audio/Video Major Device Class (0x000400) should be used, but they are not mandatory. 

A common example Minor Device Class is Hi-Fi Audio Device (0x000028). The combined CoD is then 
0x280428. 
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Finally a reset is needed to for the A2DP profile to become active. 

SET PROFILE A2DP SOURCE 

SET PROFILE AVRCP TARGET 7 

SET BT CLASS 280428 

RESET 

 

3.3.3 A2DP Sink and AVRCP Target 

In this case, iWRAP is a device that outputs audio, has a volume control and is capable of adjusting audio 
gain locally, but has no panel with play, pause or other control buttons. An example is a speaker system that 
receives audio from a phone, and the phone has full control over the audio stream. 

 

SET PROFILE A2DP SINK 

SET PROFILE AVRCP TARGET 2 

SET BT CLASS 240428 

RESET 

3.3.4 A2DP Sink and AVRCP Target and Controller 

In this case, iWRAP is a device that outputs audio, has a volume control and is capable of adjusting audio 
gain locally, but it also has a panel with play, pause or other control buttons. An example is a speaker system 
that receives audio from a phone, and the both devices has full control over the audio stream. 

 

SET PROFILE A2DP SINK 

SET PROFILE AVRCP CONTROLLER 3 TARGET 2 

SET BT CLASS 240428 

RESET 

 

3.3.5 Security configuration 

To be able to pair with other Bluetooth enabled devices the Bluetooth security needs to be properly 
configured. iWRAP support Secure Simple Pairing (SSP) defined in Bluetooth 2.1 + EDR specification, and 
the use of it is mandatory, but PIN code pairing is also supported to enable pairing with legacy devices. 

In order to enable SSP and PIN code pairing, the following configuration commands are needed: 

“SET BT SSP 3 0” This enables SSP “just works” mode, where no PIN code entry or passkey  
verification is needed. To enable the optional man-in-the-middle protection, 
please refer to iWRAP user guide. 

“SET BT AUTH * <pin>” This command enables PIN code pairing, to support pairing with legacy defines.  
<pin> is the desired PIN code, which can be 1-16 alphanumeric characters. 

Finally a reset is needed to for the security settings profile to become active. 
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Below is an example how to enable SSP just works and PIN code pairing in iWRAP. 

SET BT SSP 3 0 

SET BT AUTH * 0000 

RESET 
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3.4 Service discovery 

Bluetooth technology enables wireless service discovery, so you can find out the capabilities the remote 
device supports. Wireless service discovery uses the Bluetooth Service Discovery Profile (SDP).  

With iWRAP the service discovery is performed with command: “SDP {bd_addr} {uuid}”. 

bd_addr Bluetooth device address of the remote device. 

uuid Universally unique identifier. Refers to the Bluetooth profile one 
wants to discover. For A2DP sink the uuid is 110B, for A2DP 
source 110A for AVRCP target 110C and for AVRCP controller 
110E. 

Below is an example how to perform a service discovery to an A2DP sink. 

SDP 00:07:80:81:66:6f 110B 

SDP 00:07:80:81:66:6f < I SERVICENAME S "Stereo Headset" > < I PROTOCOLDESCRIPTORLIST < < 
U L2CAP I 19 > < U 0019 I 100 > > > 

SDP 

Stereo Headset = Service name 

19   = L2CAP psm for A2DP sink 

Below is an example how to perform a service discovery to a A2DP source. 

SDP  00:07:80:93:0c:aa 110A 

SDP 00:07:80:93:0c:aa < I SERVICENAME S "Stereo Audio" > < I PROTOCOLDESCRIPTORLIST < < U 
L2CAP I 19 > < U 0019 I 100 > > > 

SDP 

Below is an example how to perform a service discovery to a AVRCP controller. 

SDP  00:07:80:93:0c:aa 110C 

SDP 00:07:80:81:66:6f < I SERVICENAME S "A/V Controller" > < I PROTOCOLDESCRIPTORLIST < < U 
L2CAP I 17 > < U 0017 I 104 > > > 

SDP 

A/V Controller = Service name 

17  = L2CAP psm for A2DP source 

Below is an example how to perform a service discovery to a AVRCP target.. 

SDP 00:07:80:93:0c:aa 110E 

SDP 00:07:80:93:0c:aa < I SERVICENAME S "A/V Target" > < I PROTOCOLDESCRIPTORLIST < < U 
L2CAP I 17 > < U 0017 I 103 > > > 

SDP 

 

 



 

 

Silicon Labs 

Page 14 of 50 

3.5 Connection establishment 

3.5.1 A2DP connection 

A2DP profile requires two connections, one for a control channel and second for a data channel. However 
iWRAP automatically sets up both the connections so the user does not need to worry about setting up two 
channels. 

The A2DP connection is opened, typical to iWRAP, with a CALL command: 

“CALL {bd_addr} 19 A2DP” 

bd_addr Bluetooth device address of the remote device. 

 

Below is an example how to set up an A2DP connection. 

CALL 00:07:80:81:66:6f 19 A2DP 

CALL 0 

CONNECT 0 A2DP 19 

CONNECT 1 A2DP 19 

A2DP STREAMING START 0 

A typical indications of outgoing call and successful connection are received (CALL and CONNECT). Two 
connection events are typically received indicating the establishment of control and data channels. 

Also typically a third event is received indicating that A2DP streaming is started: 

“A2DP STREAMING START {link_id}” 

link_id  Numeric connection identifier which started streaming. 

Note: 

iWRAP allows you to set up several simultaneous A2DP connections. However, only one of the connections 
can be streaming audio at a time. 
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3.5.2 AVRCP connection 

The AVRCP connection is opened, typical to iWRAP, with a CALL command: 

“CALL {bd_addr} 17 AVRCP” 

bd_addr Bluetooth device address of the remote device. 

Below is an example how to set up an AVRCP connection. 

CALL 00:07:80:81:66:6f 17 AVRCP 

CALL 2 

CONNECT 2 AVRCP 17 

Typical indications for outgoing call and successful connection are received (CALL and CONNECT) and in the 
case of when the connection establishment is not successful CALL and NO CARRIER events are received. 

Note that since the Controller supports browsing, some devices may automatically connect the browsing 
channel even if iWRAP does not request it. If browsing functionality is not needed, the browsing channel can 
be ignored or closed. 
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3.6 Connection termination 

3.6.1 A2DP connection 

The A2DP connection is simply closed with iWRAP command “CLOSE {link_id}”. One should always 
terminate the first A2DP connection (control channel) and not second connection (data channel). Terminating 
the control channel makes iWRAP also terminate the data channel. 

Below is an example of A2DP connection termination. 

CLOSE 0 

A2DP STREAMING STOP 0 

NO CARRIER 0 ERROR 0 

NO CARRIER 1 ERROR 0 

Typically first an indication of A2DP streaming stop is received: 

 “A2DP STREAMING STOP {link_id}” 

link_id  Numeric connection identifier of link which started streaming. 

Then normal NO CARRIER events are received for both A2DP connections. 

 

3.6.2 AVRCP connection 

The AVRCP connection is simply closed with iWRAP command “CLOSE {link_id}”. If there is a browsing 
connection open, iWRAP will automatically close the browsing connection first, and then the main AVRCP 
connection. 

Below is an example of AVRCP connection termination. 

CLOSE 2 

NO CARRIER 2 ERROR 0 

Then normal NO CARRIER event is received. 
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4 AVRCP notifications and absolute volume control 

As of iWRAP5, the Controller supports notifications. As of iWRAP6, both the Controller and Target support 
notifications and absolute volume control. 

 

4.1 Notifications general concepts 

In AVRCP, the Controller always initiates all transactions, and the Target responds. For events that happen 
due to internal events on the Target, or due to user interface, the Target can send notifications. The Controller 
must initially request for a notification, and when due to an internal event or user interaction something 
changes on the Target, it will send a notification to the Controller. 

The Controller must first ask the Target what kinds of events it supports. Then it may register to receive 
notifications of one or more of the supported events. 

4.2 Absolute volume control general concepts 

In AVRCP specification version 1.4, the concept of absolute volume was introduced. Instead of just relative 
volume commands: volume up and volume down, which cannot take into consideration whether the Target is 
already at its maximum or minimum volume level, it is also now possible to set and read the volume level of 
the Target device in percentage. Notifications and absolute volume control work hand in hand, as 
demonstrated in the next subsection. 

4.3 Notifications and absolute volume control workflow 

For absolute volume control, it is assumed in the specification that the A2DP Sink is the AVRCP Target. 
Between two iWRAPs. one configured as Sink+Target and the other as Source+Controller, the exchange 
might look something like this: 

Device A, Source + Controller, connects and sends Get Capabilities PDU 0x10, asking for supported 
events 0x03 

CALL 00:07:80:bb:bb:bb 17 AVRCP 

CALL 0 

CONNECT 0 AVRCP 17 

CALL 00:07:80:bb:bb:bb 19 A2DP 

CALL 1 

CONNECT 1 A2DP 19 

CONNECT 2 A2DP 19 

A2DP STREAMING START 1 

@0 AVRCP PDU 10 3 

 

Device B, Sink + Target receives the connections and the Get Capabilities PDU. It responds with three 
events: track changed 0x01, playback status changed 0x02, and (absolute) volume changed 0x0d: 

RING 0 00:07:80:aa:aa:aa 17 AVRCP 

RING 1 00:07:80:aa:aa:aa 19 A2DP 
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RING 2 00:07:80:aa:aa:aa 19 A2DP 

A2DP STREAMING START 1 

AVRCP 0 PDU_GET_CAPABILITIES 3 

@0 AVRCP RSP 1 2 d 

 

Device A receives the response for Get Capabilities. Seeing that the other device supports them, it 
registers for volume changed notifications: 

AVRCP 0 PDU_GET_CAPABILITIES_RSP EVENT COUNT 3 TRACK_CHANGED 
PLAYBACK_STATUS_CHANGED VOLUME_CHANGED 

@0 AVRCP PDU 31 d 

 

Device B must now immediately respond with an interim response, which tells the Controller the current 
value of the volume on the Target, which is 55% of maximum: 

AVRCP 0 PDU_REGISTER_NOTIFICATION 1 VOLUME_CHANGED 0 

@0 AVRCP NFY INTERIM 1 d 55 

 

Device A receives the interim response, and now it knows the volume is at 55%. It wants to change the 
volume to 61%: 

AVRCP 0 PDU_REGISTER_NOTIFICATION_RSP INTERIM VOLUME_CHANGED 55 

@0 AVRCP PDU 50 61 

 

Device B receives the command, but since it can only change volume in 5% increments, it adjusts its 
volume to the closest number, 60%, and reports it back to the Controller. Note that this will not trigger a 
volume changed notification, because the Controller requested for the change. 

AVRCP 0 PDU_SET_ABSOLUTE_VOLUME 61 

@0 AVRCP RSP 60 

 

Device A now sees the volume was set to 60%, and adjusts its own volume display accordingly. 

AVRCP 0 PDU_SET_ABSOLUTE_VOLUME_RSP 60 

 

The user of Device B turns back the volume by one step, bringing it down to 55%. This must be notified to 
the Controller, and triggers a Changed notification. Note that the transaction label (first parameter after the 
INTERIM string) is the same as in the original request. 

@0 AVRCP NFY CHANGED 1 d 55 

 

Now, if Device A still wants to monitor the volume level on Device B, it must register for another 
notification, because as per the AVRCP specification all notifications are triggered only once. 
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5 AVRCP browsing 

Browsing is a feature introduced in AVRCP specification version 1.4. iWRAP6 implements AVRCP version 1.5 
Controller, so browsing is supported on the Controller side. 

AVRCP browsing is used to navigate the virtual file system on any media player on the Target, where 
browsing is supported. AVRCP browsing facilitates listing and selecting media players, navigating up and 
down folders and listing folder contents, retrieving information about items on the player, and searching for 
specific items. 

5.1 Browsing general concepts 

5.1.1 Browsing channel 

Browsing is done over a separate L2CAP channel, which is opened after the regular AVRCP channel has 
been established. All regular AVRCP commands will still be sent over the regular AVRCP channel. The 
browsing channel is only used for retrieving information about media on the Target device; all other actions, 
such as adding found items to the now playing list, will still be executed over the regular AVRCP channel. 

Either the Controller or the Target can open the browsing channel, and the channel can be opened and closed 
on demand, or more commonly, kept open as long as the regular AVRCP link is open. The browsing channel 
must be closed before the regular AVRCP link is closed. 

The browsing channel’s connection type in the iWRAP LIST output is AVRCP, but its L2CAP PSM number is 
0x001b, whereas the PSM of the regular AVRCP connection is 0x0017. 

5.1.2 UIDs and UID counter 

Every item on a browsing-capable player has a unique 128-bit UID that is valid over both AVRCP channels. 
Any item discovered over the browsing channel can be addressed with regular AVRCP PDUs (for example, 
PDU 0x74, PLAY_ITEM) by using the discovered UID. 

A media item’s UID may change if more media items are added to or removed from the player’s virtual 
filesystem. The UID counter is a mechanism to keep track of UID changes. Every time the Controller sends a 
AVRCP BROWSE LIST or AVRCP BROWSE SEARCH browsing command, the Target returns, along with 
other data, the current value of the UID counter. Every Controller command that addresses media items by 
UID must also include the last UID counter value the Controller has received. 

If the UID counter values do not match (that is, something has been added, removed, or changed on the 
player’s virtual filesystem), the Target will reject the command with status 0x05, UIDs changed. The Controller 
should then repeat the LIST command it used to retrieve the UID of the item. 
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5.2 Browsing workflow 

Since a Target can have multiple media players that support browsing, the first step is to get a list of media 
players and select a player for browsing. 

Example: open AVRCP and AVRCP browsing links, and request the first 16 items on the media player list, 
then set the player with ID 0x0001 as the browsed player. 

CALL 00:ff:00:bb:aa:cc 17 AVRCP 

CALL 0 

CONNECT 0 AVRCP 17 

@0 AVRCP BROWSE OPEN 

CONNECT 1 AVRCP 1b 

@0 AVRCP BROWSE LIST 0 0 f ff 

AVRCP_BROWSE 1 GET_FOLDER_ITEMS UIDC 0000 ITEMS 0001 < PLAYER ID 0001 TYPE 01  
SUBTYPE 00000000 PLAY_STATUS STOPPED FEATURES 0000000000b7011c0200000000000000 
NAME 0005 Music > 

@0 AVRCP BROWSE SETPLAYER 1 

AVRCP_BROWSE 1 SET_BROWSED_PLAYER UIDC 0000 COUNT 00000005 FOLDERS 00 

Note: 

If the AVRCP browse channel is already open (for example opened up by the phone) the AVRCP BROWSE 
OPEN will return syntax error. 

After a player is selected for browsing, it’s time to retrieve the folder listing and start looking for media to play. 

@0 AVRCP BROWSE LIST 1 0 f ff 

AVRCP_BROWSE 1 GET_FOLDER_ITEMS UIDC 0000 ITEMS 0005 < FOLDER < UID 
0400000000000000 TYPE ARTISTS PLAYABLE NO NAME 0007 Artists > FOLDER < UID 
0500000000000000 TYPE TITLES PLAYABLE NO NAME 0005 Songs > FOLDER < UID 
0600000000000000 TYPE ALBUMS PLAYABLE NO NAME 0006 Albums > FOLDER < UID 
0900000000000000 TYPE ARTISTS PLAYABLE NO NAME 0009 Composers > FOLDER < UID 
0a00000000000000 TYPE GENRES PLAYABLE NO NAME 0006 Genres > > 

 

Suppose we want to navigate directly to the songs folder and select some items to put in the playing queue. 
The songs folder contains 1509 items. 

@0 AVRCP BROWSE PATH 0 1 0500000000000000 

AVRCP_BROWSE 1 CHANGE_PATH COUNT 000005e5 
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Next, let’s list 3 media items starting from the 2nd item, and ask for all attributes. 

@0 AVRCP BROWSE LIST 1 1 3 ff 

AVRCP_BROWSE 3 GET_FOLDER_ITEMS UIDC 0000 ITEMS 0003 < < MEDIA UID 9b1afa9f4c12ce59 
TYPE AUDIO NAME 0003 ABC ATTRIBUTES 01 < < TITLE NAME 0003 ABC > > > < MEDIA UID 
2bf8243352cebe67 TYPE AUDIO NAME 000a About Life ATTRIBUTES 01 < < TITLE NAME 000a About 
Life > > > < MEDIA UID b0bdea9e7ecb5224 TYPE AUDIO NAME 0008 Absorbed ATTRIBUTES 01 < < 
TITLE NAME 0008 Absorbed > > > > 

 

Now we’ll start playing the song titled “ABC”. 

@0 AVRCP PDU 74 1 9b1afa9f4c12ce59 0 

AVRCP 0 PLAY_ITEM_RSP OK 

 

Let’s search for an album called “Rain Dogs” to put in the playback queue, and then retrieve the 10 first 
search results. 

@0 AVRCP BROWSE SEARCH “rain dogs” 

AVRCP_BROWSE 1 SEARCH UIDC 0000 COUNT 0000001b 

@0 AVRCP BROWSE LIST 3 0 9 0 

AVRCP_BROWSE 1 GET_FOLDER_ITEMS UIDC 0000 ITEMS 000a < < MEDIA UID 0e24d548196f8e70 
TYPE AUDIO NAME 0016 Anywhere I Lay My Head ATTRIBUTES 01 < < TITLE NAME 0016 Anywhere I 
Lay My Head > > > < MEDIA UID 8942c6d007e09367 TYPE AUDIO NAME 0010 Big Black Mariah 
ATTRIBUTES 01 < < TITLE NAME 0010 Big Black Mariah > > > < MEDIA UID 884472822381fb9b TYPE 
AUDIO NAME 000a Blind Love ATTRIBUTES 01 < < TITLE NAME 000a Blind Love > > > < MEDIA UID 
06eec7217eed9522 TYPE AUDIO NAME 0011 Bride of Rain Dog ATTRIBUTES 01 < < TITLE NAME 0011 
Bride of Rain Dog > > > < MEDIA UID bab8b9091baf783a TYPE AUDIO NAME 000e Cemetery Polka 
ATTRIBUTES 01 < < TITLE NAME 000e Cemetery Polka > > > < MEDIA UID 04bb90d8c8c54d00 TYPE 
AUDIO NAME 000a Clap Hands ATTRIBUTES 01 < < TITLE NAME 000a Clap Hands > > > < MEDIA UID 
163f19ccd93ee837 TYPE AUDIO NAME 000f Diamonds & Gold ATTRIBUTES 01 < < TITLE NAME 000f 
Diamonds & Gold > > > < MEDIA UID f73b53fa79c152b0 TYPE AUDIO NAME 0016 Do You Close Your 
Eyes ATTRIBUTES 01 < < TITLE NAME 0016 Do You Close Your Eyes > > > < MEDIA UID 
97526ba94b21557c TYPE AUDIO NAME 000e Downtown Train ATTRIBUTES 01 < < TITLE NAME 000e 
Downtown Train > > > < MEDIA UID db0b9bfc5abaa800 TYPE AUDIO NAME 000f Gun Street Girl 
ATTRIBUTES 01 < < TITLE NAME 000f Gun Street Girl > > > > 

 

Let’s add the first song in the search results to the playback queue. 

@0 AVRCP PDU 90 2 0e24d548196f8e70 0 

AVRCP 0 ADD_TO_NOW_PLAYING_RSP OK 
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6 A2DP and AVRCP command reference 

This chapter contains general information and tips about the iWRAP and A2DP profile for the implementers. 

6.1 A2DP commands 

The table below lists the possible A2DP commands. See iWRAP user guide for exact details. 

Command Function 

A2DP STREAMING START Starts A2DP streaming 

A2DP ATREAMING STOP Stops A2DP streaming 

Table 1: Supported A2DP commands 
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6.2 AVRCP passthrough commands 

The table below lists the possible AVRCP passthrough commands. 

Note: 

Not all devices support all commands. For example, iOS devices do not support remote volume control using 
AVRCP UP, or AVRCP DN, or AVRCP MUTE commands. This is a limitation of iOS and not an iWRAP 
firmware problem. 

Command Description 

AVRCP UP Volume up 

AVRCP DN Volume down 

AVRCP MUTE Mute 

AVRCP STOP Stop 

AVRCP PLAY Play 

AVRCP PAUSE Pause 

AVRCP REWIND Rewind 

AVRCP FAST_FORWARD Fast Forward 

AVRCP FORWARD Forward (next song) 

AVRCP BACKWARD Backward (previous song) 

AVRCP {raw} AVRCP command in raw hex mode. (See section 6.7) 

Available codes: 

00-13, 20-2c, 30-37, 40-4b, 50-51, 71-75 and 7e 

AVRCP PDU {PDU_ID} [parameters] PDU_ID 

 AVRCP PDU ID 

parameters 

 AVRCP PDU parameters 

 

Please refer to the following page for available PDU_IDs and 
parameters. 

Table 2: Available AVRCP commands 

Note: See iWRAP user guide for more details and examples of how to use the AVRCP commands. 
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6.3 AVRCP PDU 

6.3.1 Syntax 

AVRCP PDU command is used by the AVRCP Controller to send metadata request Protocol Data Units to the 
Target. 

Synopsis 

AVRCP PDU {PDU_ID} [parameters] 

 

PDU ID Description and parameters 

10 
Get capabilities command. Query for events or Company_ID’s the Target supports. 

Parameters: 

2 

Query supported Company_ID’s. 

3  

Query supported events. 

11 List player application settings. No parameters. 

12 
List possible values for a player application setting. 

Parameters: 

{setting_id}  

See list at the end of this command’s description. 

13 
Get current values of player application settings. 

Parameters: 

{number of settings}  

Number of following parameters. 

Followed by: 

{setting_id}  

See list at the end of this command’s description. 

14 
Set current values of player application settings. 

Parameters: 

{number of settings}  
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Number of setting_id-value-pairs that follow. 

Followed by: 

{setting_id} {value}  

See list at the end of this command’s description. 

20 
Get attributes of the currently playing track. 

Parameters: 

{number of attributes}  

Number of attributes that follow. If zero, list all available information. 

Followed by (unless number of attributes is zero): 

[attribute_id] 

See list at the end of this command’s description. 

30 Get the playing status, length and position of the current track. No parameters. 

31 
Register notification of events. This will request the Target to notify us when a track 
is changed for instance. 

Parameters: 

{event_id}  

See list at the end of this command’s description. 

50 
Set the absolute volume on the target device. 

Parameters: 

{volume}  

The requested volume level in percentage, range 0-100. 

60 
Set the addressed player. If the Target has multiple media players in the media 
player list, you can select which player should receive the AVRCP commands. 

Parameters: 

{Player ID}  

 The ID of the player 

74 

90 

74: Start playing a track immediately. 

90: Add track to the now playing list (playback queue). 

Parameters: 

{scope}  

0: Media player list 
1: Virtual filesystem 
2: Search results 
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3: Now playing list 

{UID}  

UID of the media item. Use the browsing channel to discover UIDs. 

{UID counter}  

Latest UID counter value received. See section 3.5.1.2 for details. 

 

Note: The AVRCP profile specification contains the details of the possible PDU ID and a detailed description 
of the parameters. 

Note: Not all the AVRCP commands are supported by the AVRCP target devices and most of them actually 
implement only a small subset of all the available commands. 

6.3.2 Events 

AVRCP PDU command may return the following events 

Events 

AVRCP {link_id} {PDU_ID name}_RSP [parsed data] 

AVRCP {link_id} RSP PDU_ID {PDU_ID}, data: [unparsed data] 

AVRCP {link_id} {PDU_ID name}_RSP REJ 
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6.3.3 List of IDs 

List of supported attribute_ids, event_ids, setting_ids, and their respective values. 

Type ID Explanation 

Attribute 0x01 Song title 

Attribute 0x02 Artist 

Attribute 0x03 Album title 

Attribute 0x04 Track number in numeric ASCII text 

Attribute 0x05 Total number of tracks on album in numeric ASCII text 

Attribute 0x06 Genre 

Attribute 0x07 Playing time in milliseconds in numeric ASCII text 

Setting 

0x01 

Equalizer setting, values: 

0x01 Off 

0x02 On 

Setting 

0x02 

Repeat setting, values: 

0x01 Off 

0x02 Single track 

0x03 All tracks 

0x04 Group 

Setting 

0x03 

Shuffle setting, values: 

0x01 Off 

0x02 All tracks 

0x03 Group 

Setting 

0x04 

Scan setting, values: 

0x01 Off 

0x02 All tracks 

0x03 Group 

Event 0x01 Playback status changed 

Event 0x02 Track changed 
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Event 0x03 Track reached end 

Event 0x04 Track reached start 

Event 0x05 Playback position changed 

Event 0x06 Battery status changed 

Event 0x07 System status changed 

Event 0x08 Player application setting changed 

Event 0x09 Now playing changed 

Event 0x0a Available players changed 

Event 0x0b Addressed players changed 

Event 0x0c UIDs changed 

Event 0x0d Volume changed 
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6.3.4 Examples 

Those examples assume that AVRCP is on link 3. 

 

Query supported AVRCP events. 

AVRCP PDU 10 3 

AVRCP 3 GET_CAPABILITIES_RSP EVENT COUNT 3 PLAYBACK_STATUS_CHANGED 
TRACK_CHANGED PLAYBACK_POSITION_CHANGED 

 

Ask the Target about its player application settings, their possible values and change a value. 

AVRCP PDU 11 

AVRCP 3 LIST_APPLICATION_SETTING_ATTRIBUTES_RSP COUNT 2 REPEAT SHUFFLE 

AVRCP PDU 12 2 

AVRCP 3 LIST_APPLICATION_SETTING_VALUES_RSP COUNT 3 1 2 3 

AVRCP PDU 13 1 2 

AVRCP 3 GET_APPLICATION_SETTING_VALUE_RSP COUNT 1 REPEAT OFF 

AVRCP PDU 14 1 2 2 

AVRCP 3 SET_APPLICATION_SETTING_VALUE_RSP OK 

AVRCP PDU 13 1 2 

AVRCP 3 GET_APPLICATION_SETTING_VALUE_RSP COUNT 1 REPEAT SINGLE_TRACK 

 

Ask the Target about the title and artist of the song that is currently playing and ask it to notify us if the 
playback status changes. 

AVRCP PDU 20 2 1 2 

AVRCP 3 GET_ELEMENT_ATTRIBUTES_RSP COUNT 2 TITLE 24 “Cold Women and Warm Beer” 
ARTIST 16 “The Black League” 

AVRCP PDU 31 1 1 

AVRCP 3 REGISTER_NOTIFICATION_RSP INTERIM PLAYBACK_STATUS_CHANGED PLAYING 

(the interim response is received right after the request to confirm we were registered for notification) 

AVRCP 3 REGISTER_NOTIFICATION_RSP CHANGED PLAYBACK_STATUS_CHANGED PAUSED 

(the changed response is received when the playing status changes) 
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6.4 AVRCP RSP 

6.4.1 Syntax 

AVRCP RSP is used by the Target to respond to a received AVRCP Controller PDU command. All PDU 
commands must be responded to. Passthrough commands (PLAY, PAUSE etc.) will be handled automatically 
by iWRAP, and require no user interaction. 

The required parameters depend on which PDU the AVRCP RSP is responding to. 

Synopsis 

AVRCP RSP [parameters] 

 

PDU received Description and parameters 

GET_CAPABILITIES 2 
The Controller is querying for supported Company IDs 

AVRCP RSP [id0 id1 …]  

[id0 id1 …] 

List of IrDA Company IDs. Usually, the list can be left 
empty, as iWRAP will automatically fill in the Bluetooth SIG 
company ID. 

GET_CAPABILITIES 3 
The Controller is querying for supported Event IDs 

AVRCP RSP [id0 id1 …]  

[id0 id1 …] 

List of events supported for notifications. These are listed 
in 6.3.3 “List of IDs”. 

LIST_APPLICATION_SETTING
_ATTRIBUTES 

The Controller is querying for supported player application setting 
attributes. 

AVRCP RSP [id0 id1 …]  

[id0 id1 …] 

List of supported settings’ IDs. These are listed in 6.3.3 
“List of IDs”. 

LIST_APPLICATION_SETTING
_VALUES {id} 

The Controller is querying for set of possible values for the requested 
player application setting ID {id}. 

AVRCP RSP [val0 val1 …]  

[val0 val1 …] 

List of possible values for requested setting ID. These are 
listed in 6.3.3 “List of IDs”. 



 

 

Silicon Labs 

31 

 

GET_APPLICATION_SETTING
_VALUE {count} [id0 id1 …]? 

The Controller is querying for the current values set on the target for the 
provided player application setting IDs. {count} is a number of IDs Target 
is queried about. 

AVRCP RSP [val0 val1 …]  

[val0 val1 …] 

List of currently set player application values on the target 
for the corresponding requested player application setting 
IDs. These values shall be from set 
of possible values returned in response to 
LIST_APPLICATION_SETTING_VALUES command. 

SET_APPLICATION_SETTING
_VALUE {count} [id0 val0 id1 
val1 …]? 

The Controller requests to set the list of player application setting values 
(val0 val1 …) on the target device for the corresponding defined list of 
player application setting IDs (id0 id1 …). If setting IDs and values are 
correct, target sends the accept answer. {count} is a number of IDs 
Target is requested to set values of. 

Otherwise SET_APPLICATION_SETTING_VALUE event with ILLEGAL 
or UNKNOWN parameter is received and target sends the reject answer. 

GET_ELEMENT_ATTRIBUTES  
{count} [id0 id 1 …] 

Get attributes of the current track. The first response parameter should 
be the same count of attributes asked in the PDU. The rest of the 
parameters are a list containing pairs of numeric IDs and quote-enclosed 
strings, which contain the IDs and the the text values of the attributes 
asked. The attribute IDs are listed in 6.3.3 “List of IDs”. 

AVRCP RSP {count} [id0 “value0” id1 “value1” …] 

{count}  

Number of following attributes. 

[id0 “value0” id1 “value1” …]  

ID-text pairs of attributes. The maximum length for any 
single attribute value is 255 bytes (excluding the enclosing 
quotes). 

GET_PLAY_STATUS 
The Controller is querying for the current playing status and track 
playback position. 

AVRCP RSP {length} {position} {status} 

{length} 

Length of the current track in milliseconds, hexadecimal 
format. If no track is selected or song length reporting is 
not supported, return 0xffffffff. 

{position} 

Playback position of the current track in milliseconds, 
hexadecimal format. If no track is selected or playback 
position reporting is not supported, return 0xffffffff. 
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{status} 

Playback status: 

0 - Stopped 

1 - Playing 

2 - Paused 

3 - Fast forwarding 

4 - Rewinding 

SET_ABSOLUTE_VOLUME 
{volume} 

The Controller set the absolute volume level. The exact volume level 
which was set must be reported back, due to the Target possibly having 
different volume adjustment granularity than the Controller. 

AVRCP RSP {volume}  

{volume} 

The volume that was set on the Target. 

6.4.2 Examples 

Controller asks for three 3 attributes of the current song: 1 (the title), 2 (artist) and 3 (album). Target 
responses with track details: 

AVRCP 0 PDU_GET_ELEMENT_ATTRIBUTES 3 1 2 3 

AVRCP RSP 3 1 “Some Title” 2 “Some Artist” 3 “Some Album” 

Controller asks for the supported settings. Target responses that settings 1 (Equalizer) and 2 (Repeat) are 
supported: 

AVRCP 0 LIST_APPLICATION_SETTING_ATTRIBUTES  

AVRCP RSP 1 2 

Controller asks for the supported values of Equalizer setting (0x01). Target responses that available values for 
Equalizer setting are 1 (Off) and 2 (On) values after: 

AVRCP 0 LIST_APPLICATION_SETTING_VALUES 1 

AVRCP RSP 1 2 

Controller asks for current values of 0x02 settings: Equalizer (0x01) and Repeat (0x02). Target responses that 
Equalizer is set to 1 (Off) and Repeat is set to 2 (Single track): 

AVRCP 0 GET_APPLICATION_SETTING_VALUE 02 01 02? 

AVRCP RSP 1 2 

Controller sets on Target 0x02 settings: 0x01 (Equalizer) to 0x01 (Off) and 0x02 (Repeat) to 0x01 (Off): 

AVRCP 0 SET_APPLICATION_SETTING_VALUE 02 01 01 02 01 
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6.5 AVRCP NFY 

6.5.1 Syntax 

AVRCP NFY is used by the Target to respond to a received notification request. Each notification request 
must be responded to immediately with an AVRCP NFY INTERIM command, and when the notification is 
triggered, it must be reported with AVRCP NFY CHANGED.  

Each AVRCP command-response pair carries its own transaction label to help the Controller differentiate 
between responses received from the Target. The transaction label in both the NFY INTERIM and NFY 
CHANGED responses must match that of the original notification request. With other commands, 
iWRAP will automatically handle the updating of the transaction label, but in the notification commands, the 
user must supply it, because iWRAP cannot know when an event that triggers a NFY CHANGED will happen. 

Notification request event format: 

AVRCP {link_id} PDU_REGISTER_NOTIFICATION {transaction_label} {event} {parameter} 

Currently, the parameter is not used in any supported notification, but may be used in the future. 

 

Synopsis 

AVRCP NFY {INTERIM | CHANGED} {transaction_label} {event_ID} [value] 

 

Event registered Description and parameters 

PLAYBACK_STATUS_CHANGED 
0 

{event_ID} 

 1 

[value] 

Status of playback, see list under GET_PLAY_STATUS 
in 6.3.1 “AVRCP PDU Syntax” 

TRACK_CHANGED 0 {event_ID} 

 2 

[value] 

0 – no track is currently selected 

1 – a track is currently selected 

VOLUME_CHANGED 0 {event_ID} 

 d 

[value] 
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Current volume level on Target, percentage in decimal. 

 

 

6.5.2 Examples 

 

Respond with playback status changes. 

AVRCP 0 PDU_REGISTER_NOTIFICATION 4 PLAYBACK_STATUS_CHANGED 0 

AVRCP NFY INTERIM 4 1 0 (transaction label 4, playback status changed, status “stopped”) 

(user presses Play on the Target device, playback status changes to “playing”) 

AVRCP NFY CHANGED 4 1 1 
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6.6 AVRCP BROWSE 

6.6.1 Syntax 

AVRCP BROWSE is used to browse an AVRCP Target’s virtual filesystem. 

Synopsis 

AVRCP BROWSE {cmd [params]} 

 

cmd Description and parameters 

OPEN 
Open the browsing channel, if it’s not already present. The browsing channel can be 
closed with the CLOSE command when necessary, and it will not automatically close 
the regular AVRCP link. The browsing channel can be used immediately after it has 
opened. 

Parameters: 

None 

LIST 
Lists items in a given scope. The start_item and end_item parameters are used to 
retrieve the folder contents in chunks, if all items do not fit inside a single packet. 

Parameters: 

{scope}  

0: Media player list 
1: Virtual filesystem 
2: Search results 
3: Now playing list 

{start_item}  

The running number of the first item inside the folder to retrieve. 

{end_item}  

The running number of the last item to retrieve. 

{number_of_attributes}  

Number attributes to retrieve for the items. 
0: All attributes 
ff: No attributes 

[attribute_list] 

Sequence of attributes; omit if number_of_attributes is 0 or ff. The 
supported values for attribute IDs are listed in the table in chapter 
6.3.3 
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SETPLAYER 
Selects the player to browse. A Target may have multiple players, so the player must 
be selected prior to browsing its virtual filesystem. 

Parameters: 

{ID}  

16-bit hexadecimal ID of the player 

PATH 
Navigate up or down inside the virtual folder structure. 

Parameters: 

{UID_counter}  

UID counter – see the description in chapter 3.5 

{direction}  

0: up – folder UID is omitted, as it’s implicitly known 
1: down 

[folder_UID]  

UID of the target folder (omitted if direction is 0) 

GET 
Get attributes of an item 

Parameters: 

{scope}  

0: Media player list 
1: Virtual filesystem 
2: Search results 
3: Now playing list 

{UID_counter}  

UID counter – see the description in chapter 5.1 

{UID}  

UID of the item 

{number_of_attributes}  

Number attributes to retrieve for the items. 
0: All attributes 
ff: No attributes 

[attribute_list] 

Sequence of attributes; omit if number_of_attributes is 0 or ff. The 
supported values for attribute IDs are listed in the table in chapter 
6.3.3 

SEARCH 
Search for all items containing the search string. No wildcards are accepted. The 
search results will appear in the search results scope. 
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Parameters: 

{“search_string”}  

String enclosed in quotes. 

 

 

6.6.2 Response data format 

The only response for AVRCP BROWSE OPEN is the browsing channel opening or failing to open. 

 

The response for AVRCP BROWSE LIST contains the current value of the UID Counter and a list of items, 
which can be of three distinct types: Player, Folder or Media. 

 

For example, an AVRCP BROWSE LIST which asks for items #4, #5 and #6 in the current virtual filesystem 
folder, and the title and artist attribute (if applicable), response may look like this: 
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@1 AVRCP BROWSE LIST 1 4 6 2 1 2 

AVRCP_BROWSE 1 GET_FOLDER_ITEMS UIDC 0042 ITEMS 0004 < FOLDER < UID 
0000000000000010 TYPE TITLES PLAYABLE YES NAME 0009 “Favorites” > < FOLDER UID 
0000000000000020 TYPE ARTISTS PLAYABLE NO NAME 0007 “Artists” > < MEDIA UID 
000000000000003f TYPE AUDIO NAME 000c “SomeSong.mp3” ATTRIBUTES 0002 < < TITLE NAME 
0008 “SomeSong” > < ARTIST NAME 000a “SomeArtist” > > > > 

 

 

The response for AVRCP BROWSE SETPLAYER returns the current UID Counter, the count of items in the 
current folder, and if the current folder is not the root folder (for example, a player might start browsing in a 
folder called /Artists/Albums/ by default), the count and names of the folders leading to the current folder from 
the root. 

 

Example: select a player with ID 2 as the browsed player. The player has 32 media items, and it is currently in 
the folder /Playlists/Favorite/ 

@1 AVRCP BROWSE SETPLAYER 2 

AVRCP_BROWSE 1 SETPLAYER UIDC 0001 COUNT 00000020 FOLDERS 02 < NAME 0009 “Playlists” 
NAME 0008 “Favorite” > 

 

The response for AVRCP BROWSE PATH returns the count of items in the current folder. 

 

Example: browse down into a folder with UID 0x0000000000000022, when the last received UID Counter 
value was 0x0042. 

@1 AVRCP BROWSE PATH 42 1 22 

AVRCP_BROWSE 1 SETPLAYER UIDC 0001 COUNT 00000020 FOLDERS 02 < NAME 0009 “Playlists” 
NAME 0008 “Favorite” > 

 

The response for AVRCP BROWSE GET returns a list of attributes. 
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Example: get all attributes for an item with UID 0x33 in the virtual filesystem, last received UID Counter value 
0x0042. 

@1 AVRCP BROWSE GET 1 42 33 0 

AVRCP_BROWSE 1 GET ATTRIBUTES 0003 < < TITLE NAME 0004 “Song” > < ARTIST NAME 0006 
“Artist” > < ALBUM NAME 0005 “Album” > > 

 

The response for AVRCP BROWSE SEARCH returns the current UID Counter value and the number of 
search results that are now in the Search Results scope. 

 

Example: search for all items containing the string “abcd”; 3 items match. More information about the 
matching items can be retrieved with AVRCP BROWSE LIST in the search results scope. 

@1 AVRCP BROWSE SEARCH “abcd” 

AVRCP_BROWSE 1 SEARCH UIDC 0042 COUNT 0003 

 

6.6.3 Errors 

Every browsing command with the exception of AVRCP BROWSE OPEN can return an error code, or in the 
case of AVRCP BROWSE SEARCH, a General Reject, if the Target does not support searching, which is an 
optional feature. 

@1 AVRCP BROWSE SEARCH “abcd” 

AVRCP_BROWSE 1 GENERAL_REJECT 0f 

 

If a command fails for some other reason, for instance if the UIDs have changed on the Target, which 
happens when media files are modified on, or added to or removed from, the Target’s filesystem. 

@1 AVRCP BROWSE GET 1 42 33 0 

AVRCP_BROWSE 1 GET ERROR 05 
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The error codes are listed in the following table: 

Status code Explanation 

0x00 Invalid command – the Target did not understand the command 

0x01 
Invalid parameter – the command was recognized, but one or more of the 
parameters were not 

0x02 
Parameter content error – a parameter was recognized, but contained invalid 
content, for example the Controller tried to change a supported setting to an 
unsupported value 

0x03 
Internal error – the command was understood, but could not be completed due to 
some internal condition 

0x04 Success – this value will never be reported in an error 

0x05 
UIDs changed – the UID Counter issued by the Controller did not match Target’s 
UID Counter number. The Controller should refresh its cached UIDs. 

0x06 The command ID is reserved 

0x07 Invalid direction – applicable only for AVRCP BROWSE PATH 

0x08 Not a directory – applicable only for AVRCP BROWSE PATH 

0x09 Does not exist – no such media item or folder found with requested UID 

0x0a Invalid scope 

0x0b 
Out of bounds – a parameter was too large, for example the AVRCP BROWSE 
LIST end_item parameter was larger than the number of items in the folder 

0x0c Item not playable – the Controller attempted to play a folder that is not playable 

0x0d 
Media in use – some media cannot be played if they are in use, for example a CD 
or DVD 

0x0e Now playing list full – cannot add any more items to the now playing list 

0x0f 
Search not supported – search is an optional feature, and all Targets may not have 
implemented it 

0x10 
Search in progress – cannot start another search before the previous search is 
finished 

0x11 Invalid player ID – applicable only for AVRCP BROWSE SETPLAYER 

0x12 Player not browseable – while the Target supports browsing, the selected player 
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cannot be browsed 

0x13 
Player not addressed – the Target has multiple players, and does not know which 
player should receive the command; the Controller should use AVRCP PDU 60 to 
select the addressed player 

0x14 No valid search results 

0x15 No available players – no player can complete the request at the moment 

0x16 
Addressed player changed – the addressed player has changed for some internal 
reason, such as the user switching off a media player and starting another on the 
Target 
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6.7 AVRCP {raw} detail 

The “AVRCP {raw}” command is used to send raw AVRCP press/release codes instead of using the shortcut 
commands such as “AVRCP PLAY” or “AVRCP FAST_FORWARD” to accomplish the same goals. The 
shortcut commands are, in fact, simply automated press/release combinations of each command code. It is 
possible to achieve the same functionality with two unique {raw} commands, and this also gives you more 
control over functions which benefit from more precisely timed “press” and “release” actions, such as rewind 
and fast-forward. 

The list of supported AVRCP command codes and their meanings are in the table below. Remember that you 
must send a “release” command to correspond with every “press” command in order to ensure 
proper functionality. 

Each command code has a 7-bit value, ranging between 0x00 and 0x7F. The 8th bit (0x80) is a mask which is 
used to indicate whether it is a “press” code (8th bit cleared) or a “release” code (8th bit is set). 

Note: 

Not all devices support all command code. For example, iOS devices do not support remote volume control 
using 0x41, 0x42, or 0x43 commands. This is a limitation of iOS and not an iWRAP firmware problem. 

Press code (hex) Release code (hex) Description 

00 80 Select 

01 81 D-pad up 

02 82 D-pad down 

03 83 D-pad left 

04 84 D-pad right 

05 85 D-pad up/right 

06 86 D-pad down/right 

07 87 D-pad up/left 

08 88 D-pad down/left 

09 89 Root menu 

0A 8A Setup menu 

0B 8B Contents menu 

0C 8C Favourites menu 

0D 8D Exit 

0x0E – 0x1F reserved 

20 A0 0 number entry 
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21 A1 1 number entry 

22 A2 2 number entry 

23 A3 3 number entry 

24 A4 4 number entry 

25 A5 5 number entry 

26 A6 6 number entry 

27 A7 7 number entry 

28 A8 8 number entry 

29 A9 9 number entry 

2A AA Dot ( . ) entry 

2B AB Enter 

2C AC Clear 

0x2D – 0x2F reserved 

30 B0 Channel up 

31 B1 Channel down 

32 B2 Previous channel 

33 B3 Sound select 

34 B4 Input select 

35 B5 Display information 

36 B6 Help 

37 B7 Page up 

38 B8 Page down 

0x39 – 0x3F reserved 

40 C0 Power 

41 C1 Volume up 

42 C2 Volume down 

43 C3 Mute 
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44 C4 Play 

45 C5 Stop 

46 C6 Pause 

47 C7 Record 

48 C8 Rewind 

49 C9 Fast-forward 

4A CA Eject 

4B CB Forward (next track) 

4C CC Backward (previous track) 

0x4D – 0x4F reserved 

50 D0 Angle 

51 D1 Subtitle 

0x52 – 0x70 reserved 

71 F1 F1 function key 

72 F2 F2 function key 

73 F3 F3 function key 

74 F4 F4 function key 

75 F5 F5 function key 

 

Below is an example of using AVRCP {raw} to pause playback: 

AVRCP 46 

AVRCP C6 

A2DP STREAMING STOP 0 

 

Below is an example of using AVRCP {raw} to rewind the track position: 

AVRCP 48 

[track rewinds until next command is sent, specific behavior depends on media device] 

AVRCP C8 
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7 iWRAP commands related to audio 

PLAY  - Command PLAY is used to generate tones or beeps. 

 

VOLUME  - Changes the volume level (audio output gain). 

 
SET CONTROL AUDIO - This command controls the physical interface routing  
   of audio on WT32. The command is also used to enable  
   or disable multiple SCO support. 
 
SET CONTROL CODEC - This command controls the preference of A2DP audio  

codecs, channel modes and sampling rates for A2DP.  
 

SET CONTROL GAIN - SET CONTROL GAIN is used to control the internal input 

 and output gain. 

 

SET CONTROL MICBIAS - SET CONTROL MICBIAS controls the linear regulator that  
   drives current through the dedicated mic bias pin. 
 

SET CONTROL PCM - This command configures the physical PCM hardware 

 interface settings and PCM data format. 

 

SET CONTROL RINGTONE - Configures a ring tone which is used with HFP or HSP  
   profile if the Audio Gateway does not provide an in- 
   band ring tone. 
 

SET CONTROL PREAMP - Enables or disables the 20dB microphone pre-amplifier. 

 

Please refer to iWRAP user guide for exact documentation of the listed commands. 

 

NOTE: 

The pre-amplifier MUST be turned off in A2DP source device to prevent the low frequencies being cut out. 
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8 Power saving 

iWRAP offers two power saving options. Sniff mode, which can be used to save power for active Bluetooth 
connections and deep sleep more which puts the internal processor into a reduced duty cycle mode. Please 
refer to iWRAP user guide for more information about sniff and deep sleep modes. One should be very careful 
when using sniff mode with an active A2DP connection. Sniff mode will reduce the data transmission rate and 
therefore affect the robustness of an audio link. When sniff mode is used with A2DP audio “clipping” is more 
likely to occur then without power saving. 

One should also know that when Bluetooth connections are in active mode i.e. no power saving in use the 
master device uses 3-4 times less power then a slave device. Therefore for battery powered applications it 
might be useful to configure the device as a master rather then a slave. 
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9 Audio quality improvement 

The sub-band coding (SBC) used to encode or decode the A2DP audio is a lossy audio codec and some of 
the audio data is lost when it’s transmitted over a Bluetooth link. For some applications like high end headsets 
and headphones or audio amplifiers this may not be acceptable. 

Alternative audio codecs can be used to encode or decode the audio stream and provide better quality or 
lower latency Bluetooth audio. Such codes are for example MP3, AAC, aptX or aptX Low Latency. MP3 codec 
is however not generally supported by Bluetooth enabled cell phones, tablets and PCs. AAC codec is 
supported in the latest generation of Apple devices. aptX codec on the other hand has received the widest 
market adoption and is supported by my many cell phones, tablets, PCs and headsets.  

AAC codec support is available by default from iWRAP6 onwards in all firmware builds (and also upon request 
for iWRAP5 audio firmware builds). However, the usage of the codec in the end product requires a separate 
license and it has an extra license fee. For more information, please see 
http://www.vialicensing.com/licensing/aac-fees.aspx. 

aptX codec provides a nearly lossless audio quality and therefore is ideal to be used in Hi-Fi audio 
applications and products where high quality Bluetooth audio is needed. The highest quality of Bluetooth 
audio is provided by aptX Low Latency codec that significantly decreases the Bluetooth latency. iWRAP 
supports aptX  and aptX Low Latency codecs, but because they are 3rd party codecs and have an extra 
license fee, they’re not included in the generic firmware builds. For more information about aptX and aptX Low 
Latency codecs, please contact https://www.silabs.com/about-us/contact-sales. 

9.1 Enabling AAC Audio Codec for A2DP 

One of the optional audio codecs with Bluetooth A2DP is AAC. AAC is supported at the moment by Apple iOS 
devices and provides better audio quality compared to the regular SBC codec. WT32i supports the AAC audio 
codec and it can be enabled with the following iWRAP commands. 

SET CONTROL CODEC AAC JOINT_STEREO 44100 0 

SET CONTROL CODEC SBC JOINT_STEREO 44100 1 

The first command enables the AAC codec in stereo mode and 44.1kHz sampling rate and priority 0 (highest). 
The second command enables the mandatory SBC codec in stereo mode and also 44.1kHz sampling rate and 
priority 1 (lower). With this configuration AAC is the preferred codec, but if the remote device does not support 
it SBC will be used instead. 

Note: iWRAP contains AAC technology which incorporates intellectual property owned by numerous third 
parties. Supply of this product does not convey a license under the relevant intellectual property of those third 
parties nor imply any right to use this product in any finished end user or ready-to-use final product. An 
independent license for such use is required. For details, please visit http://www.vialicensing.com. 

9.2 Enabling aptX Audio Codec for A2DP 

aptX is another optional audio codec for Bluetooth A2DP. aptX is supported by newer Android devices and it 
also provides better quality audio compared to the regular SBC codec. The feature is available only for WT32i 
modules. The aptX audio codec can be enabled in special builds with the following iWRAP commands. 

SET CONTROL CODEC APT-X JOINT_STEREO 44100 0 

SET CONTROL CODEC SBC JOINT_STEREO 44100 1 

Note: aptX requires a special license and is only included in a separate iWRAP build. To enable it, you need 
to flash the aptX build and add a valid license key. Please contact Bluegiga technical support 
(https://www.silabs.com/support) for further information on how to obtain a license key. 

http://www.vialicensing.com/licensing/aac-fees.aspx
https://www.silabs.com/about-us/contact-sales
http://www.vialicensing.com/
https://www.silabs.com/support
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9.3 Enabling aptX Low Latency Audio Codec for A2DP 

aptX Low Latency is another optional audio codec for Bluetooth A2DP. It offers a Bluetooth latency 
of approximately 40 ms (far less than the standard Bluetooth latency) and meets the recommended latency for 
audio applications. aptX Low Latency feature supports A2DP Source mode and is available only for WT32i 
modules.  

The aptX Low Latency audio codec can be enabled in special builds with the following iWRAP commands:  

SET CONTROL CODEC APT-X_LL JOINT_STEREO 44100 0 

SET CONTROL CODEC APT-X JOINT_STEREO 44100 1 

SET CONTROL CODEC SBC JOINT_STEREO 44100 2 

Note: aptX Low Latency requires a special license and is only included in a separate iWRAP build. To enable 
it, you need to flash the aptX Low Latency build and add a valid license key. Please contact Bluegiga technical 
support (https://www.silabs.com/support) for further information on how to obtain a license key. 

9.4 Routing the A2DP Audio to I2S (External Codec) 

iWRAP6 adds basic support for configuring an external I2S audio codec without requiring an external MCU. 
The commands controlling this are “SET CONTROL AUDIO” and “SET CONTROL EXTCODEC”. 

The WT32i development kit contains an external I2S audio codec (Texas Instruments TLV320AIC32IRHB), 
which connects to the WT32i’s I2S interface as well the I2C interface. To try out the external codec, the 
following iWRAP configurations are needed. 

SET CONTROL AUDIO INTERNAL I2S EVENT 32 

SET CONTROL EXTCODEC PRE 30 18 0200918000008A1037000100008000000FF07C7C787C7C78 30 04 
25C01400 30 0a 28C00000000000008000 30 03 330F00 30 05 3F00800F00 30 04 6500A200 

RESET 

The first command routes the A2DP audio to the I2S interface instead of the DAC and configures I2S to use 
32 bits per sample to suit the clocking requirements of the TI codec. The second command contains the codec 
configuration parameters that iWRAP send to the TI codec over I2C interface when A2DP streaming is 
enabled or disabled. 

https://www.silabs.com/support
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