

AN989: OBEX OPP AND OBEX FTP PROFILES

iWRAP APPLICATION NOTE

Thursday, 06 April 2017

Version 1.4

Silicon Labs

VERSION HISTORY

Version Comment

1.0 First version

1.1 Fixed Disconnect command syntax from figure in chapter 3.3.1

1.2 Tidied up tables, added OBEX error codes

1.3 Sending a file using FTP updated

1.4 Added Business Card Pull Feature using PULLCARD command

Silicon Labs

TABLE OF CONTENTS

1 Introduction ..4

1.1 Object push profile ..4

1.2 File transfer profile ..5

2 iWRAP firmware overview ...6

3 Using OPP with iWRAP ...8

3.1 Configuration ..8

3.1.1 OPP client ...8

3.1.2 OPP Server ...8

3.2 Service discovery ..9

3.3 Connection ... 10

3.3.1 Sending a file - OPP Client .. 10

3.3.2 Business Card Pull Feature - OPP Client .. 12

3.3.3 Receiving a file - OPP Server .. 13

4 Using FTP with iWRAP .. 14

4.1 Configuration ... 14

4.1.1 FTP client ... 14

4.2 Service discovery ... 14

4.3 Connection ... 15

4.3.1 Opening FTP connection ... 15

4.3.2 Closing FTP connection ... 15

4.3.3 FTP commands.. 16

4.3.4 Sending a file using FTP .. 17

4.3.5 Receiving a file using FTP ... 17

5 OBEX error codes .. 18

Silicon Labs

Page 4 of 20

1 Introduction

This application note discusses Bluetooth Object Push Profile (OPP) and Bluetooth File Transfer Profile (FTP)
their advantages and how these profiles can be utilized. Also practical examples are given how the OPP and
FTP are used with the iWRAP firmware.

1.1 Object push profile

OPP defines the roles of push server and push client. These roles are analogous to and must interoperate
with the server and client device roles that GOEP defines.

A common scenario would be file transfer from mobile phone to PC or another mobile phone. The OPP
defines two roles, that of a Push client and a Push server unit:

 Push Server – This is the device that provides an object exchange server (in other words, it is the entity
that receives a file).

 Push Client – This is the device that pushes objects to the Push Server. (Supported by iWRAP starting
from version 3.1)

OPP channel works on top of RFCOMM connection and the protocol used in the link is OBEX.

Figure 1: Typical HFP use case

File exchange

Push client Push server

 OPP

 Push

 OBEX

Silicon Labs

Page 5 of 20

1.2 File transfer profile

FTP provides the mechanisms to browse, send, receive and manipulate files on a remote device.

The FTP specification defines two roles:

 Client – Initiates connection, pushes and pulls files to and from the server. Must be also able to
interpret the OBEX Folder listing Format.

 Server – Target device which needs to provide object exchange server and folder browsing capabilities
using OBEX Folder Listing format. (Not supported by iWRAP)

File Transfer profile is essentially the same profile as Object Push profile while also providing possibility to
fetch files from the server device and moving and browsing the server’s file system.

Figure 2: Typical FTP use case

File exchange

FTP client FTP server

 FTP

OBEX

 Put / Get

Silicon Labs

Page 6 of 20

2 iWRAP firmware overview

iWRAP is an embedded firmware running entirely on the RISC processor of WT12, WT12 and WT32 modules.
It implements the full Bluetooth protocol stack and many Bluetooth profiles as well. All software layers,
including application software, run on the internal RISC processor in a protected user software execution
environment known as a Virtual Machine (VM).

The host system can interface to iWRAP firmware through one or more physical interfaces, which are also
shown in the figure below. The most common interfacing is done through the UART interface by using the
ASCII commands that iWRAP firmware supports. With these ASCII commands, the host can access Bluetooth
functionality without paying any attention to the complexity, which lies in the Bluetooth protocol stack. GPIO
interface can be used for event monitoring and command execution. PCM, SPDIF, I2S or analog interfaces
are available for audio. The available interfaces depend on the used hardware.

The user can write application code to the host processor to control iWRAP firmware using ASCII commands
or GPIO events. In this way, it is easy to develop Bluetooth enabled applications.

On WT32 there is an extra DSP processor available for data/audio processing.

Host Controller Interface

L2CAP / eL2CAP

RFCOMM

SDP Audio

iWRAP

Link Manager

Baseband

Radio

UART / USB

GPIO / AIO

PCM / I
2
S / SPDIF

Analogue

Host + application

iWRAP

Hardware

Figure 3: iWRAP Stack

Silicon Labs

Page 7 of 20

In the figure above, a WRAP THOR Bluetooth module with iWRAP firmware could be connected to a host
system for example through the UART interface. The options are:

 If the host system has a processor, software can be used to control iWRAP by using ASCII based
commands or GPIO events.

 If there is no need to control iWRAP, or the host system does not need a processor, iWRAP can be
configured to be totally transparent and autonomous, in which case it only accepts connections or
automatically opens them.

 GPIO lines that WRAP THOR modules offer can also be used together with iWRAP to achieve
additional functionality, such as Carrier Detect or DTR signaling.

 Audio interfaces can be used to transmit audio over a Bluetooth link.

Silicon Labs

Page 8 of 20

3 Using OPP with iWRAP

This chapter instructs the OPP usage and configuration with the iWRAP firmware.

3.1 Configuration

3.1.1 OPP client

Since OPP client establishes the connection there are no SDP records that would need to be added. Only
requirement is to have the iWRAP in Multiplexing Mode (MUX). A reset is recommended after enabling the
MUX mode.

Below is an example how to enable OPP client mode.

SET CONTROL MUX 1

Link 255: RESET

To start using the module in MUX mode, use of BGTerminal software is recommended.

3.1.2 OPP Server

OPP Server mode is enabled with command “SET PROFILE OPP {service_name}”

service_name This parameter configures user friendly description of the device.
Neither special characters nor white spaces are allowed. Service
name ON enables the profile with the default name.

Finally a reset is needed to for the OPP Server profile to become active.

Below is an example how to enable OPP Server mode.

SET PROFILE OPP ON

RESET

Silicon Labs

Page 9 of 20

3.2 Service discovery

Bluetooth technology enables wireless service discovery, so you can find out the capabilities the remote
device supports. Wireless service discovery uses the Bluetooth Service Discovery Profile (SDP).

With iWRAP the service discovery is performed with command: “SDP {bd_addr} {uuid}”.

bd_addr Bluetooth device address of the remote device.

uuid Universally unique identifier. Refers to the Bluetooth profile one
wants to discover. For OPP the uuid is 1105.

Below is an example how to perform a service discovery for OPP device.

SDP 00:07:80:93:0c:aa 1105

SDP 00:07:80:ff:50:05 < I SERVICENAME S "OBEX Object Push" > < I PROTOCOLDESCRIPTORLIST <
< U L2CAP > < U RFCOMM I 02 > < U OBEX > > >

SDP

OBEX Object Push = Service name

02 = RFCOMM channel for OPP

Silicon Labs

Page 10 of 20

3.3 Connection

3.3.1 Sending a file - OPP Client

The OPP connection establishment to remote device can be done with a CALL command:

“CALL {bd_addr} 1105 OPP”

bd_addr Bluetooth device address of the remote device.

Below is an example how to set up an OPP connection from iWRAP.

LINK 255: CALL 00:07:80:93:0c:aa 1105 OPP

LINK 255: CALL 0

LINK 255: CONNECT 0 OPP 2

LINK 255: OBEX 0 READY

The regular CALL and CONNECT events are received if the connection is successful. Soon after the
CONNECT event also “OBEX {link_id} READY” message should be received from the iWRAP. Now it is
possible to start sending files.

To send files we first need to define the file size, name and MIME type. This is done using PUT command:

“PUT {file_size} {MIME_type} {filename}”

file_size File size in bytes

MIME_type MIME type of the file

filename filename for the file that you are sending

A list of different possible MIME types can be found from http://www.iana.org/assignments/media-types/

All OBEX header strings are sent in UTF-16 over the air, but to maintain compatibility with ASCII, iWRAP
interprets filenames in UTF-8, since the 128 ASCII characters have the same byte representation in UTF-8 as
they do in ASCII. UTF-8 is a Unicode encoding in 8 bit blocks. To send extended ASCII characters (for
example), they must be encoded in UTF-8.

For example, if the filename is "abcäöü", it should be sent to iWRAP as the hex sequence 0x61 0x62 0x63
0xc3 0xa4 0xc3 0xb6 0xc3 0xbc, where the first three bytes are the same as the ASCII representations of 'a',
'b' and 'c'. The other three characters are 2-byte UTF-8 representations. The extended ASCII representation
of 'ä' would be 0x84 in hex, which is a UTF-8 continuation byte and an invalid UTF-8 character by itself.

A UTF-8 character table can be found in: http://www.utf8-chartable.de/unicode-utf8-table.pl?number=512; it
can be used find the UTF-8 representations for characters that cannot be represented in ASCII.

After the file parameters are defined and “OBEX {link_id} SEND” event is received we can start sending the
actual data. This can be done by sending file_size bytes to the Bluetooth link whose indentifier (link_id) was
received in the CALL and CONNECT events as the first parameter. In our example this identifier was 0 so the
same will be also used in the following continuing example:

LINK 255: PUT 10 text/plain testfile.txt

LINK 255: OBEX 0 SEND

LINK 0: 0123456789

LINK 255: OBEX 0 OK

http://www.iana.org/assignments/media-types/
http://www.utf8-chartable.de/unicode-utf8-table.pl?number=512

Silicon Labs

Page 11 of 20

NOTE: If you have larger file than single MUX frame can reliably fit inside which is about 200 bytes, you need
to split the data into multiple MUX frames.

If you wish to send more files you can rotate this PUT – SEND routine as many times as you like. When you
want to close the connection use the DISCONNECT command.

Remote Bluetooth deviceHost iWRAP

O
n
e
 tim

e
 In

itia
liz

a
tio

n

SET CONTROL MUX 1

SET BT AUTH * {pin}

RESET

boot prompt

Connection establishement

CALL {bd_addr} 1105 OPP

OBEX disconnect

NO CARRIER {link_id} ERROR {error_code}
[message]

CALL {link_id}

Pairing complete & connection accepted

Pairing

CONNECT {link_id} OPP {channel}

DISCONNECT

PUT {file_size} {MIME} {filename}

OBEX Connect responce

OBEX Connect packet

OBEX {link_id} READY

OBEX {link_id} SEND

File data sent to link

All data received

OBEX {link_id} OK

Connection terminated

Connection termination

Data transfer

Silicon Labs

Page 12 of 20

3.3.2 Business Card Pull Feature - OPP Client

Devices that support the business card pull service shall store the owner’s business card in the OBEX Default
Get Object. Some devices (e.g. public devices) might hold information in the owner's business card that is
relevant to the device rather than to the owner of the device. The Default Get Object does not have a name;
instead it is identified by its type. To provide application level interoperability, both the OPP Client and the
OPP Server shall support the vCard 2.1 content format.

To perform a Business Card Pull from an OPP Server the OPP connection establishment to remote device
should be done with a CALL command:

“CALL {bd_addr} 1105 OPP”

bd_addr Bluetooth device address of the remote device.

Next PULLCARD command should be used. If OPP Server supports Business Card Pull Feature, OPP Client
receives file content in vCard 2.1 format. The OBEX transfer is interpreted as shown in the table below.

Field explanation PUT Length Filedata
field ID

Filedata
length

Filedata

Not last packet

Last packet

0x90

0xa0

x

x

0x48

0x49

z

z

Field size in bytes 1 2 1 2 z-3

Mandatory/Optional M M

Packet length x bytes

For more information please see IrDA Object Exchange Protocol specification [2].

Silicon Labs

Page 13 of 20

3.3.3 Receiving a file - OPP Server

When another device initiates OPP connection to the module you will receive RING event from the iWRAP
interface.

RING 0 00:18:42:f1:a5:4d 2 OPP

Where first parameter indicates the link_id given for the connection and third parameter indicated the local
service channel where the OPP service is running.

After receiving the RING event you should see the actual OBEX packets arriving. The OBEX transfer is
interpreted as shown in the table below. All field IDs that you don’t understand you can ignore. Essential part
is in field which starts with byte 0x48 or 0x49 if the whole file fits into a single field.

In OBEX, all multi-byte values are sent most significant byte first, e.g. 0x1234 is transmitted as 0x12, 0x34.

Field explanation PUT Length Filename
field ID

Filename
length

Filename Filedata
field ID

Filedata
length

Filedata

Not last packet

Last packet

0x02

0x82

x

x

0x01

0x01

y

y

 0x48

0x49

z

z

Field size in bytes 1 2 1 2 y 1 2 z-3

Mandatory/Optional M O O/M

Packet length x bytes

For more information please see IrDA Object Exchange Protocol specification [2].

Silicon Labs

Page 14 of 20

4 Using FTP with iWRAP

This chapter describes using FTP with iWRAP.

4.1 Configuration

4.1.1 FTP client

iWRAP supports only the FTP client mode. Since the FTP client establishes the connection no SDP record is
necessary to present and therefore no SET PROFILE setting is needed. The only requirement is to have the
iWRAP in Multiplexing Mode (MUX). A reset is recommended after enabling the MUX mode.

Below is an example how to enable FTP client mode.

SET CONTROL MUX 1

Link 255: RESET

To start using the module in MUX mode, use of BGTerminal software is recommended.

4.2 Service discovery

Bluetooth technology enables wireless service discovery, so you can find out the capabilities the remote
device supports. Wireless service discovery uses the Bluetooth Service Discovery Profile (SDP).

With iWRAP the service discovery is performed with the command: “SDP {bd_addr} {uuid}”.

bd_addr Bluetooth device address of the remote device.

uuid Universally unique identifier. Refers to the Bluetooth profile one
wants to discover. For FTP the uuid is 1106.

Below is an example how to perform a service discovery for an FTP device.

SDP 00:07:80:93:0c:aa 1106

SDP 00:07:80:ff:50:05 < I SERVICENAME S "OBEX File Transfer" > < I PROTOCOLDESCRIPTORLIST
< < U L2CAP > < U RFCOMM I 02 > < U OBEX > > >

SDP

OBEX File Transfer = Service name

02 = RFCOMM channel for FTP

Silicon Labs

Page 15 of 20

4.3 Connection

4.3.1 Opening FTP connection

To establish an FTP connection to a remote device, issue:

“CALL {bd_addr} 1106 FTP”

bd_addr Bluetooth device address of the remote device.

Below is an example on setting up an FTP connection from iWRAP.

LINK 255: CALL 00:07:80:93:0c:aa 1106 FTP

LINK 255: CALL 0

LINK 255: CONNECT 0 FTP 2

LINK 255: OBEX 0 READY

After receiving the CONNECT event, you must wait for the OBEX {link_id} READY event before using the
connection.

4.3.2 Closing FTP connection

The FTP connection should be closed with a DISCONNECT command:

“DISCONNECT”

Disconnect command closes the OBEX connection cleanly, and then disconnects the underlying RFCOMM
link.

LINK 255: DISCONNECT

LINK 255: NO CARRIER 0 ERROR 0

Silicon Labs

Page 16 of 20

4.3.3 FTP commands

There are several commands that you can use for moving in directory tree, modifying, deleting and creating
files and directories. Basically FTP provides the PUT function as OPP client but on top of that you can use all
other functions listed below.

Command Function Return

CD {directory} Change to directory. “OBEX OK” or “OBEX NOT FOUND”

CDMK {directory} Make directory and CD to it. “OBEX OK” or “OBEX NOT FOUND”

CDUP
Go one directory level up. “OBEX OK” or “OBEX NOT FOUND”

DEL {object} Removes on object. (file or
directory)

“OBEX OK” or “OBEX NOT FOUND”

DIR
Directory Directory listing (in XML)

GET {file_name} Download file with name
file_name.

File data in MUX frames

LS
Alias to DIR Directory listing (in XML)

PUT {size} {mime} {filename}
Start OBEX transmission for file
with name file_name.

“OBEX OK” after {size} bytes is
successfully transferred

RD {object} Alias to RMDIR “OBEX OK” or “OBEX NOT FOUND”

RM {object} Alias to DEL “OBEX OK” or “OBEX NOT FOUND”

RMDIR {object} Removes on object. (file or
directory)

“OBEX OK” or “OBEX NOT FOUND”

Silicon Labs

Page 17 of 20

4.3.4 Sending a file using FTP

To upload a file to remote device you must use the PUT command. Please refer to 3.3.1 Sending a file - OPP
Client.

Note:

If a PUT operation is ongoing (until OBEX {link_id} OK response is received) other FTP commands will not
work. All file data must be completely sent to allow other FTP operations.

4.3.5 Receiving a file using FTP

To download a file using FTP you need to use the GET command. The file is received in OBEX format. The
OBEX transfer is interpreted as shown in the table below. All field IDs that you don’t understand you can
ignore.

In OBEX, all multi-byte values are sent most significant byte first, e.g. 0x1234 is transmitted as 0x12, 0x34.

Field explanation GET Length Filename
field ID

Filename
length

Filename Filedata
field ID

Filedata
length

Filedata

Not last packet

Last packet

0x90

0xa0

x

x

0x01

0x01

y

y

 0x48

0x49

z

z

Field size in bytes 1 2 1 2 y 1 2 z-3

Mandatory/Optional M O O/M

Packet length x bytes

For more information please see IrDA Object Exchange Protocol specification [2].

Silicon Labs

Page 18 of 20

5 OBEX error codes

The following table lists the raw values, ASCII strings and their corresponding explanations for possible OBEX
error codes.

Error code iWRAP string Explanation

0x40 BAD REQUEST The request had bad syntax or was
inherently impossible to be satisfied.

0x41
UNAUTHORIZED The request cannot be completed

without proper authorization.

0x43
FORBIDDEN The request is for something that is

forbidden by the server; authorization
will not bypass this.

0x44
NOT FOUND File or directory not found.

0x45
ERROR:45 The requested method is not allowed

for this object.

0x49
ERROR:49 The request could not be completed

due to a conflict with the current state
of the resource.

0x50
ERROR:50 Internal server error; the remote

device may be busy with other
requests or for some other reason
cannot process the request.

0x51
NOT IMPLEMENTED The requested command is not

implemented on the remote device.

0x53
SERVICE UNAVAILABLE The server is currently unable to

handle the request due to a
temporary overloading or
maintenance of the server.

Silicon Labs

Page 19 of 20

References

[1] MIME Media Types http://www.iana.org/assignments/media-types/

[2] IrDA OBEX Specification http://www.irda.org/

http://www.iana.org/assignments/media-types/
http://www.irda.org/

http://www.silabs.com

Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
USA

Simplicity Studio
One-click access to MCU and
wireless tools, documentation,
software, source code libraries &
more. Available for Windows,
Mac and Linux!

IoT Portfolio
www.silabs.com/IoT

SW/HW
www.silabs.com/simplicity

Quality
www.silabs.com/quality

Support and Community
community.silabs.com

Disclaimer
Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using
or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and
"Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories reserves the right to
make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the
included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses
granted hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent
of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant
personal injury or death. Silicon Laboratories products are not designed or authorized for military applications. Silicon Laboratories products shall under no circumstances be used in
weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

Trademark Information
Silicon Laboratories Inc.® , Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®,
EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®, Gecko®,
ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® and others are trademarks or registered trademarks of Silicon Laborato-
ries Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand
names mentioned herein are trademarks of their respective holders.

