-’

SILICON LABS

AN1053: Bluetooth® Device Firmware
Update over UART for EFR32xG1 and

BGM11x Series Products

This application note describes the legacy UART DFU (Device
Firmware Update) mechanism used in the Silicon Labs Bluetooth
SDK (Software Development Kit) for EFR32xG1 SoCs and
BGM11x and BGM121/BGM123 modules. UART DFU enables
deployment of firmware updates to devices in the field, making it
possible to introduce new features or other changes after a prod-
uct has been launched.

The Silicon Labs Bluetooth SDK allows designers to easily add UART DFU capability in
their products. The UART DFU functionality is handled completely by the bootloader
and does not require any extra code in the user application. This documents explains
how to configure a C-based project to support UART DFU with the legacy bootloader
and how to test firmware updates with the host example that is provided in the SDK.

NOTICE: The legacy UART DFU method was deprecated in version 2.6.0 and re-
moved from version 2.7.0 of the Bluetooth SDK (December 2017). For information on
the current UART DFU method, see UG266: Silicon Labs Gecko Bootloader User’s
Guide and AN1086: Using the Gecko Bootloader with Silicon Labs Bluetooth Applica-
tions.

silabs.com | Building a more connected world.

KEY POINTS

« UART DFU basic procedure

« Enabling DFU in your projects
« Creating update images

* UART DFU host example

AN1053: Bluetooth® Device Firmware Update over UART for EFR32xG1 and BGM11x Series Products
Introduction

1. Introduction

In Bluetooth SDK v 2.3.0.0, Silicon Labs introduced a new Gecko Bootloader, which is required for the new EFR32xG12 platform and
all future parts. It adds many improvements and features, including a configurable base framework, security options, support for multi-
ple update images, and in-field upgrades for the bootloader itself. While it is required for the new EFR32xG12 parts, the Gecko Boot-
loader can also be used on some earlier parts. Section 1.2 Bootloaders and Supported Parts details which bootloaders can be used
with which parts.

This document describes how to use the legacy UART DFU (Device Firmware Update) with the Silicon Labs Bluetooth SDK. For more
information on the new Gecko Bootloader, see UG266: Silicon Labs Gecko Bootloader User’s Guide. For background on bootloader
categories and the various Silicon Labs bootloaders, see UG103.6: Application Development Fundamentals: Bootloading.

The following topics are covered in this document:

* How the basic UART DFU procedure works.

» The basic configurations required to enable UART DFU in a project.

» Additional configurations that may be needed to enable UART DFU on custom hardware.
» Creation of update images.

» Testing UART DFU with the host example code provided in the SDK.

1.1 Prerequisites

The UART DFU solution discussed in this document applies to Silicon Labs Bluetooth SDK versions 2.0.0 and later. It is not possible to
update from older stack versions (1.0.x) to 2.0 or later using UART DFU.

You should be familiar with developing NCP (Network Co-Processor) applications using the Silicon Labs Bluetooth SDK. The basics of
NCP mode application development is discussed in AN1042: Using the Silicon Labs Bluetooth® Stack in Network Co-Processor Mode.

For testing the UART DFU, using one of the Silicon Labs Bluetooth-enabled Wireless Starter Kits (WSTK) is recommended, but not
mandatory.

1.2 Bootloaders and Supported Parts

If you are designing for the EFR32xG12 or later parts, you must use the Gecko Bootloader. For some other parts, you have the option
of using the Gecko Bootloader if you want to take advantage of its new functions. The following table shows bootloader support by part
category.

Table 1.1. Bootloader Part Support

Legacy UART Bootloader Gecko Bootloader

EFR32xG1 256kB Flash parts Yes Yes
EFR32xG1 128kB Flash parts Yes Limited
BGM11x Yes Yes
BGM121/BGM123 Yes Yes
EFR32xG12 No Yes
Future releases SoC and Module No Yes

Although the Gecko Bootloader supports field-upgradable bootloader configuration, the Bluetooth legacy bootloaders are not field-up-
gradable. If a legacy bootloader needs to be updated, the image must be flashed using the SWD (Serial Wire Debug).
1.3 UART DFU Basics

This section explains some UART DFU basics. More detailed instructions specific to application flow are included later in this docu-
ment.

silabs.com | Building a more connected world. Rev.0.4 | 2

AN1053: Bluetooth® Device Firmware Update over UART for EFR32xG1 and BGM11x Series Products
Introduction

1.3.1 Bootloader

The UART DFU is implemented almost entirely in the bootloader. Starting with Silicon Labs Bluetooth SDK version 2.0, the bootloader
occupies a fixed 16-kB area in the beginning of flash memory. The SDK includes a default bootloader that supports UART DFU. The
bootloader is also provided in source code format. Typically, application developers do not need to modify the bootloader code, but can
start with the source code if customization is required.

Using UART DFU, it is possible to perform a full firmware update (including the Silicon Labs Bluetooth stack, GATT database, hardware
configurations, and application code). However, the bootloader itself cannot be updated using UART DFU.

1.3.2 UART Settings

The default UART configuration in the bootloader is as follows:
* Baud rate 115200

* UART TX: pin PAO

* UART RX: pin PA1

* No hardware flow control

This configuration works with most of the Silicon Labs Bluetooth-enabled WSTKs. The pin mappings and other UART settings can be
changed. However, the easiest way to get started is to use the default configuration listed above.

Hardware flow control is optional. By default, flow control is not enabled.

1.3.3 Update Image Format

The file format of the update images is .EBL, a proprietary Silicon Labs file format used by several radio protocol stacks as well as the
Silicon Labs Bluetooth stack. EBL files include CRC checksums and other metadata that can be used to validate the integrity of the
update image.

EBL images are generated during the user application build process. Note that typically three *.ebl files are generated. For example,
when building the NCP Target — Empty example project from the Bluetooth SDK, after running the EBL creation script (cre-
ate_ebl_files.bat /.sh) from the workspace directory, three update images are created to the output_ebl directory, as shown in the fol-
lowing figure.

Name Date modified Type Size

|] app.ebl 5/16/2017 3:51 PM EBL File 25 KB
|] full.ebl 5/16/2017 3:51 PM EBL File 141 KB
[] stack.ebl 5/16/2017 3:51 PM EBL File 117 KB

Figure 1.1. EBL Files Generated for the NCP Target - Empty Example

Only the file ending full.ebl is intended for UART DFU updates. The other two EBL files are used for Over-The-Air (OTA) updates. They
should be ignored in projects that use UART DFU.

The UART DFU update file contains the entire firmware image, excluding the bootloader. Image files (.bin and .s37) found from the
workspace are to be used when programming the target device using a flash programmer. These files include the bootloader, and
therefore is 16 kB larger than the UART DFU update image.

User host applications do not need to understand the internal structure of the EBL file. The update image includes a CRC checksum
that is automatically generated as part of the firmware build process. This CRC checksum is used by the bootloader to verify the integri-
ty of the update image. To perform UART DFU, the NCP host application only needs to know the exact size of the EBL file.

silabs.com | Building a more connected world. Rev.0.4 | 3

AN1053: Bluetooth® Device Firmware Update over UART for EFR32xG1 and BGM11x Series Products
Introduction

1.4 UART DFU Process

The basic steps involved in the UART DFU are as follows:
1. Boot the target device into DFU mode (by sending df u_r eset (1)).
2. Wait for the DFU boot event.
3.Send the command Fl ash Set Addr ess to start the firmware update
4. Send the entire contents of the EBL update image (using the command DFU f I ash upl oad).
5. After sending all data, the host sends the command DFU f 1 ash upl oad fi ni sh.
6. To finalize the update, the host resets the target device into normal mode (by sending df u_r eset (0)).

A detailed description of the DFU-related BGAPI commands is found in the Bluetooth Smart Software API Reference Manual.

At the beginning of the update, the NCP host uses the command Fl ash Set Address to define the start address. The start address
should be always set as zero. During the data upload (step 4 above) the target device calculates the flash offset automatically. The host
does not need to explicitly set any write offset.

The SDK includes a minimal host example program that performs UART DFU following the steps listed above. Chapter 3. UART DFU
Host Example describes in more detail how to build and run this example.

silabs.com | Building a more connected world. Rev.0.4 | 4

AN1053: Bluetooth® Device Firmware Update over UART for EFR32xG1 and BGM11x Series Products
UART DFU in C-Based NCP Applications

2. UART DFU in C-Based NCP Applications

2.1 Bootloader Configuration in C Projects

All the C-based NCP examples in the Silicon Labs Bluetooth SDK use a fixed bootloader image by default. The default bootloader is
configured to support OTA updates. Therefore, any C-based NCP project that needs to support UART DFU has to be configured to use
a UART DFU capable bootloader instead of the default one.

The default bootloader (binbootloader.o file) that is used for C applications is located in following directories:
SDK version 2.0.x.x — 2.1.x.x
C:\SiliconLabs\SimplicityStudio\v4\developer\stacks\ble\v2.x.x.x\protocol\bluetooth_2.0\lib\

Gecko Suite v1.0, Bluetooth v2.3.x.x onwards
C:\SiliconLabs\SimplicityStudio\v4\developer\sdks\gecko_sdk_suite\v1.x\protocol\bluetooth_2.x\lib

The pre-compiled binbootloader.o is linked to the example projects in the IAR linker settings. The following screenshot is taken from
the ncp-empty-target example in SDK 2.0.0.

i S — -— — R
«= Properties for ncp-empty-target L@g

type filter text Settings - - -
> Resource [——
Builders @ Multi-file Compilation "S{tudodkPath}.‘ rotocolfbluetooth_l.ﬂ/lb[bai.a" o
. 4 " "% StudioSdkPath}/protocol/bluetooth_2.0/lib/binbootloader.o”
4 C/C++ Build (= MISRA-C:2004 "§{StudioSdkPath}/protocol/bluetooth_2.0/lib/stack.a"
| Board / Part / SDK € MISRA-C1998 "${StudioSdkPath}/protocol/bluetooth_2.0/lib/binstack.o"
Build Variables @ C-RUM Runtime Checking
| Environment , B IAR C/C++ Compiler for ARM
: Logging » B33 IAR Assembler for ARM =
Project Modules a) IAR Linker for ARM
Settings (# Configuration
> CfC++ General @ Library
Run/Debug Settings @ Input
(# Optimizations
(2 Advanced
@ Output
(5 List
i 2 Zdefine -
@ [OK] l Cancel
" i =

Figure 2.1. Default Bootloader in “ncp-empty-target” Example (no UART DFU Support)

silabs.com | Building a more connected world. Rev.0.4 | 5

AN1053: Bluetooth® Device Firmware Update over UART for EFR32xG1 and BGM11x Series Products
UART DFU in C-Based NCP Applications

2.2 Preparing a UART DFU-Capable Bootloader

The bootloader source code is included in the SDK in following directory:

SDK version 2.0.x.x — 2.1.x.x
C:\SiliconLabs\SimplicityStudio\v4\developer\stacks\ble\v2.x.x.x\protocol\bluetooth_2.x\ble_stack\bootloader

Gecko Suite v1.x, Bluetooth v2.x.x.x onward
C:\SiliconLabs\SimplicityStudio\v4\developer\sdks\gecko_sdk_suite\v1.x\protocol\bluetooth_2.x\ble_stack\bootloader

The bootloader directory has a subfolder iar that includes an IAR project file (bootloader.ewp). Building the bootloader requires the
IAR toolchain and a valid IAR license.

Note: It is recommended to make a copy of the bootloader project before changing any build settings or modifying the source files,
instead of modifying the original source code directly. The bootloader project can be duplicated by simply copying the whole bootloader
directory and renaming it, for example, bootloader_dfu.

After creating a copy of the bootloader project it is good to first check that the project builds without any errors.

The same bootloader source is used for both the OTA and UART DFU versions of the bootloader. To enable the UART DFU version,
the preprocessor directive UART_DFU must be defined. This is defined automatically in the IAR project settings. The setting can be veri-
fied from the C/C++ Compiler settings as shown in the following figure.

' ™y
Options for node "bootloader” ﬁ
Categary: Factary Settings
General Options - [T Muiti-file: Compilation
Static Analysis I Digcard Unused Publics
Runtime Checking
| Code I Optimizations I COutput I List | Freprocessor | Diagnostics |]
Assembler)))
Output Converter [lgnore standard include directories
Custom Buid Additional include directories: jone per ling)
Build Actions SPROJ_DIRS\..\. \inc’\common - [
Linker SPROJ_DIRS\. .\ Nnchsoc |_|
Debugger SPROJ_DIRS\..\ Nincludecommon n
Simulator SPROJ_DIRE\. .\ Ninclude'soc
Angel = SPROJ_DIRSL.\ NN \platformemlibhing -
CADI Preinclude file:
CMSIS DAP [
GDE Server
AR ROM-monitor Defined symbals: {one per line)
IHet/TTAGIet ERGIEJIOFI56GM4S ~ || Preprocessor output to file
Tink/3Trace UART_DFU Preserve comments
11 Stellaris Generate Hine dirsctives
Macraigor
PE micro
RDI TN
ST-LINK
Third-Party Driver -
[oK] [Cancel]
W

Figure 2.2. UART_DFU Precompiler Directive in Bootloader Project Settings

silabs.com | Building a more connected world. Rev.0.4 | 6

AN1053: Bluetooth® Device Firmware Update over UART for EFR32xG1 and BGM11x Series Products
UART DFU in C-Based NCP Applications

Typically it is enough to make sure that the bootloader UART configuration matches the UART settings used in the NCP project. UART
settings for the bootloader are collected in a header file named uart_config.h. The basic UART configurations that may need to be
adjusted to match the NCP project settings are highlighted in the following figure.

main.c uart_config.h |
1 [#ifndef UART CONFIG H
2 #define UART CONFIG_H
3 #include <stddef.h>
4 #include “em usart.h”
=
[I #define WSTK VICOM 0 I
7
g static const char *tx_pin = "FRO";
9 static const char *rx pin = "FARL";
10 static const char *cts_pin = NULL;
11 static const char *rts_pin = NULL:
12
12 static const USART_ InitAsync_TypeDef uartlInit =
14 {
15 .enable = usartDisable, // Walt to enable the transmitter and receiver
16 .refFreg = 38000000, // 38MHz HFRCO
17 | .baudrate = 115200, /4 Desired baud rate |
18 .databits = usartDatabitsd, // & data bits
19 mvdis = false, // Use majority voting
20 .pr3RxEnable = false, // Hot using FRS input
21 .prsRxCh = usartPrasRxCh0, // Doesn't matter which channel we select
22 .oversampling = usartOVslea, /4 St oversampling wvalue to x16
23 .parity = usartNoParity, // No parity
24 .3topbits = usartStopbitsl, // 1 stop bit
25 }»
26
27
28 gendif
29 -

Figure 2.3. Bootloader UART Settings in uart_config.h

The WSTK_VCOM directive can be used to enable the additional GPIO settings that are necessary in projects running on a WSTK and
using the on-board USB-to-UART converter as the host UART.

By default, WSTK_VCOMis defined as zero, meaning that the project is not built for WSTK.

The UART pin mappings are defined as string constants on lines 8..11. If flow control is not desired then the CTS and RTS pin names
are set as NULL.

The UART baud rate can be changed by editing the . baudr at e member of the uart I ni t struct (line 17).
Note: When using a WSTK and VCOM as the UART host interface, it is recommended to use the default baud rate 115200.

After checking that the UART configurations are correct, the project needs to be built. When testing with a WSTK it is enough to modify
the definition of WSTK_VCOM to a non-zero value. No other changes are needed.

As a result of a successful build a file named binbootloader.o is generated in the IAR output directory. This is the customized boot-
loader that you need to link with your NCP project, as described in the next section.

The bootloader project includes a post-build step that uses the GNU assembler (arm-none-eabi-as) for generating the binbootloader.o
output. This is defined in the project settings (Build Actions -> Post-build command line). The default post-build action is configured as:

ar m none- eabi -as -nt hunb - ncpu=cortex-mi - march=arnv7e-m $PROJ_DI R$\ . .\ bi nboot | oader. S -1 $EXE_DI R$
-0 $EXE_DI R$\ bi nboot | oader. o

The post-build step may fail if you do not have arm-none-eabi-as in your system path. In this case, you can fix the build by specifying
the absolute path to arm-none-eabi-as and editing the post-build command line setting as follows:

C:\Si liconLabs\Si npli cityStudi o\v4\ devel oper\t ool chai ns\ gnu_arm 4.9 201593\ bi n\ ar m none- eabi - as
-nt hunb -ntpu=cortex-mt - march=armv7e- m $PROJ_DI R$\ . . \ bi nboot | oader. S -1 EXE_DIR -0 $EXE_DI R$\ bi nboot | oader. o

silabs.com | Building a more connected world. Rev.04 | 7

AN1053: Bluetooth® Device Firmware Update over UART for EFR32xG1 and BGM11x Series Products
UART DFU in C-Based NCP Applications

2.3 Replacing the Default Bootloader

After you have created a customized binbootloader.o image that is configured to match your NCP project settings, the bootloader
must be linked into your project so that it replaces the default bootloader that comes with the SDK. The following figure shows an exam-
ple of modified linker settings, where the default binbootloader.o has been removed from the list and replaced with a custom binboot-
loader.o that is copied to the project workspace.

Settings v 7

(# Target Automatic runtime library selection
(2 Library Configuration Additional libraries 28 85 ¥
(# Library Options
(# Multi-file Compilation I
(53 MISRA-C:2004
(53 MISRA-C:1998 "§{StudioSdkPath}/protocol/bluetooth_2.1/lib/bgapi.a”
(# C-RUN Runtime Checking
- 83 LAR C/C++ Compiler for ARM
.3 TAR Assemnbler for ARM
|4 5 IAR Linker for ARM

Configuration

"Hworkspace_loc/$ProjMame}/binbootloader.o}"

(% Input
@ Optimizations
P T P |

Figure 2.4. Custom Bootloader Added to Project Linker Settings

After replacing the default bootloader with your customized version, build your NCP project and flash it to the NCP target. A simple way
to check if the bootloader change was successful is to observe the events generated by the NCP target after reset. The UART_DFU
bootloader generates the BGAPI event df u_boot after reset. This event is not generated if the target device is linked with the OTA
bootloader, or if the UART configurations are not set correctly. The purpose of the automatically generated df u_boot event is explained
later in section 4.2 DFU Window at Boot.

2.4 Generating EBL Update Images

Starting from SDK version 2.1.0, the example projects include a script in the project root folder for generating the update images. There
are two scripts, named:

» create_ebl_files.bat (for Windows)
+ create_ebl_files.sh (for Linux / Mac)

Running the create_ebl_files script creates three EBL files in a subfolder named output_ebl. The file named full.ebl is the update
image used for UART DFU. The other two files (app.ebl, stack.ebl) are related to OTA updates and they can be ignored.

[linker
4 [output_ebl
=| app.ebl

2| full.ebl

1= stack.ebl

v s ST

> |[h ble-configuration.h
™ e '

Figure 2.5. Files Generated by the Create_ebl_files Script

silabs.com | Building a more connected world. Rev.0.4 | 8

AN1053: Bluetooth® Device Firmware Update over UART for EFR32xG1 and BGM11x Series Products
UART DFU Host Example

3. UART DFU Host Example

This chapter explains how to use the UART DFU host example for testing UART DFU.

Before testing UART DFU, you need to have:
* An NCP target device that has been configured to support UART DFU (firmware built with SDK 2.0.0 or later)
« The EBL file (full update) generated from your NCP project

The UART DFU host example is a C program that is located under the SDK examples in following directory:
C:\SiliconLabs\SimplicityStudio\v4\developer\stacks\ble\v2.x.x.x\app\bluetooth_2.x\examples_ncp_host\uart_dfu

In Windows this program can be built using, for example, MinGW or Cygwin. In Linux or Mac the program can be built using the GCC
toolchain.

The project is built by running make (or mingw32-make) in the project root directory. After a successful build, an executable named
uart-dfu.exe is created in subfolder exe.

Before running the example you need to check the COM port number associated with your NCP target. For more details, refer to
AN1042: Using the Silicon Labs Bluetooth® Stack in Network Co-Processor Mode.

The uart-dfu.exe program requires three command line arguments:
* COM port number

» Baud rate

* Name of the (full) EBL file

Example usage and expected output:

./uart-dfu. exe COWM2 115200 full. ebl
Synci ng. . DFU OK
Boot | oader version: 4 (0x4)

finish
Using a WSTK with the default 115200 baud rate, the whole update procedure takes about 40 seconds to complete.

The number of bytes uploaded in one DFU flash upload command is configurable. The UART DFU host example included in the SDK
uses a 48-byte payload. The maximum usable payload length in Silicon Labs Bluetooth SDK 2.1.0 is 128 bytes. The maximum number
of bytes sent in one command is specified using a C preprocessor directive named MAX_DFU_PACKET. The value of MAX_DFU_PACKET
must be divisible by four.

silabs.com | Building a more connected world. Rev.0.4 | 9

AN1053: Bluetooth® Device Firmware Update over UART for EFR32xG1 and BGM11x Series Products
Error Handling in UART DFU

4. Error Handling in UART DFU

4.1 Corrupted or Incomplete Image

The UART DFU procedure may fail if the update image is either corrupted or if data upload is interrupted for some reason. Both of
these conditions are detected by the CRC check that is performed by the UART DFU bootloader before jumping into the main program.
If the CRC check fails then the bootloader does not jump into the main program but stays in bootloader mode, allowing the UART DFU
procedure to be repeated.

The code that performs CRC check (from bootloader main.c) is shown below.

//check image crc
//skip crc check if original software is installed
if ((saat-»imageCrc != IMAGE CRC MARGIC) || (saat->timeStamp != IMAGE TIMESTAMP MAGIC))
{
/* if crec error send event and erase first memory page */
if (!check image crc((uints8_ t *)BOOTLORDER SIZE)) {
gecko evt dfu boot failure(bg err security image checksum error);
de
{
uart input();
} while(1):

e I

{T}
(il

F }
-}

FCIN ST T I G G T S ST T S T A
P U Y I PE R P R U SU R YR FUR Y I U U C)
Do =1 U W RO WD m =] h

Figure 4.1. CRC Check in Bootloader

Note that the CRC check is skipped if the firmware has been programmed directly via the debug interface. This makes it possible to
launch and debug a C-based NCP application directly from Simplicity Studio or the IAR IDE, without having to create a full EBL image
each time the program is built.

If the CRC check fails then the bootloader generates event evt _df u_boot _f ai | ur e with the reason code set as 0x0B03 (image_check-
sum_error). The execution then stays in bootloader mode, so that the NCP host can program a valid EBL image.

4.2 DFU Window at Boot

The UART DFU procedure is normally initiated so that the NCP host reboots the NCP target device into DFU mode using the BGAPI
command cnd_df u_r eset (1) . In some cases, it may be impossible to trigger DFU reboot this way. For example, if the NCP target has
been programmed with an invalid UART configuration, then the main application cannot receive any BGAPI commands.

The default UART bootloader in the Silicon Labs Bluetooth SDK includes a boot delay that allows the NCP host to start DFU update
immediately after reset, before the main application has even started. The first event generated after reset is always evt _df u_boot,
indicating that the bootloader is ready to accept UART DFU commands. The bootloader then waits approximately one second. If the
host does not start UART DFU during this delay then the bootloader continues execution into the main program, which results in the
normal system boot event (evt _syst em boot).

The boot delay is implemented in file main.c, function nmai n_| oop(), as shown in the following figure

- lwhile (1) ;
-}

130 évoid main loop ()

131 H{

132 volatile uint32 t 1=1000000;
133 do

134 {H {

135 i uart input();

136 H#if !DEBUG_STRY

137 if{!dfu_active&&{*MAIN_APP!:..\.:‘:‘:‘:‘:‘:‘:‘:‘))
13 1--;

13 F#endif

14

14

14

I e Ve e s]

Figure 4.2. DFU Boot Delay

As shown in the above figure, the loop variable | is decremented if the df u_act i ve variable is not set. This causes the while-loop to
terminate when the counter reaches zero. If the NCP host sends command Fl ash Set Address during the DFU window then the df u_
act i ve variable is set and the countdown is stopped.

The DFU boot window allows the NCP target device to be reprogrammed using UART DFU even if the main application is completely
missing.

silabs.com | Building a more connected world. Rev. 0.4 | 10

Do you have an
innovative idea to
Erep the werid
connected?

Enprbire Chast Fpdluiedl P 14

Smart.
Connected.
Energy-Friendly.

Products (@11F:1114Y Support and Community
www.silabs.com/products www.silabs.com/quality community.silabs.com

Disclaimer

Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or
intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical"
parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes
without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included
information. Silicon Labs shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted
hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent of
Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant
personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass
destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

Trademark Information

Silicon Laboratories Inc.® , Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®,
EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®,
Gecko®, ISOmodem®, Micrium, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress®, Zentri and others are trademarks or registered
trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other
products or brand names mentioned herein are trademarks of their respective holders.

®

Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701

USA

SILICON LABS http://lwww.silabs.com

	1. Introduction
	1.1 Prerequisites
	1.2 Bootloaders and Supported Parts
	1.3 UART DFU Basics
	1.3.1 Bootloader
	1.3.2 UART Settings
	1.3.3 Update Image Format

	1.4 UART DFU Process

	2. UART DFU in C-Based NCP Applications
	2.1 Bootloader Configuration in C Projects
	2.2 Preparing a UART DFU-Capable Bootloader
	2.3 Replacing the Default Bootloader
	2.4 Generating EBL Update Images

	3. UART DFU Host Example
	4. Error Handling in UART DFU
	4.1 Corrupted or Incomplete Image
	4.2 DFU Window at Boot

