# NOVUS LABS *RS9116W – AWS IOT* WIRELESS INTEROPERABILITY AND POWER CONSUMPTION UNDER CONGESTION ACROSS 100 ROUTERS REPORT



Date: 01/07/2022 Rev 1.1



## I. SUMMARY

Widespread adoption of Smart IoT devices such as smart locks, video doorbells, and smart watches rely on device vendors meeting two key challenges unique to these devices: 1. Staying connected securely to their Wi-Fi Access Point (routers), and cloud while, 2. Adhering to ultra-low power budgets that are much more stringent than a Smartphone. Connectivity and power consumption of an always-ON connection measured under ideal conditions with only a few wireless routers doesn't show the complete picture. Wireless channel congestion, router make and model, can affect interoperability and power consumption. Given the importance of the interoperability and "connected power" metric for IoT devices - Silicon Labs commissioned Novus Labs to evaluate interoperability and power consumption of their silicon by connecting securely across 100 popular wireless routers. For each router, a 25-minute test was conducted to check robustness and measure the power consumption under varying levels of network congestion. The end-results have been tabulated by Novus Labs and can be used by device vendors, looking at using Silicon Labs Wireless chips, as a measure of robustness, to compute battery life under various real-life conditions and predict variations across routers in their user base. Also, Silicon Labs commissioned Novus Labs to test and evaluate interoperability and power consumption of their silicon by connecting securely with 100 wireless routers using MQTT IoT traffic between the tested devices and an internet-located AWS server.

## **KEY HIGHLIGHTS**

Below are the key highlights from the testing conducted on RS9116W -WiseConnect AWS IoT Wireless SoC:

- Robust secure connectivity and interoperability observed during the whole test for all 100 routers with: a. Zero Wi-Fi disconnects
  - b. Zero AWS disconnects
  - c. 100% reception of application messages sent once every 55 seconds during the test.
- 2. Ultra-Low power consumption
  - a. With clean channel, average of only 116 uA across all 100 routers
  - With 'close to saturation' channel utilization of 90% the average power consumption increases to only 364 uA averaged across all 100 routers
- 3. Significant battery life Achievable:
  - a. Based on above measurements the typical battery life for an "Always Connected" Smart-lock application is 3.03 years for a low congestion environment (e.g., single-family home) and about 2.08 years for a dense and congested wireless environment (e.g., some apartments, offices, and hotels) (see <u>Appendix B: loT Battery Life Computation under Congestion</u>)



Figure 1: 100 Router Average Power Consumption (AWS Traffic)



## **II. TEST SETUP DESCRIPTION**

#### RS9116W - WiseConnect:

Silicon Labs's newest generation 40nm wireless chips RS9116W include optimized network processor and radio functions to enable ultra-low-power secure connection to the internet. The RS9116W (DUT) is an IoT wireless connectivity SoC that provides Wi-Fi, BT, BLE, embedded protocol stacks and network stacks and is used in conjunction with user application residing on external microcontroller SoC. The RS9116W EVK connects to a host MCU using UART or SPI interfaces. The RS9116W EVK is connected to an EFR32 embedded host MCU using the WiseConnect Simple Application Programming interface (SAPI). Since the test includes application-level packets exchanges every 55 seconds, the RS9116W EVK is used for all the tests to better represent the end-system power consumption. The testing was conducted on the RS9116W EVK + EFR32 MCU board provided by Silicon Labs.

#### Wireless Routers:

Different wireless routers have different protocol implementations in hardware and firmware that affect how long a sleeping 802.11n device must stay awake to receive beacons and buffered frames at the router. It is important to select a large number of routers covering various brands, chipsets and popularity to weed out all issues that device makers may face in the field. 100 retail wireless routers were selected using above criteria - see appendix A for a full list of wireless routers used for the tests. All testing was done using Out-of-box configuration of the routers.

#### Test Setup

- 1. Place the power analyzer, RS9116W EVK, and WiFi sniffer inside the isolated RF chamber.
- 2. Factory reset AP and configure: SSID, Ch. 6, and WPA2 key. Leave all other settings default.
- 3. Start Wi-Fi sniffer.
- 4. Start serial log.
- 5. Power on RS9116W EVK.
- 6. DUT connects to AWS server and connection is verified using MQTT.
- 7. Wait 1 minute and verify Association to AP and steady state.
- 8. Start KickStart software and 5-minute timer.
- 9. Once the 5-minute timer is up, stop Kickstart, save the file, and record average power consumption for 5 minutes.
- 10. Start interference and repeat step 7-8 for the following:
  - a. 0% channel saturation (0Mbps) for 5 minutes.
  - b. 20% channel saturation (15Mbps) for 5 minutes.
  - c. 40% channel saturation (30Mbps) for 5 minutes.
  - d. 70% channel saturation (70Mbps) for 5 minutes.
  - e. 90% channel saturation (90Mbps) for 5 minutes.
- 11. Stop Wi-Fi sniffer and serial logs.Upload full Wi-Fi sniffer, serial logs, and all 5 Kickstart files to SharePoint.







Figure 2: Test Setup Picture and Block Diagram



## III. TEST PROCEDURE DESCRIPTION

The DUT EVK was configured to establish a WPA2 secure connection with the AP and the DUT then connects wirelessly via the AP to an AWS server located on the internet. Once securely associated with the AP and having established the connection to the internet located AWS server, the application on the Wireless MCU would periodically send keep alive packets every 55 seconds to the server. The DUT EVK is connected to AWS server, and MQTT is used to send packets every 55 seconds to the server. Power consumption was measured for 5 minutes for each of the 5 channel congestion scenarios, while the EVK sent application messages to the AWS server once every 55 seconds to the server. The EVK would go into power save and would wake up with a listen interval of 1 sec to check for any messages back from the server. The 5 interference scenarios included, baseline (no congestion), 20%, 40%, 70% and 90% channel congestion. The average power consumption was recorded for each RF congestion level. Sniffer traces were captured for all the tests. The goal of this test, in addition to test connectivity robustness, was to also measure the effect on current consumption that different traffic levels had on the system to thus mimic real world environments.

#### Tools used:

- Iperf (traffic generator): This tool was used for generating throughput congestion during the test. Commands used during the test are shown below:
  - Ethernet Laptop: iperf -c <IP> -u -b <amount of UDP traffic> -P1 -fm -i1 -t 300
  - Wi-Fi Station: iperf –s -u
- Tera Term extracting serial logs and updating the firmware of the EVK.
- MacBook Pro to capture sniffers for 0% channel congestion for Wireshark traces for each AP.
- Keithley DMM6500 7 1/2 Digit Multimeter: A multimeter with a 1A DC range used to measure power consumption of the EVK

## **Test Results**

The RS9116W EVK is optimized for ultra-low power operation during an active connection to the internet. Detailed testing done over multiple weeks by Novus labs has shown that this ultra-low power operation is sustained with multiple routers under multiple channel congestion scenarios. The Summary plot of the results is presented in Figure 1, which shows the current consumption for each channel congestion % averaged over all 100 routers used in the test. It was seen during the tests that the average power consumption increased by only 248uA for a close to saturation traffic channel. In addition – all routers passed the test with zero disconnects at wireless, AWS and application levels. Battery life computations for IoT device like a smart-lock device under two extreme real-world traffic profiles is presented in Appendix B.





Figure 3: Silicon Labs RS9116W – 100 AP Power Consumption (AWS)



# IV. APPENDIX A: 100 ROUTERS LIST

Device: Silicon Labs RS9116W EVK running Firmware RS9116W.2.4.0.36, Board rev: RS9116W EVK 1.4 All tests were run with same RS9116W application code with all 100 routers. These routers were configured to their default setting out of the box. The firmware version of RS9116W.2.4.0.36 was used during the full 100 AP test.

| AP Make        | AP Model                                   | AP Firmware                             |  |
|----------------|--------------------------------------------|-----------------------------------------|--|
| Actiontec      | GT784WN v5A                                | NCS01-1.0.14                            |  |
| Actiontec      | C1000A                                     | CAC002-31.30L.76                        |  |
| Actiontec      | MI424WR Rev. I                             | 40.20.4.2                               |  |
| ActionTec      | C2300A                                     | CAS001-31.165L.11                       |  |
| Amplifi        | Afi-R                                      | 3.6.1                                   |  |
| Apple          | AirPort Extreme Base Station A1354         | 7.8.1                                   |  |
| Apple          | AirPort Extreme Base Station 5th Gen A1408 | 7.8.1                                   |  |
| Apple          | AirPort Express A1392                      | 7.8.1                                   |  |
| Apple          | Time Capsule A1409 (MD032LL/A)             | 7.6.9                                   |  |
| Arris          | BGW210                                     | 1.5.12                                  |  |
| Arris          | NVG599                                     | 9.1.6h1d25                              |  |
| Arris          | SBG6950AC2                                 | 9.1.103AA72                             |  |
| Arris          | SURFBoard mAX Model W31                    | AXR.0207.190926.61                      |  |
| ARRIS          | SBG6900-AC                                 | D30GW-OSPREY-1.5.4.0-<br>GA-10-NOSH     |  |
| ARRIS          | SVG2482AC                                  | 12                                      |  |
| Arris/Motorola | TG1682G                                    | 10.1.27B.SIP.PC20.CT                    |  |
| Asus           | RT-AC86U                                   | 3.0.0.4.386_44470                       |  |
| Asus           | Blue Cave AC2600                           | 3.0.0.4.384_46630                       |  |
| Asus           | DSL-AC88U                                  | v1.10.06 build591                       |  |
| Asus           | RT-AC1900P                                 | 3.0.0.4.386_43129                       |  |
| ASUS           | RT-AX56U                                   | 3.0.0.4.386_44266                       |  |
| ASUS           | Lyra Voice                                 | 3.0.0.4.384_46770                       |  |
| ASUS           | Lyra Trio (ASUS MAP-AC1750)                | 3.0.0.4.384_46630                       |  |
| Asus           | RT-AC66U B1                                | 3.0.0.4.386_43129                       |  |
| Belkin         | F9K1105 v2                                 | 2.10.07                                 |  |
| Binatone       | WR3000N                                    | WR3000N v1 00000000                     |  |
| BT             | Home Hub 6A (Smart Hub)                    | SG4B100021EC                            |  |
| ВТ             | Smart Hub Type A                           | SG4B10002244                            |  |
| AP Make        | AP Model                                   | AP Firmware                             |  |
| TP-LINK        | Archer AX11000                             | 1.2.3 Build 20210719<br>rel.14861(5553) |  |
| Cisco          | WAP300N                                    | 1.0.03, build 1, Dec 22, 2014           |  |
| D-Link         | DIR-636L revA1                             | 1.04                                    |  |



| D-Link    | DIR-860L (CA)                  | 1.08                              |
|-----------|--------------------------------|-----------------------------------|
| D-Link    | DIR-850L vB1                   | 2.01                              |
| D-Link    | DWR-118 A2                     | V01.01.3.032                      |
| EERO      | Home Wifi System (B010001)     | v6.4.0-2092                       |
| FAST      | FWR310                         | 1.0.41 Build 150519<br>Rel.42557n |
| FRITZ BOX | WLAN 7490                      | FRITZ!OS 06.05                    |
| Google    | WIFI (NLS-1304-25)             | 13729.57.27                       |
| Google    | Nest Wifi (H2D)                | 13729.57.19                       |
| H3C       | WAP722S                        | 1.06                              |
| Huawei    | A1 WS852                       | 2.1.17                            |
| Linksys   | EA8300                         | 1.1.5.201210                      |
| Linksys   | E8400                          | 1.0.03.01                         |
| Linksys   | MX5300                         | 1.1.9.200251                      |
| Linksys   | Velop (WHW03)                  | 1.1.18.206964                     |
| Luma      | WRTQ-329ACN                    | 0.9.14                            |
| Mercury   | MAC1200R v2.0                  | 3.14.8 Build 150228<br>Rel.49905n |
| Meshforce | M3/M3 Dot                      | V1.0.0.36(233)                    |
| Motorola  | MG7550                         | 7550-5.7.1.43                     |
| NEC       | Aterm WG1200HP3                | 1.4.2                             |
| NetComm   | NF18ACV                        | NF18ACV.NC.AU-<br>R6B016.EN       |
| Netgear   | C6300                          | V3.01.14                          |
| Netgear   | R7800                          | V1.0.2.84                         |
| Netgear   | R9000 (Nighthawk X10 - AD7200) | V1.0.5.28                         |
| Netgear   | ORBI UNITS RBR50 AND RBS50     | V2.7.3.22                         |
| Netgear   | R7000                          | V1.0.11.126_10.2.112              |
| Netgear   | WNR2020                        | V1.1.0.44_1.0.1                   |
| Netgear   | CG4500BD                       | 2.05A2                            |
| Netgear   | Nighthawk AX8 (RAX80)          | V1.0.5.126_1.0.65                 |
| Netgear   | C6220-100NAS                   | V1.02.11                          |
| Netgear   | R6230                          | V1.1.0.110_1.0.1                  |
| AP Make   | AP Model                       | AP Firmware                       |
| Netgear   | R6250                          | V1.0.4.38_10.1.30                 |
| Netgear   | R6800                          | V1.2.0.76_1.0.1                   |
| Netgear   | Nighthawk R7000P               | V1.3.1.64_10.1.36                 |
| Netgear   | Nighthawk RAX120 V1.2.2.24     |                                   |
| Netgear   | Nighthawk RAX40                | V1.0.3.94_1.0.1                   |
| Netgear   | R6700 v3                       | V1.0.4.118_10.0.90                |
| Netgear   | RAX15                          | V1.0.3.96_2.0.59                  |
| Netgear   | XR700-100NAS                   | V1.0.1.36                         |
| NETGEAR   | Nighthawk C7800                | V3.01.43                          |



| NETGEAR        | R6260                                    | V1.1.0.78_1.0.1                                    |
|----------------|------------------------------------------|----------------------------------------------------|
| Netgear        | Nighthawk EAX80                          | V1.0.1.64_1.0.1                                    |
| Netgear (Orbi) | RBR850 (Base Station) RBS850 (Sattelite) | V3.2.18.1_1.4.14                                   |
| Plume          | SuperPod (B1A)                           | 1.0.1-59.gcd42768-prod                             |
| Roqos          | Core RC10                                | 2.1.79                                             |
| Sagemcom       | F@ST1704N                                | 7.247_F1704N_WS                                    |
| Sagemcom       | RAC2V1S                                  | SGAC11003K                                         |
| Samsung        | Smart Things WiFi (ET-WV525)             | 1.3.02.1011                                        |
| Securifi       | Almond 2015                              | AL2-R109                                           |
| SMC            | SMCD3GNV                                 | 3.1.5.8_IMS                                        |
| Spectrum       | RAC2V1A                                  | 1.0.11                                             |
| Spectrum       | RAC2V1K                                  | 1.1.16                                             |
| Technicolor    | CGM4140COM (XB6-T)                       | 2.2                                                |
| Technicolor    | C2000T                                   | CTH005-4.12.1.44                                   |
| Tenda          | FH1202                                   | V1.2.0.14 (408)                                    |
| Tenda          | AC6                                      | V15.03.05.16_multi                                 |
| Tenda          | AC18                                     | V15.03.05.06(10082)                                |
| TP-LINK        | Archer C9 v3                             | 1.0.0 Build 20160330<br>rel.52750                  |
| TP-LINK        | TL-WR902AC                               | 0.9.1 0.1 v0089.0 Build<br>170828 Rel.57433n(4555) |
| TP-LINK        | TL-WR841N                                | 0.9.1 4.16 v009e.0 Build<br>180516 Rel.81030n      |
| Linksys        | EA9500                                   | 1.1.8.204089                                       |
| TP-LINK        | Archer AX50                              | 1.0.9                                              |
| TP-LINK        | Archer AX6000                            | 1.2.4                                              |
| TP-LINK        | Archer AX11000                           | 1.2.3 Build 20210719<br>rel.14861(5553)            |
| Ubee           | EVW3210                                  | 9.12.6002                                          |
| AP Make        | AP Model                                 | AP Firmware                                        |
| VANIN          | Juplink RX4-1500                         | V1.0.5                                             |
| Verizon        | Fios-G1100                               | 02.01.00.05                                        |
| Verizon        | Fios Home Router G3100                   | 1.3.6.4                                            |
| Wise Tiger     | K2 (WT-RT8501)                           | 1.27.6                                             |
| Xiaomi         | MiWiFi 3(MIR3)                           | 2.26.39                                            |
| Xiaomi         | Mi WIFI Router Pro                       | 2.16.6                                             |



# V. APPENDIX B: IOT BATTERY LIFE COMPUTATION UNDER CONGESTION

Based on a study done by Silicon Labs, lower power consumption with an Always-ON AWS connection under congestion translates to longer battery life in the real-world. To quantify the impact on battery life we consider two scenarios. The first one is a Low-Congestion case of a single-family home with wireless traffic limited to single television and a few smartphones and laptops. The second one is a High-congestion case typical to multi-user dwellings like Apartments or Hotels – or enterprise environments like Office, retail space, etc.

#### Table of % Time in a typical Day seeing Channel Occupancy in the specified ranges:

| Channel congestion                                 | <10% | 10-30% | 30-55% | 55-80% | 80-100% |
|----------------------------------------------------|------|--------|--------|--------|---------|
| Low-Congestion (Single Family Home) %              | 85   | 10     | 2      | 2      | 1       |
| High-Congestion (Apartments, Hotels and Offices) % | 15   | 25     | 30     | 20     | 10      |

Below table summarizes the measured average power consumption of RS9116W (uA @ 3.3V) with a secure and robust always ON 1-second latency wireless AWS connection and 55 second application keep-alive handshake:

| Channel Congestion                                                | 0%  | 20% | 40% | 70% | 90% |
|-------------------------------------------------------------------|-----|-----|-----|-----|-----|
| Measured Power Consumption (uA @ 3.3V) vs<br>Channel congestion % | 116 | 136 | 162 | 358 | 364 |

The average uA @ 3.3V for **Low-Congestion** traffic profile is computed from above two tables as:  $116 \times 0.85 + 136 \times 0.10 + 162 \times 0.02 + 358 \times 0.02 + 364 \times 0.01 = 126uA$ 

The average uA @ 3.3V for **High-Congestion** traffic profile is computed from above two tables as: 116 \* 0.15 + 136 \* 0.25 + 162 \* 0.30 + 358 \* 0.20 + 364 \* 0.10 =**208uA** 

Consider a Smart Lock with 4x Energizer Lithium AA cells providing 3000mAh @ 6V. The battery life of the Smart lock without Wi-Fi connectivity is 10 years => average power consumption of rest of the Smart lock electronics is 3000mAh/ (10\*365\*24h) = 34.2uA @ 6V.

With addition of RS9116W for secure, robust, always-ON AWS connectivity (1 second latency, 55 second application handshake) the above Smart Lock would have battery life computed as follows:

#### Low Congestion Environment:

RS9116W consumes 126uA @ 3.3V => 77uA @ 6V (assuming 90% efficiency step down regulator from 6V down to 3.3V) => total current of Lock = 77uA + 34.2uA = 111.2uA. Battery life of Lock = 3000mAh /111.2uA = 26978 hours = **3.08 years** 

#### **High Congestion Environment:**

RS9116W consumes 208uA @ 3.3V => 127.1uA @ 6V (assuming 90% efficiency step down regulator from 6V down to 3.3V) => total current of Lock = 127.1uA + 34.2uA = 161.3uA. Battery life of Lock = 3000mAh /161.3uA = 18599 hours = **2.12 years** 

### **Contact Information**

|         | North America   |                       |
|---------|-----------------|-----------------------|
| Contact | TEL:            | E-mail                |
| Service | +1-503-906-8150 | service@novuslabs.com |