Developing Wi-Fi® Connected IoT Devices
Topics

• Why to Use Wi-Fi for IoT?
• Basics of Wi-Fi
• Developing a Wi-Fi Connected IoT Device
Why to Use Wi-Fi for IoT?

- **Standardized** - 802.11 and Wi-Fi Alliance
- **Unlicenced frequencies** - 2.4GHz and 5GHz
- **High speed data** - MBs to GBs
- **Security** - WPA2, WPS, WPA Enterprise
- **Relatively low power** - 5-200mA
- **IP Connectivity** - IP, TCP and UDP
- **Application level protocols** - HTTP, DHCP, DNS etc.
- **Installed infrastructure** - 25 to 80% of homes have Wi-Fi
 - USA and Europe – 60 to 80%
Basics of Wi-Fi

- **802.11 MAC**
 - Active and passive scanning
 - Authentication and association
 - Encryption
 - Flow control and fragmentation
 - Power saving

- **802.11 Radio**
 - 2.4 and 5GHz
 - DSSS and OFDM modulations
 - 22MHz to 160MHz channel bandwidth
 - 1 – 14 channels
 - 1 – 433Mbps symbol rates
Basics of Wi-Fi

- **Security**
 - Authentication
 - Association
 - Access Control
 - Encryption

- **Encryption options**
 - WPA2 Personal
 - WPA Enterprise
 - WPA
 - WEP
 - Open

- **Wireless Protected Setup (WPS)**
 - Easy security setup with PIN entry or push button
Implementing a Wi-Fi IoT Sensor

Typical Questions to Ask

- What to Connect?
- How to Get Connected?
- Security?
- How to Discover Devices and Services?
- How to Transmit Data?
What to Connect?

– Internet for example via Wi-Fi Access Point
 • Your device needs to be a Wi-Fi client
 • Wi-Fi Access Point settings (SSID and security) need to be configured in the client

– Point-to-Point eg. Smart Phone or Tablet
 • Your device should be a Wi-Fi Access Point
 • You can easily scan and connect it with a smart phone
 • However when you do this the smart phone cannot be connected to connect Internet at the same time

– Point-to-Point while Smart Phone connected to Internet
 • Wi-Fi Direct (WFD) allows P2P connection while smart phone connected to Internet
 • WFD however not widely supported on smart phones
How to Get Connected?

Getting to Internet via Wi-Fi Access Point

• **Challenge**: Access Point settings need to be configured to the device

• **Configuration options**:
 – WPS and simple LED + button interface
 – AP mode + HTTP server
 – Ethernet + HTTP server

• **Normal operation**
 – DHCP
 – TCP, UDP etc. For data transfer
How to Get Connected?

- Point-to-Point Connectivity to Smart Phones
 - Relatively simple unless Smart Phone needs Internet connectivity
 - In this case Wi-Fi Direct needed – which is not generally supported yet

Smart Phone
- Wi-Fi client mode
- Use the built-in UI to discover and connect the device

Internet connection
- Wi-Fi Direct needed or otherwise phone will drop from Internet

Configuration / Operational mode:
- Wi-Fi Access Point
- HTTP server
- TCP/UDP servers etc.
Security?

- **Wi-Fi Security**
 - WPA2 is the only secure protocol today and WPA and WEP should not be used at all
 - WPA personal requires a pre-shared password to be configured in both the Access Point and the Client
 - Wi-Fi security only provides authentication and encryption between the client and the Access Point

- **Enterprise security**
 - Some enterprise networks use WPA Enterprise and do not simply rely on WPA personal
 - The clients are authenticated to a separate authentication server (f.ex. RADIUS), not just the Access Point
 - Uses EAP protocol (802.11x)
 - **PEAP-MSCHAPv2**
 - Username and password exchanged in a TLS tunnel
 - **EAP-TLS**
 - X.509 certificates used instead of username / password
Security?

• **End-to-End security**

• **Transport Layer Security** adds end-to-end security over TCP

 – SSL is also supported, it is now considered insecure
 • POODLE Attack
 • https://www.us-cert.gov/ncas/alerts/TA14-290A

 – TLS offers two services
 • Verification of the servers identity
 • Encryption of data

 – X.509 certificates are needed at the client and server
How to Discover Devices and Services?

- **Server Discovery**
 - Servers typically have fixed IP address / DNS name
 - Need to be programmed in the application code
 - DNS client can be used to translate URLs into IP addresses

Server:
- IP address
- Domain name: server.mydomain.com

Client
- Server domain name programmed
- Use DNS to resolve IP
How to Discover Devices and Services?

- **Client discovery**
 - More complex as clients do not necessarily have fixed IP or DNS name
 - Multiple clients can be in the same network
 - **Discovery strategies:**
 - UDP broadcast / multicast
 - Discovery protocols like mDNS or UPnP
 - mDNS applications are available for iOS and Android devices
 - **Note:** No built-in support for mDNS or UPnP, but they are fairly trivial to implement over UDP (even with BGScript)
How to Transmit Data?

- **UDP**
 - Connectionless data transfer
 - Enables broadcast
 - However can be unreliable
 - WF121’s throughput ~3.5Mbps

- **TCP**
 - Connection oriented data transfer
 - Provides reliability and retransmissions
 - WF121’s throughput ~3.5Mbps
 - Up to 32 TCP sockets
 - Can be secured with TLS

- **HTTP**
 - Browser can be used as an application
 - Allows simple user interfaces to be built with HTML + Javascript
Example: Standalone Temperature Sensor using HTTP

- **Features:**
 - Wi-Fi Access Point Mode
 - WPA2 security
 - DHCP and HTTP servers
 - BGScript application
 - I2C

- HTML files are stored on the WF121s built-in flash

- Alternatively they can be stored on external SD card connected to one of the SPI interfaces

- A temperature sensor connected to the WF121’s I2C interface

- **BGScript Application:**
 - Configures Wi-Fi AP settings
 - Starts AP mode
 - Start DHCP and HTTP servers

- **Reading and displaying the temperature:**
 - Web browser requests URL: `/I2C/readtemperature.html`
 - An event is generated to BGScript application
 - BGScript application reads temperature over I2C
 - BGScript application returns the response as HTML page or JSON file
Thank You