Presentation Will Begin Shortly

JUNE SESSIONS		
DATE	TIME	SESSION
THURS, JUNE 5 [™]	10 AM CT	Real-World AI/ML Applications on a Wi-Fi Wireless MCU
TUES, JUNE 17 [™]	10 AM CT	Bringing Bluetooth 6.0 Channel Sounding to Market

Exploring AI/ML Applications on the Ultra-Low Power SiWx917 Wi-Fi 6 Solution

Rui Pu - Product Manager, Software & Tools Kalevi Ratschunas - Marketing Manager Wi-Fi

Wi-Fi

Designed from the ground up for IoT - SiWx917 Wi-Fi 6 SoC

DIFFERENTIATED FEATURES

Ultra-Low Power

 Increases Battery life and Recharging Interval

IoT-Optimized Wireless Performance

- 2.4GHz: Long-range, low-power, effective wall penetration, highthroughput
- Wi-Fi, Bluetooth LE, and Matter in single package

Edge Computing + System Integration

- Al/ML accelerator enablement available in June in SiSDK 25Q2 release
- Application MCU and Wireless Processor with Networking off loads
- Rich Peripherals, High GPIO count, and Large Memory

DEVICE SPECIFICATIONS

Wide Range of Memory configurations

- 672 kB on-die SRAM with configurable split between Cortex-M4 and Network Wireless processor
- In-package 8MB Flash/PSRAM, 16MB External Flash/PSRAM,
- Single-Chip Matter over Wi-Fi Solution

Multiprotocol Co-Existence

 High-performance Wi-Fi 6 and Bluetooth Low Energy 5.4

Robust Security

 A High Level of Security for the Device, Wi-Fi Protocol, and Networking

SiWx917: Lowest Wi-Fi Power – Longest IoT Battery Life

Wi-Fi Standby Current Consumption

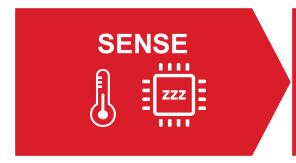
Hundreds of µA 65µA DTIM10 WLAN keep-alive 30s 65µA 22µA* Wi-Fi 4 Wi-Fi 6 Wi-Fi 6 No TWT Wi-Fi 4 Wi-Fi 6 Wi-Fi 6 **Typical Competing** SiWx917 **Solutions**

SiWG917 SoC Battery Life Estimation

How the SiWG917 SoC battery life of up to 2 years was estimated:

- Average current consumption for wireless and application 37μA at 3.3V
- Associated standby low-power mode
- SiWG917 SoC as TCP client maintains socket connection
- 60 secs TCP keep-alive used.
- WLAN keep-alive 30 secs. 352kB NWP SRAM retention
- TWT Auto Config feature enabled. TWT Rx latency 60 secs with 8ms wakeup duration
- Arm Cortex-M4 in sleep mode (PS4). 320kB SRAM retention
- Measurements are taken in optimal conditions (RF chamber)
- Battery capacity 1000mAh (example AAA rechargeable battery)

^{*} Wi-Fi 6 TWT with auto-config feature enabled. TWT Rx latency 60s with 8ms wakeup duration. WLAN keep-alive every 60s. No TCP keepalive. 352kB SRAM retention. Does not include application MCU operation.



- On-board sensors: Temperature Sensor (Si7021), Humidity Sensor (Si7021), 6-axis inertial sensor (ICM-20689), 2 x Digital Microphones (ICS-43434), Ambient Light Sensor (VEML6035)
- Probe points for power measurements
- Qwiic Connector: For compatibility with Sparkfun's expansion hardware (Sensors, Cameral, LCD, etc)
- USB Port: Board Power, Serial Communication
- On-board Debugger: SWD, VCOM

NEW: Development Kit for AI/ML SiWG917 Wi-Fi, BLE and Sensors

- Arm Cortex-M4F 180Mhz
- 8MB flash, 8 MB on-board PSRAM and 320kB SRAM
- Matrix Vector Processor for AI/ML
 Co-processor for offloading matrix math operations
 Delivers faster ML inference with lower power consumption
 Performs Real and Complex Matrix and Vector operations, providing computing efficiency
- Wide variety of AI/ML applications
 Key-word detection demo
 Accelerometer based demos
- TensorFlow Lite support Available in June
- OPN: SiWx917-DK2605A

SiWx917 Ultra-Low-Power Sensor Processing

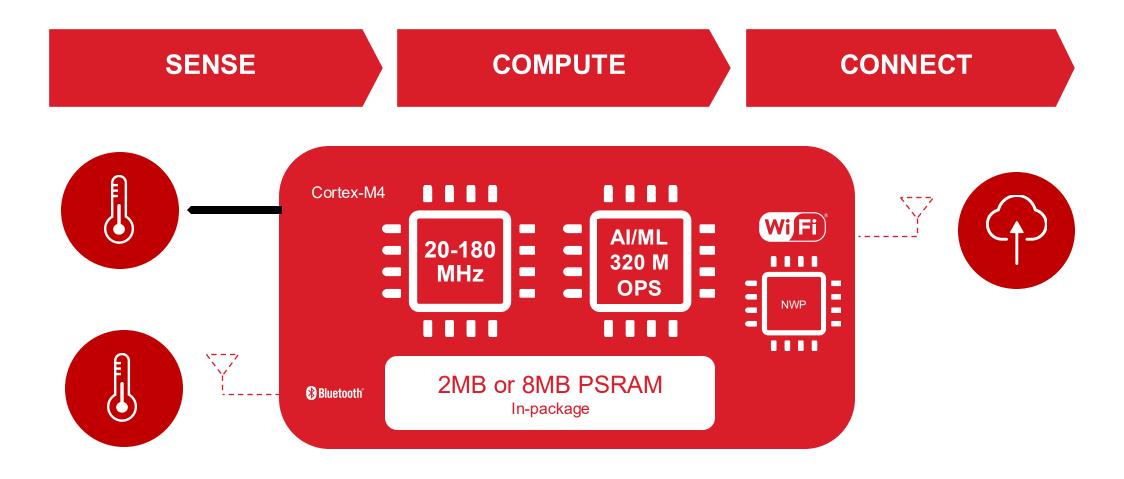
Receive & Store Sensor Data in the ULP Mode

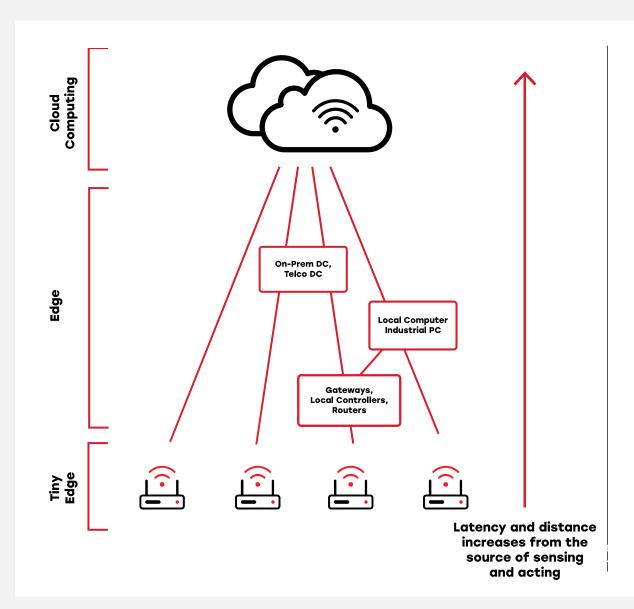
- Receive through ULP peripherals
- Store in ULP SRAM
- Cortex-M4 sleeps
- PS1 power state is supported for ADC-based sensors, PS2 for other sensors.

Process Sensor Data in Cortex-M4 High efficiency Mode

- Cortex-M4
- High efficiency computing
 - PS2 at 20MHz (32uA/MHz)
- · High-performance computing
 - PS4 at 180MHz (65uA/MHz)
- SW controlled Power manager
- Fast wake-up time

Enter High-performance Mode to Send Data to Cloud


- Maintain Wi-Fi Cloud connection
- Network Wireless Processor maintains TCP connection

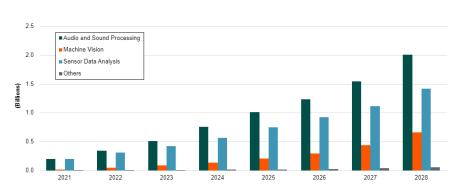

- Minimize Power and Extend Battery Life
- Offload MCU

Compute Locally at Low-power

SiWx917 Ultra-Low-Power Sensor Processing

Artificial Intelligence(AI) and Machine Learning(ML) at the Tiny Edge

Key Benefits


Low Latency

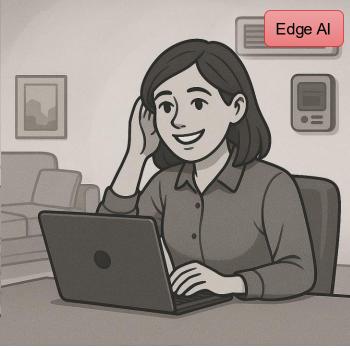
Bandwidth Privacy, **IP Protection, Constraints** Security

Offline Mode Operation

Cost Reduction

>4B Devices deployed with TinyML in 2028

*Source: ABI Research, Artificial Intelligence and Machine Learning, 2 QTR 2024

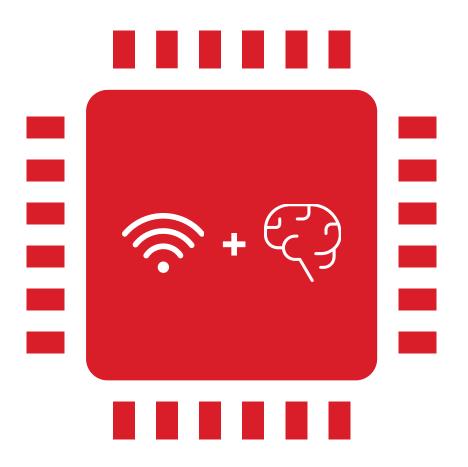


Amy's Day - Transformed by Edge Al

9:00 FACTORY

- Detect anomalies in real time
- ✓ Increased accuracy
- ✓ Works reliably

18:00 HOME


- ✓ Keep data private and secure
- ✓ Devices respond instantly
- ✓ Operate perfectly even offline

20:00 FAMILY CALL

- ✓ Instant, reliable alerts
- Reduces false positives
- ✓ Improves battery life

When Should you Use Edge AI?

- Why moving from rule-based logic to AI?
 - ▶ Not adaptable, fragile with noisy, variable or edge-case inputs.
 - ▶ Labor-intensive, hard to maintain and scale.
- What problems can you solve?
 - Spotting abnormal sensor patterns (e.g., vibration, motion).
 - Detect wake-words or acoustic events
 - Locally classifying images, gestures or activities.
- When does local Al make sense?
 - When decisions need to be fast, private or offline
 - When traditional logic can't handle variability
 - When you want to trigger cloud AI only selectively
- Data considerations:
 - Are sensors onboard? (accelerometers, microphones, etc.)
 - Are you capable of capturing meaningful and consistent data?
 - Will the model fit within compute and memory budgets

Machine Learning Applications Supported by Silicon Labs

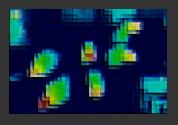
VISION

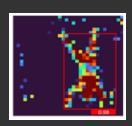
Low-resolution

AUDIO

Voice commands Audio pattern matching SENSOR

Vision

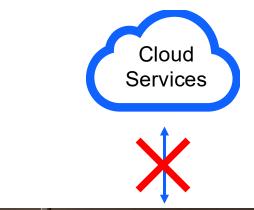

Low-resolution vision

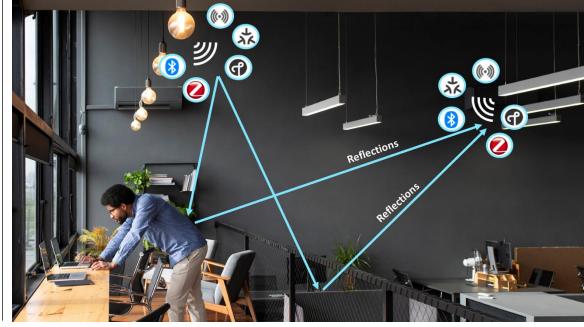


Audio

Voice commands
Audio pattern matching

Sensor





Sensing with Channel State Information

Sensing with Wi-Fi 802.11bf

- CSI based sensing is an optional feature in 802.11ax available but ONLY with Wi-Fi (802.11.bf)
- Superior to simple RSSI based solutions

Q&A

Thank you

