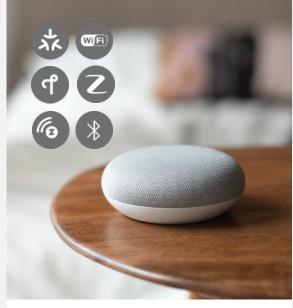


探索多协议无线技术的最新进展

Louis Lou, Principal FAE


MULTIPROTOCOL

议程大纲

- 01 为什么协议共存是不可或缺的?
- 02 如何管理协议共存?
- 03 动态多协议和并发多协议
- 04 深入了解技术
- **05** 架构视图
- 06 芯科科技多协议解决方案

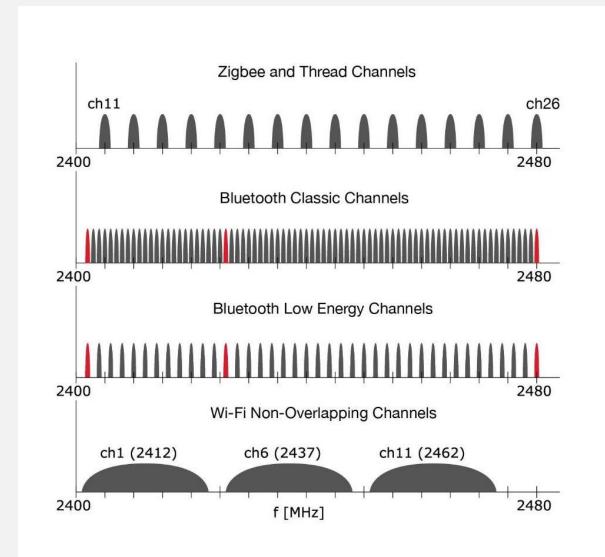
为什么协议共存是不可或缺的?

CO-LOCATION

When deployed in the field, many products are colocated within the radio range

ECOSYSTEM DEMAND

When serving an Ecosystem, a single product is expected to support multiple wireless protocols simultaneously


PRODUCT VERSATILITY

To maximize market reach, a single product is typically positioned to serve multiple use cases

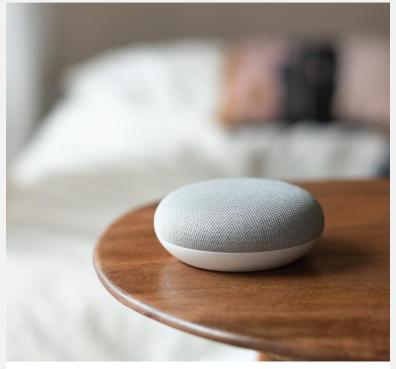
PERFORMANCE

To gain a competitive edge, products are expected to provide superior performance via increased Tx power or higher bandwidth

2.4GHz ISM频段的挑战

- Multiple wireless protocols share the same
 2.4GHz ISM Band: Wi-Fi, Bluetooth, and IEEE
 802.15.4 (ZigBee, Thread)
- These wireless protocols have different modulation schemes, channel frequencies and bandwidth but overlap when co-located
- Signals from one wireless protocol look like unwanted noise for the other protocols

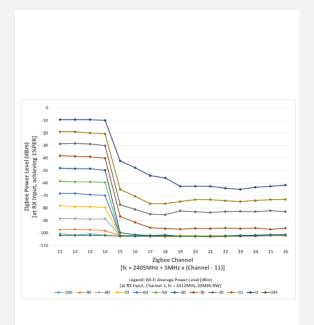
对物联网设备的影响

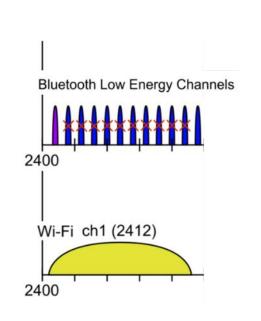


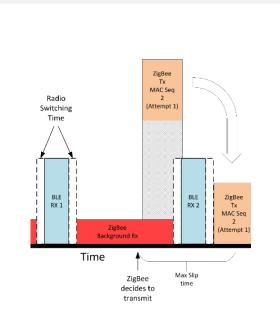
Delayed or missing packets

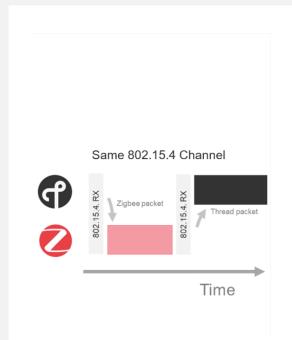
High rate of retries

Reduced battery life


GATEWAY / HUBS


Missing devices events


Poor commands responsiveness


Dropped connections

管理协议共存

UNMANAGED COEX

Customized run-time radio performance:

Blocking & Selectivity

Adjacent channel rejection

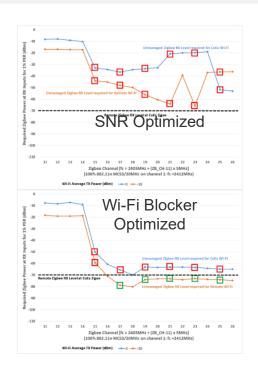
Enhanced MAC features

FREQUENCY PLANNING

Bands Planning
Channels Planning
Channel Agility
Frequency Hopping

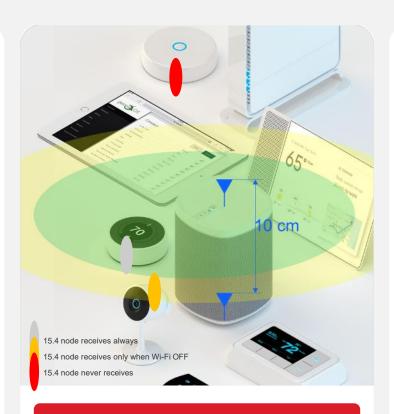
TIME SLICING

Dynamic Multiprotocol
Concurrent Listening
Selective RX Diversity
Packet Traffic Arbitration

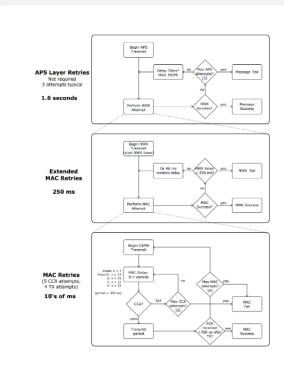

CONCURRENCY

Concurrent Multiprotocol

Multi-chip solutions
* Multi-RF & Multi-Radio



一、非受控的协议共存

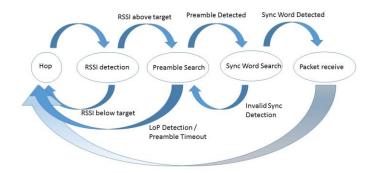

BLOCKING & SELECTIVITY

- Identify Wi-Fi interferences w/ RSSI
- Detect 15.4 traffic with Signal Identifier
- Select SNR PHY vs BLK at run-time
- HW Peak Detectors and AGC loops to manage baseband signal distortion

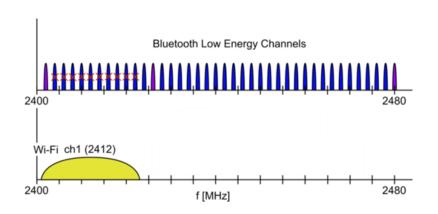
ADJACENT CHANNEL REJECTION

- Receive 15.4 traffic up to -45dBm Wi-Fi RSSI on non-overlapping channels
- Operate FEM LNAs in bypass mode
- Increase antenna isolation for GWs

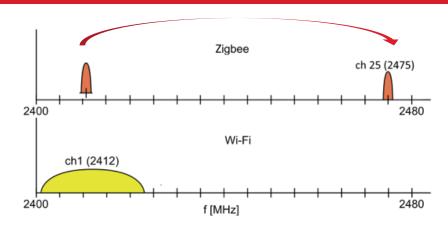
ENHANCED MAC FEATURES

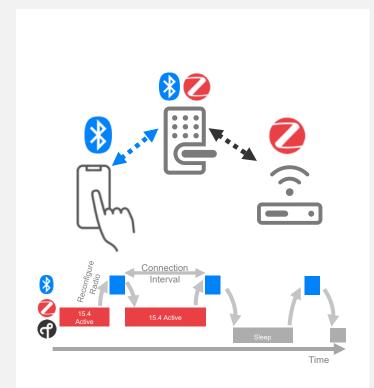

- Extended MAC retries algorithm
- Configurable CCA thresholds
- Configurable CCA timeouts

二、频率规划

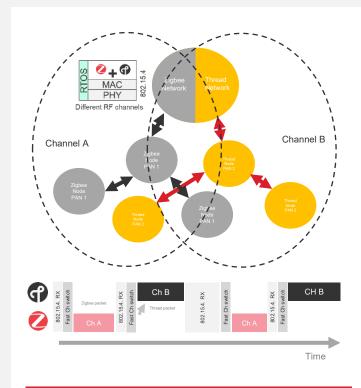

METHODOLOGY

- Bands Planning
 - Connect high Wi-Fi traffic devices on 5GHz bands
 - Have life critical systems and long-range devices on <1GHz bands
- Channel Planning
 - Configure 15.4 on further away non-overlapping Wi-Fi Channels
 - Operate Wi-Fi with 20MHz Bandwidth
- Channel Agility
 - Protocols detect interferences and change channel for entire network
- Frequency Hopping
 - Protocols constantly change channels based on predefined patterns

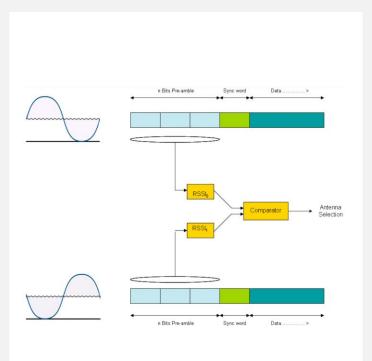

FREQUENCY HOPPING


BANDS AND CHANNELS PLANNING

CHANNEL AGILITY



三、时间切片(Time Slicing)


DYNAMIC MULTIPROTOCOL

- Time-sliced operation of two protocols using an RTOS
- Advanced RAIL Priority Scheduler
- Enables direct phone connectivity

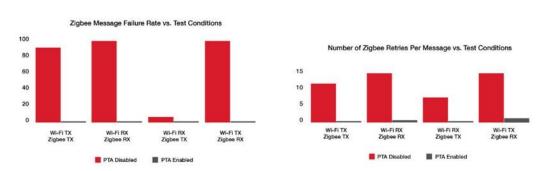
CONCURRENT LISTENING

- Concurrent operation of Zigbee and Thread on different 15.4 channels
- HW based fast channel switching
- Scan 2 channels within 128us without packet losses

SELECTIVE RX DIVERSITY

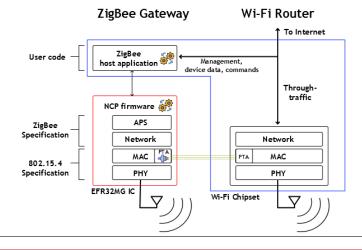
- Use two antennas ¼ wave apart
- Fast switching during preamble detection to select the best antenna
- Improve SNR and RSSI to reduce PER for multi-path and/or blocking

三、时间切片一数据包流量仲裁(Packet Traffic Arbitration)

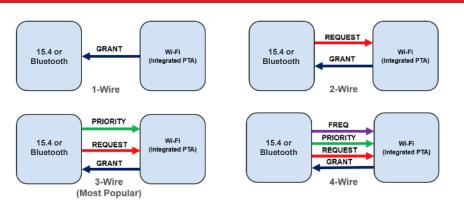

MODE OF OPERATION

- Separate radio activity in time by coordinating protocols with PTA
- Multiple Wiring Options: 1-wire, 2-wire, 3-wire, 4-wire
- Multiple advanced PTA Strategies available at Silicon Labs:
 - REQUEST PWM, PRIORITY, Shared PTA, Radio Hold-off

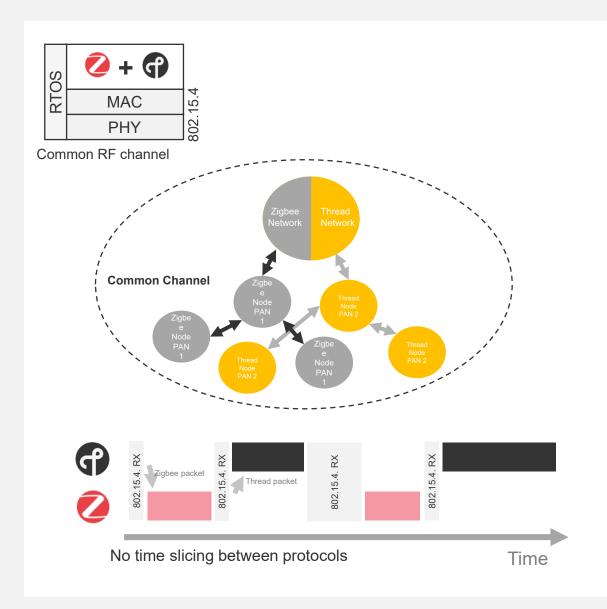
PTA Basics:


- 1. IoT device asserts REQUEST and optionally PRIORITY
- 2. Wi-Fi accepts request and asserts GRANT
- 3. Wi-Fi device stops transmitting and IoT device can RX/TX
- 4. When done IoT device de-asserts REQUEST and Wi-Fi releases GRANT

NETWORK PERFORMANCE W/O VS W/ PTA ENABLED



Increased performance with PTA enabled due to reduced retries and packet losses


WI-FI ENABLED IOT GATEWAYS / BR ARCHITECTURE

PACKET TRAFFIC ARBITRATION WIRING OPTIONS

四、并发性 (Concurrency)

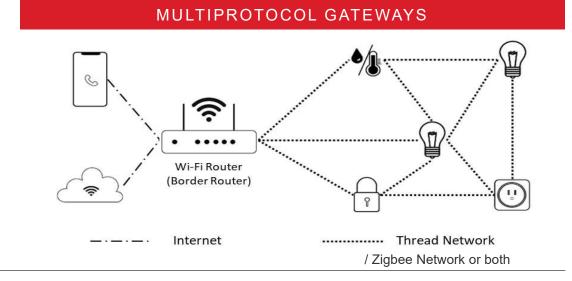
Concurrent Multiprotocol

- Simultaneous RX/TX operation of Zigbee and Thread on the same channel using common 802.15.4 PHY-MAC
- RX frames differentiated by PAN IDs
- Channel access managed by normal 802.15.4 CSMA-CA
- Functional in SoC, NCP and RCP modes

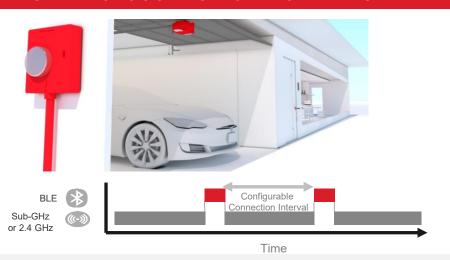
Multi-chip Solutions

 Simultaneous RX / TX operation on different channels using one IC per protocol connected via UART / SPI

* Multi-RF & Multi-Radio ICs (Series-3: Everest)

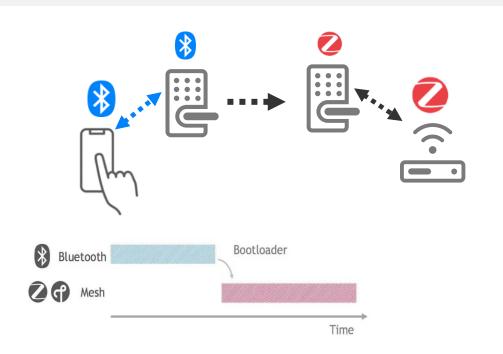

- Simultaneous RX in a single IC using two RF AFEs and one or two modems
- TX is usually still time sliced due to interferences

* MIMO RX Diversity (MRC)

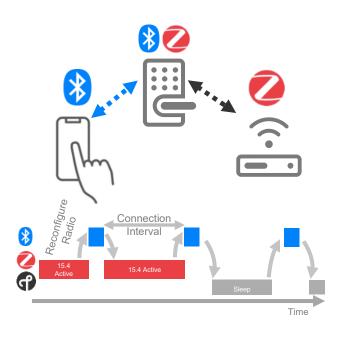

- Allows multiplexing wireless medium in space to reduce multi-path fading and increase RX sensitivity
- Requires two RF AFEs and one or two modems

常见的动态多协议(DMP)和并发多协议(CMP)应用场景

DMP FOR LIGHTING SOLUTIONS

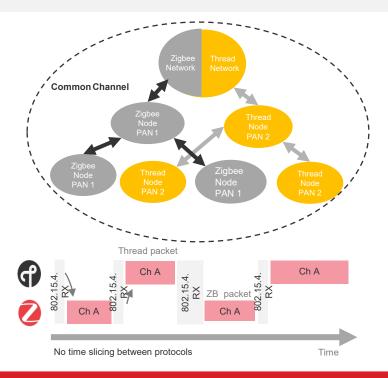

MULTIPROTOCOL SUB-GHZ IOT DEVICES

MULTIPROTOCOL LIGHTING SOLUTIONS

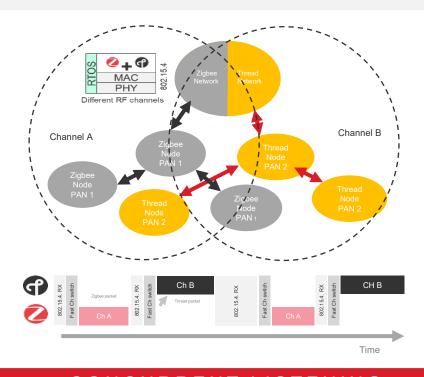


切换式与动态多协议(SMP与DMP对比)

SWITCHED MULTIPROTOCOL


- Bootload the firmware image from one protocol stack to other
- Helps to update devices in the field to changing market needs
- Switching time is usually long (~hundreds of ms)

DYNAMIC MULTIPROTOCOL


- Time-sliced operation of two protocols using an **RTOS**
- Advanced RAIL Priority Scheduler
- Enables direct phone connectivity

并发多协议与并发监听(Concurrent Listening)

CONCURRENT MULTIPROTOCOL

- Simultaneous TX/RX operation of Zigbee and Thread on the same 15.4 channel
- RX frames differentiated by PAN IDs
- Channel access managed by normal 802.15.4 CSMA-CA

CONCURRENT LISTENING

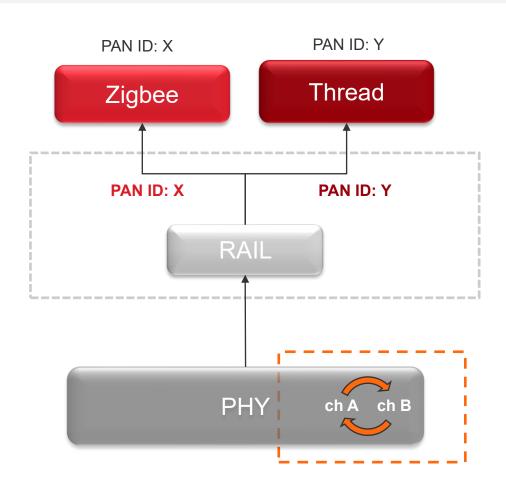
- Concurrent operation of Zigbee and Thread on different 15.4 channels
- HW based fast channel switching
- Scan 2 channels within 128us without packet losses

动态多协议

Operation:

- Radio time-sliced to reliably manage multiple protocols
- Used with BLE, in conjunction with a different protocol
- Managed by RAIL Scheduler
- Uses MP RAIL library and RTOS
- Typically, BLE operations get a higher priority but is configurable
- Radio switching time in the order of hundreds of μ s

Common Use cases:


- Commissioning / device on-boarding
- Network diagnostics

Example: DMP BLE + Zigbee

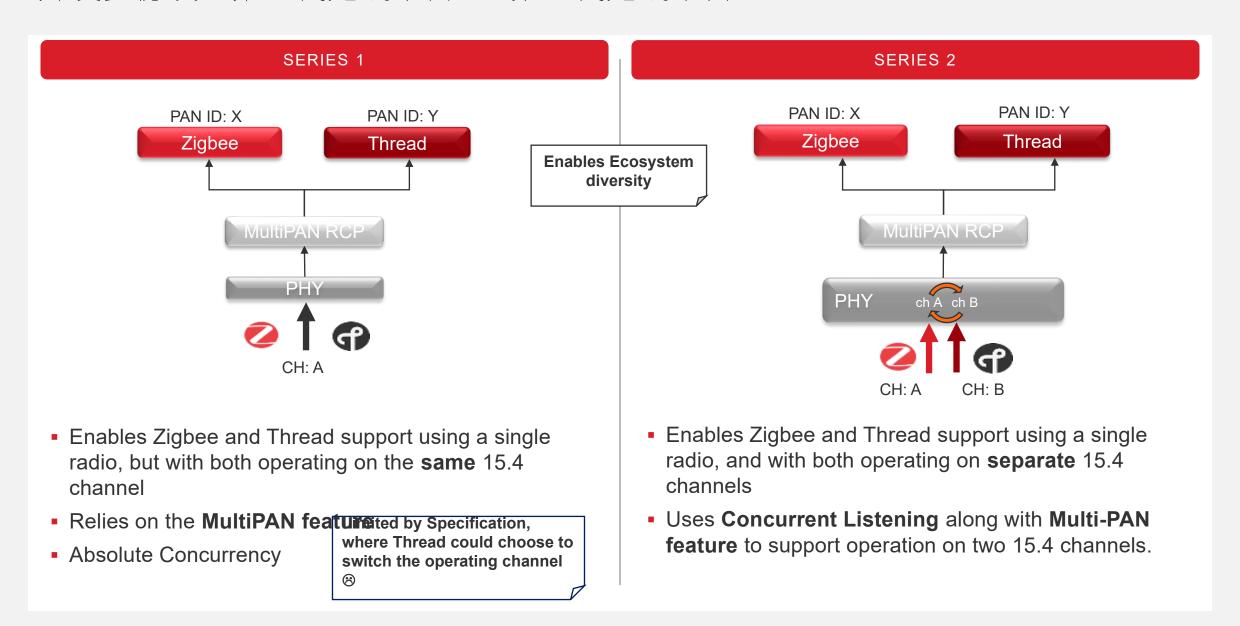
- Radio operation priorities could be reconfigured based on use case (See UG305)
- · Can be enabled or disabled on demand

并发多协议相关术语

Concurrent Multiprotocol (CMP):

Ability of Platform to support two 15.4 protocol stacks (such as Zigbee & Thread)

- Forms basis of CMP.
- Can support Zigbee + Zigbee / OT + OT, but with distinct PAN IDs


MultiPAN support:

Ability of Platform RAIL to filter packets based on PAN ID.

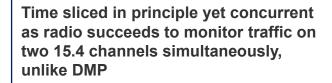
Concurrent Listening (aka FCS - Fast Channel switching):

Ability of the platform PHY to quickly switch & detect 802.15.4 preambles on separate RF channels using a single radio

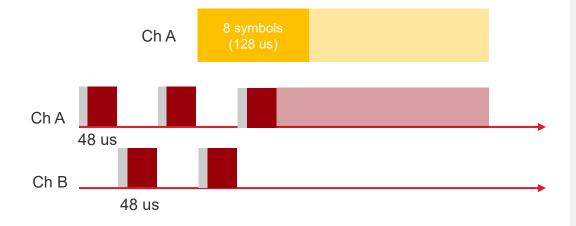
并发多协议:第一代无线平台 vs 第二代无线平台

第二代无线平台的并发监听(或称快速信道切换)

Concurrent Listening:

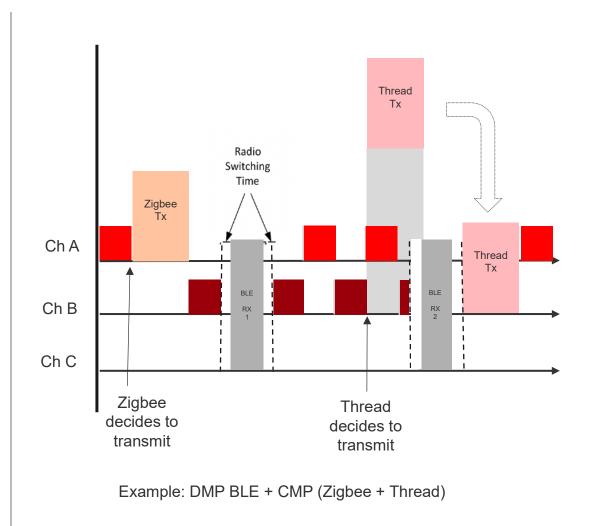

- Uses RX antenna diversity hardware block with synth reloading to switch extremely rapidly between two 15.4 channels, after every ~ 48 µsec
- If a preamble is detected, stays on the channel until completion of the packet.
- Successfully detects a 15.4 packet by listening to at least 2 out of the 8 preamble symbols (32 µs out of 128 µs) on each RF channel.

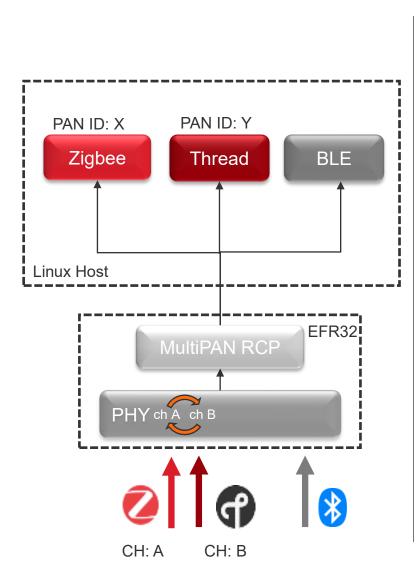
Limitations:

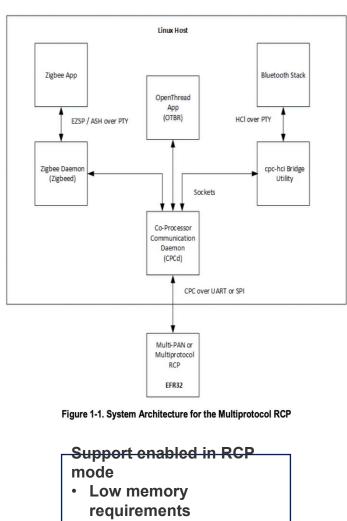

- Slight degradation in Rx sensitivity
- Antenna diversity not available.

Supported Parts & Architecture

 Currently supported on xG21 and xG24, with Zigbee and Thread operating in RCP mode, and xG26 in SoC mode


- ► Load RF synth for channel A & settle (~16 us)
- ▶ Listen for preamble (2 symbols, ~32us)
- ► Load RF synth for channel B and settle (~16 us)
- Listen for preamble (~32us)
- Repeat until preamble detected


动态多协议蓝牙和并发多协议(Zigbee + Thread)


DMP BLE + CMP:

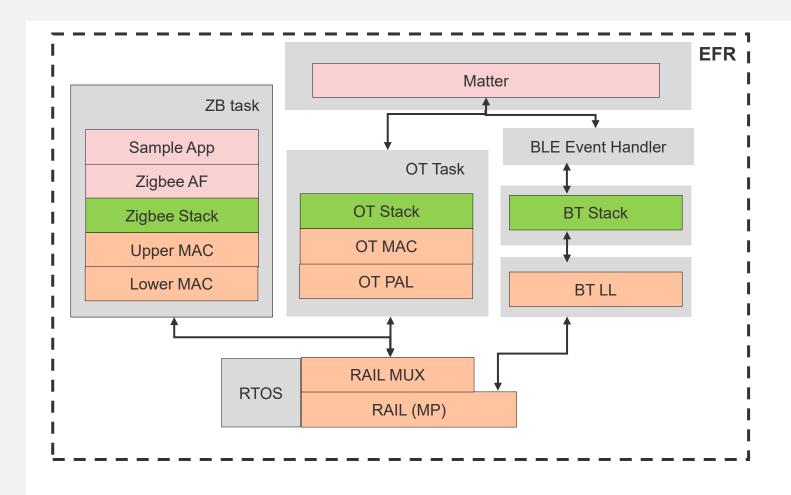
- Extension of BLE DMP with single protocol case
- BLE continues to operate in time-sliced DMP mode, interrupting CMP (Zigbee + Thread) as needed.
- With Concurrent Listening enabled (for Zigbee and Thread to operate on separate channels), the radio rapidly switches between the two 15.4 channels, with switching to BLE channel as configured.
- Does not impact BLE performance
 - **Extends capability to support** up to 3 protocols
 - Supports all BLE DMP use cases supported in the single protocol case

RCP模式的动态多协议蓝牙 + 并发多协议 (Zigbee + OpenThread)

Lowers cost

- Zigbeed A Linux daemon that runs the Zigbee stack & sends and receives Spinel messages to CPCd over a socket
- A Zigbee host application that communicates with Zigbeed using EZSP / ASH over a virtual serial port
- An OT host application (like OTBR) which includes the OT stack & which connects to CPCd over a socket
- The BlueZ BT stack, which communicates with the Bluetooth Controller on the RCP via the Host Controller Interface (HCI) protocol.
- **CPCd** A Linux host process that communicates with the coprocessor over a UART or SPI
- Multi-PAN RCP w/ Conc. Listening & DMP enabled on the EFR32

RCP模式的动态多协议蓝牙 + 并发多协议 (Zigbee + OpenThread) 一架构视图



- Zigbee & Thread can operate on:
 - · Same ch. (no time slicing) or
 - Different ch. (via concurrent listening)
- Uses MultiPAN feature for filtering 15.4
- Bluetooth operates in DMP mode
- RCP has a flash footprint (~250K)
- RCP App uses RTOS

Common Platform components such as:

- Wi-Fi coexistence
- RTOS
- NVM3 & Memory manager **Enable seamless integration of platform** features critical to the application

SoC模式的动态多协议蓝牙 + 并发多协议 (Zigbee + OpenThread) 一架构视图

- Combines Zigbee + Matter/Thread
- Zigbee & Matter/Thread can operate on same or different channels
- Bluetooth operates in DMP mode
- Uses RTOS
- Supported on xG26, and upcoming Series-3 parts.

蓝牙 + 15.4 多协议解决方案

Targeted Applications	Primary Arch	Technology / Stack				Operation Mode	xG21	xG24	xG26	xG27
		BLE	Zigbee	ОТ	Matter					
Zigbee Lights, Switches, Sensors	SoC	*	2			DMP BLE + ZB	<u> </u>	<u> </u>	*	~
Thread Sensors	SoC	*		G		DMP BLE + OT	✓	<u> </u>	*	
Matter Lights, Switches, Sensors	SoC	8		•	챘	DMP BLE + Matter/OT		<u> </u>	~	
Conc. Matter + Zigbee Lights	SoC	*	②	G	林	CMP (ZB + Matter/OT)			<u> </u>	
Gateways, EAP, Appliances, Hubs & Panels	RCP	BLE LL	LMAC	LMAC	Matter capable	DMP BLE + CMP 15.4	~	~	*	
	NCP			G		OT NCP	<u>~</u>	<u>~</u>	*	
	NCP	8	②			DMP BLE + ZB		~	*	
	NCP RCP		②	LMAC		CMP (ZB NCP + OT RCP)		✓	*	

✓ * Supported but with Memory spec exceeding (typical) application requirements.

技术资源

- Multiprotocol Web page
- Concurrent Multiprotocol Blog
- <u>UG305 Dynamic Multiprotocol User's Guide</u>
- Docs.silab.com Multiprotocol
- UG103.16: Multiprotocol Fundamentals

