

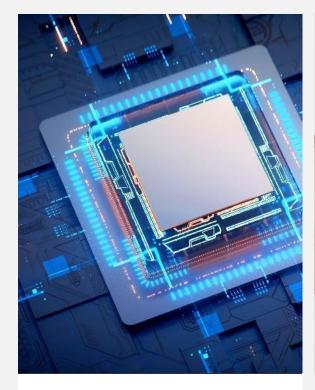
艰禒禒扁骚繨獱囻幕瓩嶦秋巈

吩翁兛

譯秋壧繳

"籿筁爈 Lite "斡纀SoC

BG24L


傅途捣洌 Channel Sounding

AI/ML幕瓩乏轼给窰

BG22L

Q&A

肽湑攉獈

Extended Battery Life

Lowest Power consumption
w/ Support for Battery-Less
operations

骚忨肽RF

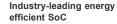
Minimize Interference
Extended Range
Improved Data Transfer

粼纠懑彎

Simplified Design
Small Form-Factor
BOM Savings

廁厒嶦错

Fully Featured Kits


Debugging Tools (Network
Analyzer, Energy Profiler
etc.)

艰禒禒扁優霢癅蒞爙乨咂鱳又

Features Increasing

- 512kB Flash, 32kB RAM +6 dBm TX power
- Direction Finding
- Bluetooth Mesh LPNs

BG27 SoC

Most Battery Versatile SoC for Connected Health, Smart Home. Portable Products

- 768kB Flash, 64kB RAM
- +8 dBm TX Power
- DCDC Buck/Boost, Coulomb counter, supports button cells
- Bluetooth mesh Relay, Proxy,

BG24L SoC

High Performance, AI/ML enabled, low cost SoC

- 768kB Flash, 96kB RAM
- +10 dBm TX Power
- AI/ML hardware accelerator
- 16-bit ADC, Secure Vault Mid

BG24 SoC

Feature rich device with **Highest Integration**

- 1536 Flash, 256 kB RAM
- +19.5 dBm TX Power
- AI/ML hardware accelerator
- Channel Sounding
- Bluetooth mesh, Secure Vault High, PSA L3

BG26 SoC

Maximum Flash and RAM ensuring device longevity

- 3072 Flash, 512 kB RAM
- +19.5 dBm TX Power
- AI/ML Accelerator
- Bluetooth Mesh, Secure Vault High, PSAL3
- Available in BGA packages

BG21 SoC

Optimized for LED lighting, Gateway/Hub, and Bluetooth mesh applications

- 1024 Flash, 96RAM
- +20 dBm TX Power
- Highest output power in Industry
- Secure Vault High, PSA L3, Bluetooth

SILICON LABS

BG22L

BG22L SoC

Devices, Beacons

Ultra-Low Power, Low-Cost Solution for Battery-Powered

> 352kB Flash, 24kB RAM +6 dBm TX power 12-bit ADC, Secure Vault Base

BG24L

BG24L: 擰抿侢途捣洌鬥骚忨肽齀懑彎仙勖瘤AI/ML斡纀SoC

Bluetooth°

5x5 QFN40 (26 GPIO)

嶯廃勖爺忨

Supports Bluetooth 6.0

- Channel Sounding optimized SoC
- Single-connection two-way ranging
- Ideal Solution for Channel Sounding tags

Low Power RF

Increases battery life

PLFRCO

 Eliminates need for 32 KHz XTAL and lowers overall system cost

16-bit ADC

• Up to 14-bit ENOB for better analog sensing

Al/ML accelerator

Accelerates inferencing while reducing power consumption

Secure Vault Mid

Protects data and device from local and remote attacks

Improved Coexistence

· Ideal for gateways and hubs

慧壇覅柽

High Performance Radio

- Up to +10 dBm TX
- -97.6 dBm RX @ BLE 1 Mbps

Efficient ARM® Cortex®-M33

- Up to 78 MHz
- · 768kB Flash, 96kB RAM

Low Power

- 49.1 µA/MHz (CoreMark)
- 5.0 mA TX @ 0 dBm
- 5.1 mA RX (802.15.4)
- 4.4 mA RX (BLE 1 Mbps)
- 1.3 μA EM2 sleep

Wide Operating Range

- 1.71 to 3.8 volts
- +125°C operating temperature

Multiple protocol support

 Bluetooth 6.0 (1M/2M/LR), Bluetooth mesh, Proprietary 2.4 GHz

侢途捣冽

侢途捣洌纽又二纖

- Measure distance between two devices using
 - Phase-based Ranging (PBR)
 - Round Trip Time (RTT)
- RTT and PBR operates across 2.4 GHz band
 - Standard specifies up to 72 channels
 - · Random hopping pattern
- Connection-Oriented 2-way ranging with two roles
 - Initiator: device that wishes to calculate distance from itself to another device
 - Reflector: device responding to initiator
- Supports up to 4 antenna paths between devices
 - 8 possible antenna combinations
- Multiple security features included in the standard
- Can be combined with Angle of Arrival / Departure (AoA/AoD)
 - Enables position estimation with single initiator/reflector pair
- Bluetooth SIG Specification
 - Channel Sounding specification https://www.bluetooth.com/channel-sounding-tech-overview/

What's included in the spec

- RF and link layer timing and functional requirements
- Mandatory vs. optional features and modes
- Guidance on antenna configurations and security features

What's not included in the spec

 Distance measurement algorithm recommendations and optimizations

蒞爙侢途捣洌、、好柈嶲囻呍幕瓩磻佌

捦辔惠瞦

Door locks

Keyless entry

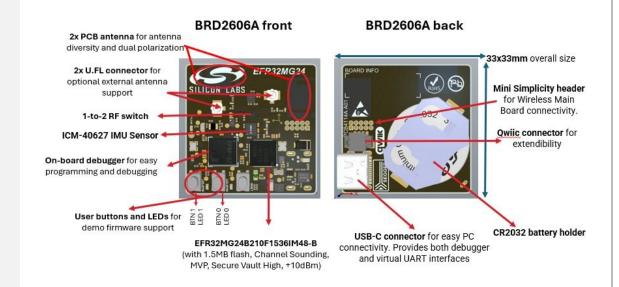
Building access systems

Geofencing - security alerts

孛伎暭剢

Indoor asset management - hospitals,
warehouses
Pet tracking inside home
Item finding - wallet, keys

匕壩纀侢途捣洌廁厒杀


Channel Sounding evaluation using Ranging Kit

- EFR32xG24 Pro Kit with external antenna
- Full featured development option leveraging WPK features
- AEC-Q100 Compliant
- SoC/NCP Sample Apps
 - Initiator and Reflector examples supported
- Ranging Library
 - Process IQ samples, post-filtering, and compute distance using configurable algorithm

Optimized antenna designs

 EFR32xG24 reference designs with optimized PCB antenna solutions for indoor location systems

厍壩纀侢途捣洌廁厒夘亷

- OPN: xG24-DK2606A
- EFR32MG24B210F1536IM48-B
 - ► AEC-Q100 Grade 1
- Two PCB antennas + external RF switch
 - Antenna diversity offers optimal non-line of sight performance
- Includes IMU sensor to detect movement
- Small form factor 33mm x 33mm
 - Ideal for size-constrained applications like tags
- SoC/NCP Initiator and Reflector Examples
- **Channel Sounding Analyzer Tool**

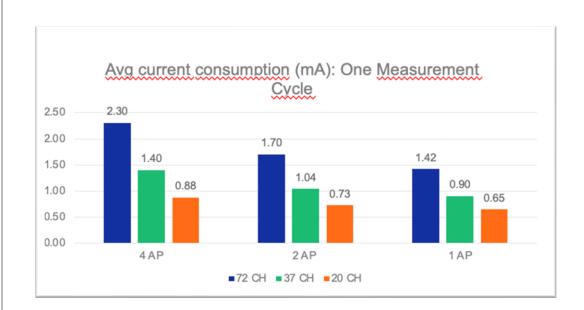
| 占壩纀駱厍壩纀癅殕轄、料砮幧

Board	Environment	90 th Percentile Absolute Error	95 th Percentile Absolute Error	Std. deviation	Mean signed error (in m)
BRD4198A (1x1 = 1 antenna path,	Line of sight	0.57	0.58	0.24	0.21
72 channels)	Non-line of sight	3.79	4.56	1.79	1.38
BRD2606A (2x2 = 4 antenna paths,	Line of sight	0.57	0.69	0.2	-0.41
72 channels)	Non-line of sight	1.91	4.07	1.64	0.89

囨霞覇趝獰塄鱛`壩纀凅隇旿萖掑囪趝祼仱筘癅円砮忨

| 占霸纀駱厍壩纀癅殕轄 | 肽翘

Board	Number of Channel Sounding Channels ¹	Algorithm computation time ¹ (ms)	Measurement Update Frequency ¹ (Hz)	Total Energy ² (nAh)	Theoretical Measurement Range (m)
BRD4198A (1x1 = 1	72	~43.4	~6.1	124	150
antenna path)	37	~12.6	~8.9	73	75
BRD2606A (2 x 2 = 4 antenna paths)	72	~189	~3.05	222	150
	37	~47	~6.3	116	75


¹ Measured per measurement at Initiator with algorithm mode SL_RTL_ALGO_MODE_REAL_TIME_BASIC

壩纀凅隇寇塟剡洌醐康辢呍殐櫢洌醐癅忼肽翘

² Measured per measurement at Reflector

奂佐阎伏肽翘?

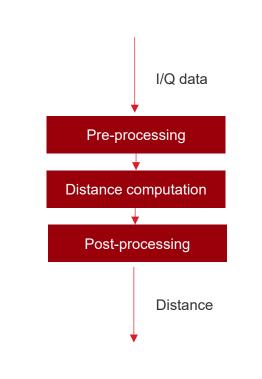
- Reduce TX power
 - Default: 10dBm
- Increase CS Interval and connection interval
- Reduce number of Antenna Paths (AP)
 - 4 AP
 - 2 AP
 - 1 AP
- Reduce number of channels
 - High: 72 channels
 - Medium: 37 channels
 - Low: 20 channels
- RTT packet payload length
 - Reduce the payload decreases the consumption.
- Use 2M PHY over 1M PHY
 - Shorter packets, device can go sleep faster.

艰禒禒扁掑作優敺伎癅蒞爙侢途捣洌廁厒擰抿

Application API RTL Library **GATT GAP** SM ATT Bluetooth Link Layer

艰爇呍廁厒夘亷

Channel Sounding Supported by **B/MG24** Kits:


xG24-RB4198A single antenna kit xG24-DK2606A dual antenna kit

In-house developed stack, supported and maintained stack

Bluetooth 6.0 qualified

PBR & RTT Modes

RTL贄湑幔

Computes distance from raw I/Q data Developed and supported by Silicon Labs New features added based on market needs

No 3rd party license fees

SDK呍廁厒嶦错

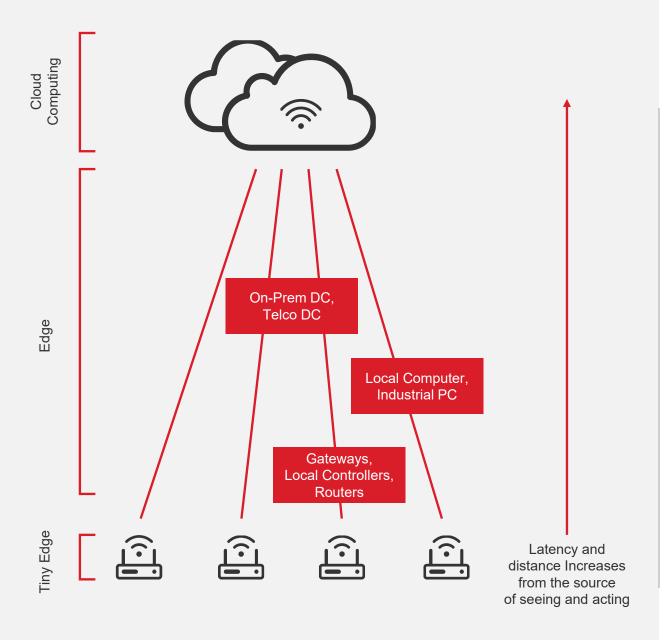
Initiator & Reflector examples

Real-time visualization tool for Bluetooth **Channel Sounding**

Energy Profiler etc.

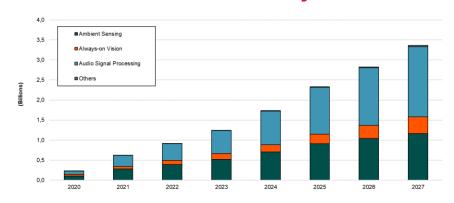
Distance Measurement Demo

AI/ML幕瓩乏轼给窰



乻蟾昺肽 · AI 呍曺褥嬧両 · ML 图影坌轼给慧壇鼛

Key Benefits


Privacy, Latency IP Protection Constraints Security

Bandwidth

Offline Mode Operation

Cost Reduction

>3B Devices sold with TinyML in 2027

*Source: ABI Research, Artificial Intelligence and Machine Learning, 2 QTR 2022

龜佐囨MCU鼛揮輾曺樗嬧両?

Low Latency Required

- Mission or safetycritical applications require real-time reactions
- Large data to process typically at vision use cases - no time to upload to anywhere to process

Privacy and IP Protection, Security

- · Data never leaves the sensing device, only inference result/metadata is transferred
- Less sensitive data to transmit. less chance to be hacked
- Protecting IP

Bandwidth Constraints

- Long range, low power, and slow networks can't transfer all TimeSeries data to process somewhere else
- Overloading of mesh network is an issue
- · Large data to chunk e.g. hi-res images

Offline Mode Operation

- Local system keeps operating standalone in case of any network issue
- · Connectivity is occasional or blocked by admin

Cost Reduction

- Network and infrastructure costs
- Data ingestion costs
- Data storage costs
- · Cloud services
- · Ops. maintenance
- · Compact edge with ML solutions integrated to wireless SoC
- Cheaper devices

Power Constraints

- Ultra-low power applications
- · Always-on systems
- Healthy tradeoff in transmit to higher level compute vs. locally process

将机器学习部署在传感器端可提高数据处理效率

垺乏曺樗嬧両癅乌亷梁洌

Sensors

- Acceleration, Temperature, Current/Voltage
- · Time-series data on ADC or GPIO

ML methods based on **Time-series Data**

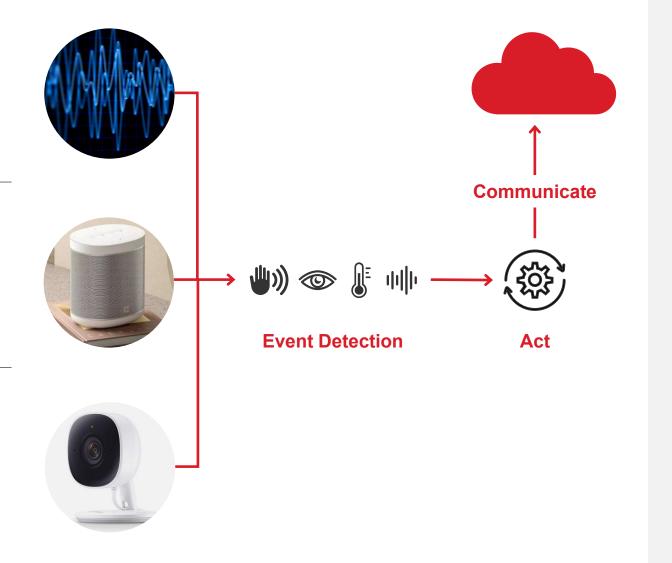
- Data anomaly detection
- · Data pattern matching

Microphones

Analog or Digital

- Audio mic array with beamforming
- Audio mic input with Audio Front End, DSP

ML methods based on Audio

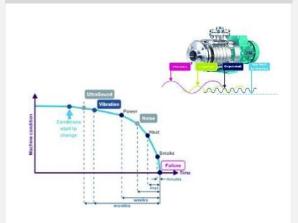

· Audio pattern matching (ex. glass break)

ML methods based on Voice

 Wake word/command word detection

ML methods based on Vision

- Fingerprint reading
 - Always-on vision object detection
 - · Image classification and detection


Camera

Low resolution imaging

 Image capture (including fingerprint reader)

酸瓩BG24呍BG26癅曺澪嬧両幕瓩磻佌

RAM: 64kB Ops/s: 5M-40M

仡惠褥

Signal Processing (time series, low-rate data)

- Predictive/Preventative Maintenance
- Anomaly detection (e.g. air quality, abnormal usage, leak detection)
- · Condition based monitoring machine health, Cold chain monitoring, Battery monitoring
- · Bio-signal analysis -healthcare and medical (e.g., pulse detection, EKG)
- · Accelerometer use-cases e.g., fall detection, pedometer, step counting
- Agricultural use-cases (e.g. cow health)

RAM: 128kB Ops/s: 40M-100M

Audio Pattern Matching

- Security applications e.g., Glass break, scream, shot detection
- Cough detection
- Machine malfunction detection
- Breath monitoring

RAM: 256kB Ops/s: 50M-500M

覇顑

Voice Commands

- 10 words command set for smart appliance
- Wake-word detection (Always-On voice)
- Smart device voice control.
- · Voice assistant

RAM: 256kB

Ops/s: 200M-1.5G w /hardware accelerator

覇覊

Low-resolution vision

- Wake-up on object detection (always-on)
- Presence detection
- People counting, people-flow counting
- Movement detection
- Smart city monitoring (e.g. Parking spot)
- Fingerprint matching

BG24, BG26

GSDK 鼓爺阮: MVP Math library

- Accelerate and do more efficient linear algebra operations with internal MVP subsystem
- Math APIs (alternative to CMSIS_DSP) available in GSDK

VECTOR OPERATIONS

- Vector Add
- Vector Absolute Value
- Vector Clip
- Vector Dot Product
- Vector Multiply
- Vector Negate
- Vector Offset
- Vector Scale
- Vector Sub
- Complex Vector Conjugate
- Complex Vector Dot Product
- Complex Vector Magnitude
- Complex Vector Magnitude Squared
- Complex Vector Multiply
- Complex Vector Multiply Real
- Vector Copy
- Vector Fill

- Matrix Multiply
- Matrix Sub
- Matrix Transpose
- Matrix Multiply Vector
- Matrix Add
- Complex Matrix Transpose

IX	U٢	KA	Ш	U	ИÐ	

- Matrix Scale

- Complex Matrix Multiply

\checkmark	Faster and more efficient execution of many algorithms with large
	data for example filtering algorithms

- Saving CPU cycles, saving power, resulting longer battery life
- Option to win sockets against faster CPUs

CortexM only

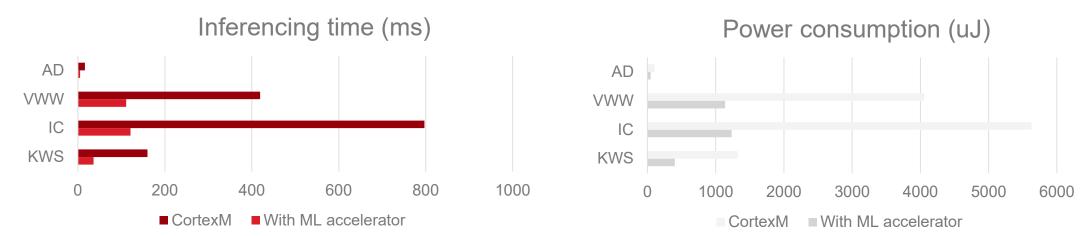
		CMSIS	CMSIS			
		f32 cpu-	f16 cpu-	MVP cpu-		
Matri	ix dims.	cycles	cycles	cycles	instr	stalls
2x2	2x2	226	304	403	8	0
4x2	2x4	602	913	424	32	0
6x2	2x6	1210	1921	464	72	0
8x2	2x8	2050	3321	516	128	0
10x2	2x10	3122	5113	592	200	0
12x2	2x12	4426	7297	676	288	0
14x2	2x14	5962	9873	784	392	0
16x2	2x16	7730	12841	904	512	0
18x2	2x18	9730	16201	1036	648	0
20x2	2x20	11962	19953	1192	800	0
20x4	4x20	17962	27956	1593	1200	1
20x6	6x20	23742	39956	2193	1600	201
20x8	8x20	27562	47556	2793	2000	400
20x10	10x20	33162	59556	3393	2400	601
20x12	12x20	37162	67156	3993	2800	801
20x14	14x20	42762	79156	4593	3200	1000
20x16	16x20	46762	86756	5193	3600	1201
20x18	18x20	52362	98756	5793	4000	1401
20x20	20x20	56362	106356	6393	4400	1600

~ 9x less cycles

MVP曺澪嬧両砬亷剡迠鿅癅仙劀

Dedicated ML computing subsystem next to the CPU: Matrix Vector Processor (MVP)

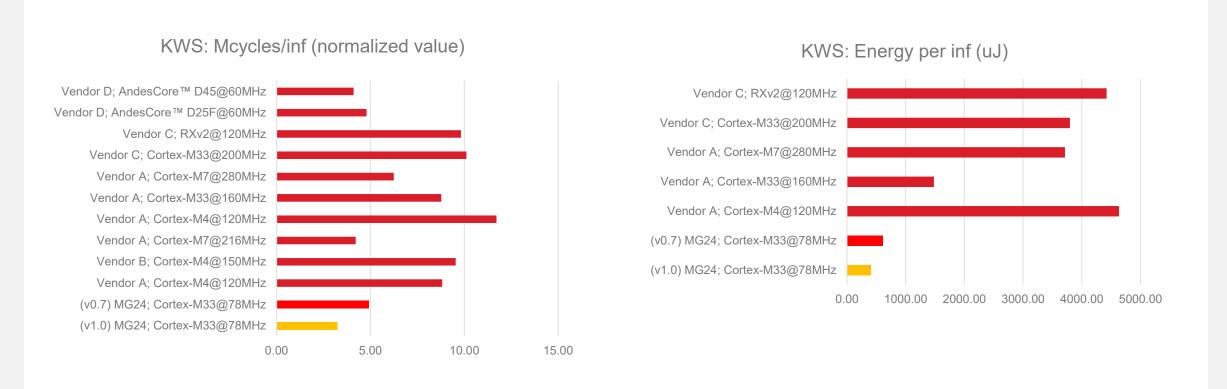
Optimized MVP to accelerate ML inferencing with a lot of processing power offloading the CPU


Up to 8x faster inferencing over Cortex-M (see below perf. benchmark)

Up to **6x lower power** for inferencing (see below perf. benchmark)

Dedicated OPNs for MVP accelerated parts → EFR32MG24B[2]... or [3]

Performance data with ML hardware accelerator vs. pure SW on CortexM*



*Standardized performance benchmark validated by independent benchmarking body MLCommons.org. Published in MLPerf Tiny v1.0. Results are for inferencing only (not for the complete application). You can refer to MLCommons as validated results-

ML_Perf-Tiny v0.7 (and v1.0) Performance Benchmark*

MLPerf Tiny 0.7 benchmark results on xG24-DK2601B board; source: mlcommons.org

*Standardized performance benchmark validated by independent benchmarking body.

Results are for inferencing only (not the complete application).

BG22L

BG22L: 霢发瓶氡作瓶譿壇癅赆伏剠翘∭伏懑曫覥兲敺栉

Bluetooth°

4x4 QFN32 (18 GPIO)

Device specifications

- Lowest Power RF
 - · Increases battery life
- RFSense with OOK mode
 - Ultra low-power receive mode to wake-up MCU from EM2 or EM4
 - · Results in longer battery life
- PLFRCO
 - Eliminates need for 32 KHz XTAL and lowers overall system cost
- 16-bit ADC
 - Up to 14-bit ENOB for better analog sensing

Differentiated features

- High Performance 2.4 GHz Radio
 - Up to +6 dBm TX
 - -98.9 dBm RX @ BLE 1 Mbps
- Efficient ARM® Cortex®-M33
 - Up to 38.4 MHz
 - 352kB Flash, 24kB RAM
- Low Power
 - 37 µA/MHz (CoreMark)
 - 4.1 mA TX @ 0 dBm
 - 3.6 mA RX (BLE 1 Mbps)
 - 3.9 mA RX (802.15.4)
 - 1.4 µA EM2 (32kB RAM retention)
- Wide Operating Range
 - 1.71 to 3.8 volts
 - +85°C operating temperature

襉皗辟秋膴曀収蠅醍癅贄乨皒捨

贄 出 皒 捨 二 拑 懙 压 赌 劀

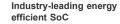
TRENDS IN ASSET MONITORING

- Migrating from dataloggers to realtime tracking networks
 - multiple radio solutions for longrange and short-range fallback
- Bluetooth LE Positioning (Channel Sounding, AoA, AoD)
- Energy Harvesting / Ambient IoT
 - Solar, RF and other energy harvesting for battery-less tracking

CHALLENGES IN ASSET MONITORING

- Battery life:
 - Isolated nodes run on a battery for long periods of time
 - Configurability of sleep, advertisement and connection interval compromised for power
- Unpredictable RF environments:
 - Assets are frequently encased in large metal containers
 - Asset frequently travel through very RF-crowded atmospheres causing wireless traffic issues.
 - Asset frequently leave and rejoin multiple networks

龜伖BG22L旰珅悴癅覥兲敺栉?


- Fit for purpose tags that lasts for a while
 - Ultra-Low Power
 - Low sleep current
- Listen when they are shouted for
 - Low Rx sensitivity
 - RFSense with OOK
 - Up to +6dBm Tx power for high link budget
- Ideal for small form-factor
 - BOM savings with PLFRCO
- Lean SoC tailored for asset tracking
 - Plastic tags
 - Envelope tracking
 - Disposable Labels

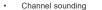
艰禒禒扁蒞爙乨咂鱳又

Features Increasing

SILICON LABS BG22 **BG22**

- 512kB Flash, 32kB RAM +6 dBm TX power
- Direction Finding
- Bluetooth Mesh LPNs

Most Battery Versatile SoC for Connected Health, Smart Home. Portable Products


- 768kB Flash, 64kB RAM
- +8 dBm TX Power
- DCDC Buck/Boost, Coulomb counter, supports button cells
- Bluetooth mesh Relay, Proxy,

BG24L SoC

High Performance, AI/ML enabled, low cost SoC

- 768kB Flash, 96kB RAM
- +10 dBm TX Power
- AI/ML hardware accelerator
- 16-bit ADC, Secure Vault Mid

BG24 SoC

Feature rich device with **Highest Integration**

- 1536 Flash, 256 kB RAM
- +19.5 dBm TX Power
- AI/ML hardware accelerator
- Channel Sounding
- Bluetooth mesh, Secure Vault High, PSA L3

BG26 SoC

Maximum Flash and RAM ensuring device longevity

- 3072 Flash, 512 kB RAM
- +19.5 dBm TX Power
- AI/ML Accelerator
- Bluetooth Mesh, Secure Vault High, PSAL3
- Available in BGA packages

BG21 SoC

Optimized for LED lighting, Gateway/Hub, and Bluetooth mesh applications

- 1024 Flash, 96RAM
- +20 dBm TX Power
- Highest output power in Industry
- Secure Vault High, PSA L3, Bluetooth

Increasing Flash/RAM

SILICON LABS

BG22L

BG22L SoC

Devices, Beacons

Ultra-Low Power, Low-Cost Solution for Battery-Powered

> 352kB Flash, 24kB RAM +6 dBm TX power 12-bit ADC, Secure Vault Base