Presentation Will Begin Shortly

4:00

FEB 22ND Choosing the Best MCU Platform for Your IoT Devices

- MAR 28TH EFR and EFM: An Optimized Platform for AI/ML at the Edge
- MAY 2ND Unboxing our New 32-bit Microcontroller
- JUN 6TH Introducing Simplicity Studio 6: A New Approach to IoT Development

Welcome

Choosing the Best MCU Platform for Your IoT Devices

Jayanth Krishna – Staff Product Manager, I&C BU

Agenda

- 01 Key sub-systems in a MCU
- **02** Construct and considerations for each of the sub-systems
- 03 Q&A
- 04 Mapping of Silicon Labs' portfolio to MCU categories
- 05 Q&A

MCU Building Blocks

The Sub-systems

Processor Cores

DESIGN CONSIDERATIONS

Different MCU architectures are better suited for certain applications

 Each architecture has a key set of applications that it is best suited for

General Considerations:

- Computational requirements
- Power Consumption
- Interface or Peripheral Needs

ARM CORE PERFORMANCE

8-BIT ARCHITECTURES

Core Architectures

- PIC Developed in 1975 by General Instruments now owned by Microchip
- 8051 Developed in 1980 by Intel
- AVR Developed by Atmel, now owned by Microchip

Operating Frequencies: 10s to few x00s of MHz

Performance: ~1 MIPS/MHz

32-BIT ARCHITECTURES

Core Architectures

- ARM Developed by ARM, most prevalent 32-bit core in embedded designs
- RISC V Open source architecture, gaining traction with key partnerships in semiconductor industry
- PIC32 / AVR32 Proprietary architectures owned by Microchip

Operating Frequencies: 10s of MHz to ~1GHz

Memory Sub-system

- Cache: On chip, volatile. Used for extremely quick fetches of data / instruction
- Embedded Flash: Non-volatile memory (NVM), used to store code, certain parameters & keys.
- ROM: NVM which is used only for code; immutable, patching options available.
- SRAM Volatile, typically used for data, execution is an option
- External Memory: Outside of chip boundary, flash and RAM variants available.

- Power consumption
 - Executing from on-chip NVM extremely efficient, external storage crosses chip boundaries and hence higher power consumption; ROM is the most power efficient code memory
- Latency
 - Fetch (code / data) from external interfaces takes more time
- Determinism
 - When crossing chip boundaries, contentions are possible and execution jitter is certain.
- Size & Extensibility
 - On chip memories are fixed size; need to factor growth as applications become complex, more so in long lifetime products.
 - OTA is a significant contributor even if compressed
 - External memories provide extensibility

Peripheral Sub-system

- Series i/f: USART, I2C, I3C, USB, CAN, Ethernet etc
- I/O Ports: KBD Scanner, External interrupts, GPIO, Reset, Wakeup
- Timers & Triggers: Timers, Protocol timers, LE Timer, Watchdog, RTC, PWM
- Analog i/f ADC, DAC, Cap Touch, ACMP, OpAmp

- Speeds and Feeds
 - Specific interfaces based on external components on the design. Instances, data rates and throughputs.
- Power Mode
 - Availability in different power save modes to optimize system power across different application scenarios.
- Simultaneous availability
 - Concurrency based on use case, flexibility of system for different designs (Pin map)
- Software enablement
 - Drivers & s/w tools
- Relative interaction
 - Sense and actuate : What external inputs trigger what outputs to the external world?
 - Latency and power during such interaction

Wireless Sub-system

- Front End: Power amp (0-20 dBm), LNA, RX/TX Frontend
- Freq Synthesizer: Spectrum of operation, Modulation scheme, Freq Deviation
- AGC: Automatic gain control to maximize SNR
- Mod & Demod Modulation and demodulation scheme handling like (G)FSK, ASK / OOK, (O)QPSK etc
- Buffers: Stores both Tx and Rx data using RAM
- Radio Core: Brain of the radio sub-system, interaction with the main system, configuration management

- Spectrum of operation
 - ISM Bands are most popular in IoT
 - 2.4 GHz, < 1 GHz
- Deployment Eco System
 - Municipal infrastructure, Smart Buildings, Retail environment, Smart Home
- Range
 - Determines the spectrum to be used and the Transmit power.
 - Topology Mesh vs Point to point, protocol oriented
- Simultaneous availability
 - Radio considerations and co-existence mechanisms determine the ability of device to live in different networks simultaneously

Security Sub-System

- Secure Boot & Debug : Running verified images, ROM code used as root of trust; validation of OTA images. Debug port locked, needs token to read flash
- Secure ID & Key Mgmt : Sub-system has private key unique to the device and not known to other sub-systems. PUF, Wrapped keys, PUF, processor never sees key in unwrapped.
- TRNG: Based on physical process, used as seed for DRBG
- Security Core: Brain of the sub-system, interaction with the main system, configuration management
- **Trust Zone**: Split application into secure and non-secure code

- Attack Vectors
 - Remote attacks, Local Logical Glitch attack, Local Physical DPA (Differential Power Analysis), Flash Extraction, Physical attack on the Die
- Regulatory Requirements
 - Geography and industry (medical, industrial) dependent requirements
 - Ex: US Cyber trust mark, ETSI EN 303 645, RED, Singapore regulations
- Protocol standard based requirements
 - Intent vis-à-vis the language
 - Ex: Matter calls for specific requirements on secure boot and identity etc
- Future Considerations
 - Longevity of the devices and evolution of attacks

AI/ML Sub-System

- Matrix Acceleration: Floating point acceleration for neural nets & specific algorithms like MUSIC
 - Matrix multiplication
 - Element-wise matrix multiplication
 - Matrix addition
 - Power series generation
 - Convolution
- Math Acceleration: Cordic functions like trigonometric identities, log, sqrt etc

- Application Use Case
 - Acceleration needed to service the requirement (Object classification, Wake word detection, Glass break detection) with constraints.
- Power Consumption
 - Acceleration significantly lowers power consumption
- Latency
 - Accelerated performance vs CPU based performance
- Size of the model
 - Memory available for the model both RAM and Flash perspective

Building the IoT Solution

- Sub-systems create building blocks for today's scalable MCU architectures
 - All MCUs have 3 common subsystems:
 - Processor Core
 - Memory
 - Peripherals
- Additional Sub-systems can be added to increase functionality
 - Wireless
 - Security
 - AI/ML
 - ...

Commonality between platforms simplifies developer journey

Allows for reuse between MCU families and end-product designs

Multi-core vs Single Core Systems

- User view: How many cores available for "user"
 - programming?
- System Architecture View: How many cores are
 - built into the system?

Key Drivers for Multi Core

- System Efficiency
 - Ex: Radio waking up the rest of the system based on packet detection / sense.
 - Right sizing: Need not keep a larger, higher clocked core for not so intensive activities
- Isolation requirements
 - Security system
 - Meeting radio timings

xG24 – A product in action

WIRELESS COMPUTE

Silicon Labs' Approach

tech t⊳lks

WIRELESS COMPUTE

EFM and EFR: Multi-core Solutions for IoT Development

1- EFR32 devices only 2- Secure Vault Hardware Secure Element (HSE) Only

- Multi-core architecture gives design flexibility and optimization across EFM and EFR platforms
 - Dedicated application, radio¹, and security² cores share system burden for better resource utilization
- Common Security and AI/ML subsystems
 - Allows for design consistency independent of connectivity needs
- Common development platform for connected and non-connected products
 - Simplicity Studio gives developers a common development platform for entire product portfolio
- Footprint and firmware compatibility between EFM and EFR families
 - Simplified SKU management and code base development lowers development cost and complexity

	BG	MG	FG	ZG	SG amazon sidewalk	PG
xG21	\checkmark	\checkmark				
xG22	\checkmark	\checkmark				\checkmark
xG23			\checkmark	\checkmark	\checkmark	\checkmark
xG24	\checkmark	\checkmark				
xG25			\checkmark			
xG27	\checkmark	\checkmark				
xG28			\checkmark	\checkmark	\checkmark	\checkmark
	EFR Device Families					EFM

Wi-Fi Products – RS9116 and SiWx91x

Wi-Fi products deviate from EFR / EFM platform architecture

• NCP and SoC options depending on application needs

NCP focused on wireless operation only

Removes customer accessible application core for ease
of use

SoC creates true Wi-Fi + Bluetooth LE SoC

- Wireless stacks and operation handled entirely by radio subsystem
- Application core fully available for end product development

Bandwidth and compute are correlated

Systems have one of three architectures

Big digital plus wireless co-processor

The application processor (MPU) runs large operating system and customer applications. Wireless chip runs the wireless stack.

Little digital plus wireless co-processor

The application processor (MCU) runs bare metal or with light real-time operating system and customer applications. Wireless chip runs the wireless stack.

Key Market Trend: Power, Cost & form factor advantages, reduced complexity

One system SoC

There is only one chip in the system. It runs both the application software and the complete wireless connectivity solution.

Summary

- Multiple sub-systems come together in an MCU based on the category
 - Simple MCUs, Secure MCUs, Secure Wireless MCUs, AI+ML enabled Secure wireless MCUs
- Several considerations at each subsystem level determine the choice of the MCU platform
 - Application complexity, execution constraints, interfaces to the real world, security considerations, connectivity & AI/ML use cases
- Silicon Labs has portfolio across all these categories serving both connected and non-connected devices using the same development environment

WIRELESS COMPUTE

Thank You

Watch ON DEMAND

tech t⊳lks _ WIRELESS COMPUTE