Presentation Will Begin Shortly

4:00

MAR 28[™] | EFR and EFM: An Optimized Platform for Al/ML at the Edge

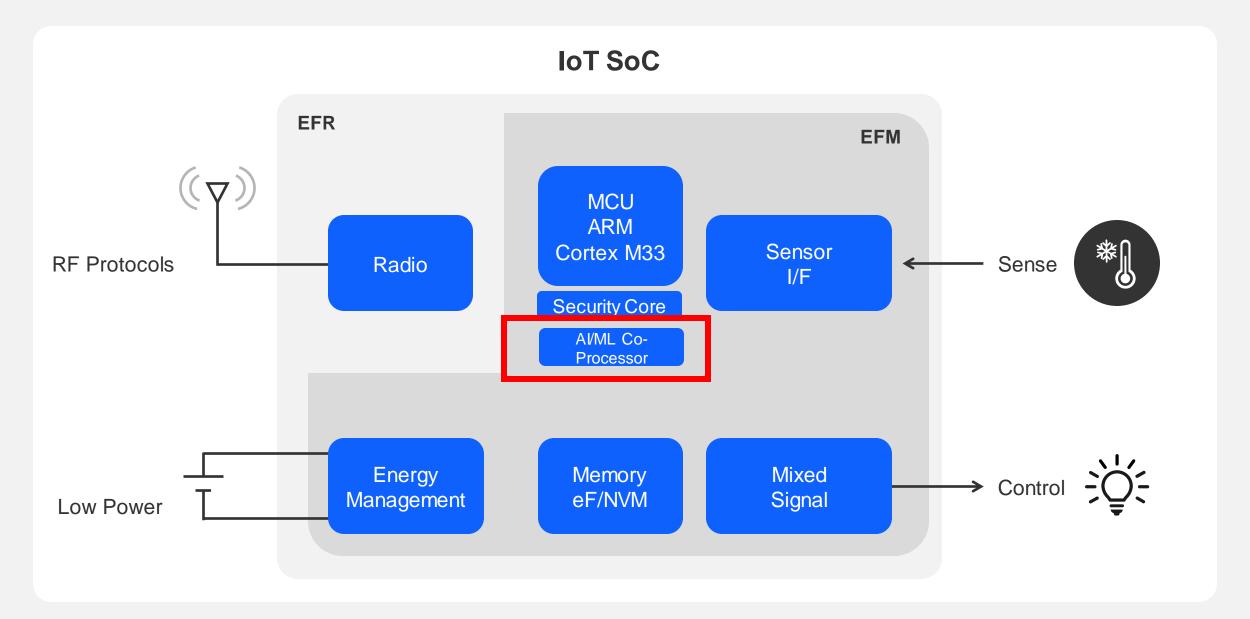
MAY 2ND Unboxing our New 32-bit Microcontroller

JUN 6TH Introducing Simplicity Studio 6: A New Approach to IoT Development

Welcome

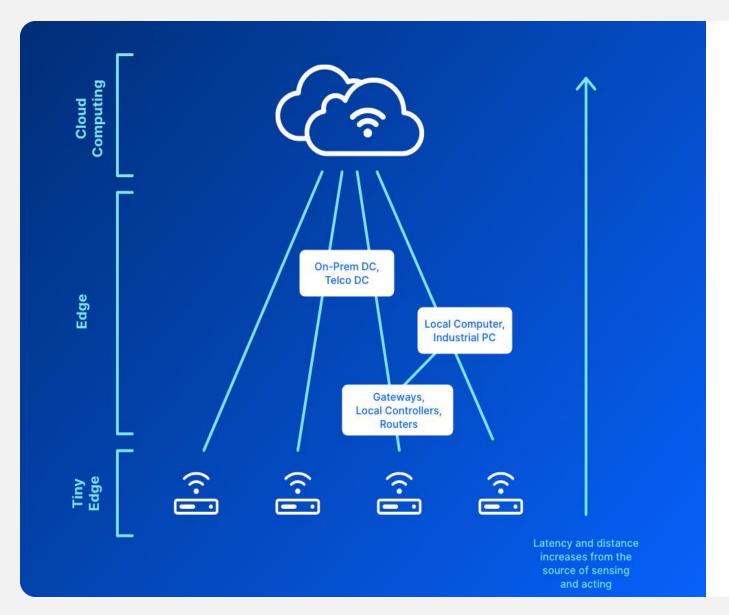
EFR and EFM: An optimized platform for Al/ML at the (Tiny) Edge

Andrew Halstead



Agenda

- 01 Introduction
- What is AI/ML at the Edge? And why has it become important?
- What is Machine Learning in an Embedded Context?
- How Silicon Labs is enabling AI/ML through Hardware?
- How Silicon Labs is enabling AI/ML through Software?


Introduction

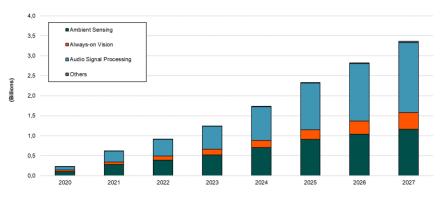
100% IoT Focused Company

What is AI/ML at the Edge? And Why has it become Important?

Artificial Intelligence(AI) and Machine Learning(ML) at the Tiny Edge

Key Benefits

Low Latency


Privacy, IP Protection, Security

acy, Bandwidth ection, Constraints

Offline Mode Operation

Cost Reduction

>3B Devices sold with TinyML in 2027

*Source: ABI Research, Artificial Intelligence and Machine Learning, 2 QTR 2022

Why Machine Learning on Microcontrollers?

Low Latency Required

- Mission or safety-critical applications require real-time reactions
- Large data to process
 typically at vision use
 cases no time to
 upload to anywhere to
 process

Privacy and IP Protection, Security

- Data never leaves the sensing device, only inference result/metadata is transferred
- Less sensitive data to transmit, less chance to be hacked
- Protecting IP

Bandwidth Constraints

- Long range, low power, and slow networks can't transfer all TimeSeries data to process somewhere else
- Overloading of mesh network is an issue
- Large data to chunk e.g. hi-res images

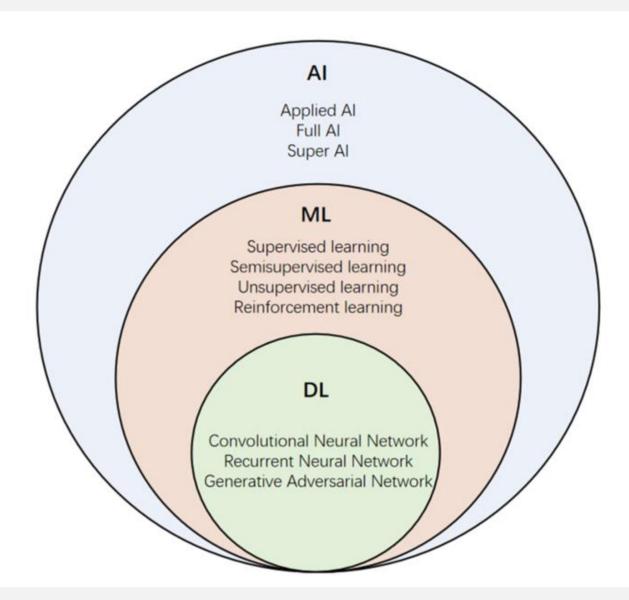
Offline Mode Operation

- Local system keeps operating standalone in case of any network issue
- Connectivity is occasional or blocked by admin

Cost Reduction

- Network and infrastructure costs
- · Data ingestion costs
- · Data storage costs
- Cloud services
- Ops, maintenance
- Compact edge with ML solutions integrated to wireless SoC
- Cheaper devices

Power constraints


- Ultra-low power applications
- Always-on systems
- Healthy tradeoff in transmit to higher level compute vs.
 locally process

Data processing is more efficient with Machine Learning at the sensor level

What is Machine Learning in an Embedded Context?

The Terms...

Where is the drivable lane?

A rules-based approach: intractable problem

Use Case for ML in an Embedded Context

Sensors

- · Acceleration, Temperature, Current/Voltage
- Time-series data on ADC or GPIO

ML methods based on **Time-series Data**

- · Data anomaly detection
- Data pattern matching

Microphones

Camera

Analog or Digital

- Audio mic array with beamforming
- Audio mic input with Audio Front End, DSP

ML methods based on Audio

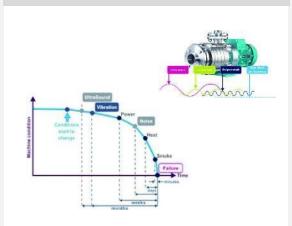
 Audio pattern matching (ex. glass break)

ML methods based on Voice

detection

ML methods based on Vision

- Fingerprint reading Low resolution imaging
 - Always-on vision object detection
 - · Image classification and detection


Image capture

(including fingerprint reader)

Application Examples and Model Sizes

Wireless SoC's typical/recommended Resource needs with ML applications in Order of Magnitudes

RAM: 64kB Ops/s: 5M-40M

SENSOR

Signal Processing (time series, low-rate data)

- Predictive/Preventative Maintenance
- · Anomaly detection (e.g. air quality, abnormal usage, leak detection)
- · Condition based monitoring machine health, Cold chain monitoring, Battery monitoring
- · Bio-signal analysis -healthcare and medical (e.g., pulse detection, EKG)
- · Accelerometer use-cases e.g., fall detection, pedometer, step counting
- Agricultural use-cases (e.g. cow health)

RAM: 128kB Ops/s: 40M-100M

AUDIO

Audio Pattern Matching

- · Security applications e.g., Glass break, scream, shot detection
- · Cough detection
- Machine malfunction detection
- · Breath monitoring

RAM: 256kB Ops/s: 50M-500M

VOICE

Voice Commands

- 10 words command set for smart appliance
- · Wake-word detection (Always-On voice)
- · Smart device voice control
- Voice assistant

RAM: 256kB

Ops/s: 200M-1.5G w /hardware accelerator

VISION

Low-resolution vision

- Wake-up on object detection (always-on)
- Presence detection
- People counting, people-flow counting
- Movement detection
- Smart city monitoring (e.g. Parking spot)
- Fingerprint matching

How Silicon Labs is enabling AI/ML through Hardware.

Silicon Labs Machine Learning Solution Benefits

- Industry's widest portfolio of wireless solutions combined with ML for Tiny Edge devices
 - ▶ Bluetooth, 802.15.4/ZigBee/Thread, Matter, Z-Wave, Prop, Wi-Sun, Sidewalk, WiFi
- Integrated ML hardware accelerator (xG24, xG28) provides up to 8X faster ML inferencing with 1/6th of energy
 - ▶ Reduces BOM, footprint and design complexity while minimizing latency
- ML development tools and solutions for explorers to experts for faster application development
 - ► TensorFlow Lite Micro supported in GSDK
 - ▶ Partnerships with Edge Impulse, SensiML and MicroAl accelerate embedded ML development
 - ▶ Silicon Labs' ML Tool Kit on GitHub provides complete control & flexibility for the expert developers
- Wide range of use cases including low data rate sensors, audio/voice and low-res images

End-to-End Machine Learning Solution for Wireless IoT Edge Devices

BG24 and MG24: Optimized for Battery Powered IoT Mesh Devices

SOCS AND MODULES

SOC DEVICE **SPECIFICATIONS**

High Performance Radio

- Up to +19.5 dBm TX
- -97.6 dBm RX @ BLE 1 Mbps
- -105.4 dBm RX @ 802.15.4

Efficient ARM® Cortex®-M33

- 78 MHz (FPU and DSP)
- Up to 1536kB of Flash
- Up to 256kB of RAM

Matrix Vector Processor

Al/ML Accelerator

Low Power

- 5.0 mA TX @ 0 dBm
- 19.1 mA TX @ +10 dBm
- 4.4 mA RX (BLE 1 Mbps)
- 5.1 mA RX (802.15.4)
- 33.4 µA/MHz
- 1.3 µA EM2 with 16 kB RAM

Security

- Secure Vault Mid/High
- ARM ® TrustZone ®

SOC DEVICE **SPECIFICATIONS**

Low-power Peripherals

- EUSART, USART, I2C
- 20-bit ADC, 12-bit VDAC, **ACMP**
- Temperature sensor +/- 1.5°C
- 32kHz, 500ppm PLFRCO

World Class Software

- Matter¹
- Thread¹
- Zigbee¹
- Bluetooth (1M/2M/LR)
- Bluetooth mesh
- Dynamic multiprotocol¹
- Proprietary

Wide Operating Range

- 1.71 to 3.8 volts
- +125°C operating temperature

Multiple Package Options

- 5x5 QFN40 (26 GPIO)
- 6x6 QFN48 (28/32 GPIO)

DIFFERENTIATED FEATURES

Integrated Power Amplifier

• +19.5 dBm output power

AI/ML accelerator

· Accelerates inferencing while reducing power consumption

Secure Vault High

 Protects data and device from local and remote attacks

20-bit ADC

 16-bit ENOB for advance sensing

PLFRCO

Eliminates need for 32 KHz crystal

xG28: Single or Dual Band SoC for the Next Generation of IoT

Single or Dual Band More GPIOs

DEVICE SPECIFICATIONS

High Performance Dual Band Radio

- Up to +20 dBm Sub-GHz Output Power
- -125.8 dBm Rx Sensitivity @ 915 MHz 4.8 kbps O-
- Up to +10 dBm 2.4 GHz Output Power
- -94.2 dBm Rx Sensitivity @ BLE 1 Mbps

Efficient ARM® Cortex®-M33

- Up to 78 MHz
- Up to 1024kB Flash, 256kB RAM

Low Power

- 82.8 mA TX Current (915 MHz, +20 dBm)
- 26.2 mA Tx Current (915 MHz, +14 dBm)
- 4.6 mA RX (915 MHz 4.8 kbps O-QPSK)
- 22.5 mA TX Current (2.4 GHz +10 dBm)
- 5.2 mA RX (BLE 1 Mbps)
- Active Current: 33 µA/MHz @39 MHz
- 1.3 µA EM2 (16 kB Retained) / 2.8 µA EM2 (256 kB Retained)

Protocol support

- Wi-SUN
- Amazon Sidew alk
- CONNECT
- Wireless M-BUS
- Proprietary
- Bluetooth LE

Package Options

- 6x6 QFN48 (31 GPIO)
- 8x8 QFN68 (49 GPIO)

DIFFERENTIATED FEATURES

Single and Dual Band Support

Supports Sub-GHz and Sub-GHz + Bluetooth LE

Large memory footprint

• Support larger stacks or applications in a single chip

AI/ML accelerator

Faster inferencing with lower power

Secure Vault[™] Mid and High options

Flexible platform for evolving security needs

+20 dBm output power

Eliminates the need for an external power amplifier

16-bit ADC

Up to 14-bit ENOB for better analog resolution

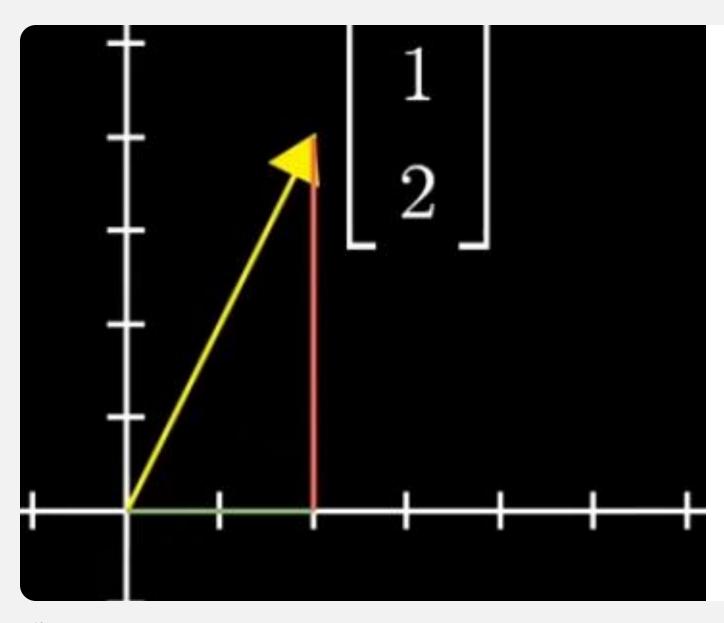
Preamble Sense

Ultra low power receive mode

Antenna Diversity

6-8 dBm better link budget (Sub-GHz only)

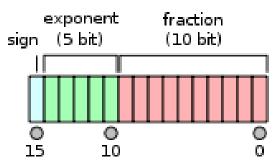
Segment LCD


4x48 segmentLCD

High GPIO count

Support up to 49 GPIO

Introducing the MVP


Some Terms...

- MVP stands for Matrix-Vector **Processor**
- What is a 'Vector'?
- What is a 'Matrix'?
 - Why are these relevant in Machine Learning?
- What is Matrix-Vector multiplication
 - Why are these relevant in Machine Learning?

What is the MVP? When is it useful?

- Fundamentally, the MVP performs floating point operations very efficiently in hardware.
- It's native processing numeric format is IEEE 745-2008 half-precision (16-bit) floating point numbers.
- How is this format different from integer format?
- What types of applications benefit from the MVP?

Technical Details of the MVP

Resource	Cortex-M33	MVPv1
Data Buses	1x32-bit read/write bus	2x32-bit read buses 1x32-bit write bus
I/O data type	8, 16, and 32-bit integers 16/32-bit floating point	8-bit integers 16-bit floating point
Computation types supported by hardware	8, 16, 32-bit integers 32-bit floating point	16-bit floating point
Instruction Location	Sequenced instructions	8 macro instruction records
Data Organization Restrictions	Data can be organized in highly complex ways, where software defines the access pattern through instructions	Data is defined in a flexible matrix/array/tensor format requiring a regular pattern of storage that can be specified in terms of independent per-dimension strides
Single Instruction, Multiple Data (SIMD)	4 bytes	2x16-bit floating point numbers (or 2 converted int8 integers)

The MVP Math library

- Accelerate and do more efficiently linear algebra operations with internal MVP subsystem
- Math APIs (alternative to CMSIS_DSP) available in GSDK Alpha, GA release in 23Q2

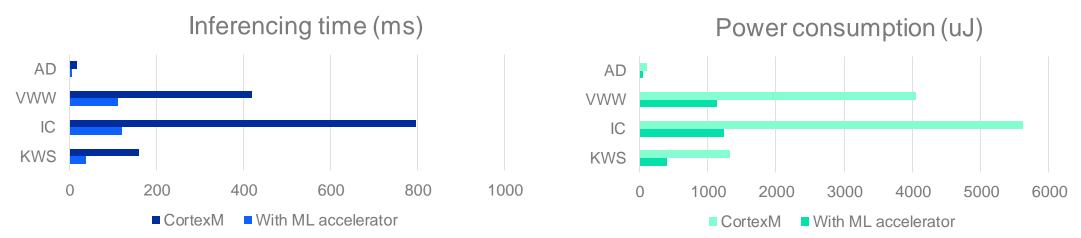
VECTOR OPERATIONS

- Vector Add
- Vector Absolute Value
- Vector Clip
- Vector Dot Product
- Vector Multiply
- Vector Negate
- Vector Offset
- Vector Scale
- Vector Sub
- Complex Vector Conjugate
- Complex Vector Dot Product
- Complex Vector Magnitude
- Complex Vector Magnitude Squared
- Complex Vector Multiply
- Complex Vector Multiply Real
- Vector Copy
- Vector Fill

MATRIX OPERATIONS

- Matrix Initialize
- Matrix Multiply
- Matrix Scale
- Matrix Sub
- Matrix Transpose
- Matrix Multiply Vector
- Matrix Add
- Complex Matrix Multiply
- Complex Matrix Transpose

		CMSIS	CMSIS			
		f32 cpu-	f16 cpu-	MVP cpu-		
Matr	ix dims.	cycles	cycles	cycles	instr	stalls
2x2	2x2	226	304	403	8	0
4x2	2x4	602	913	424	32	0
6x2	2x6	1210	1921	464	72	0
8x2	2x8	2050	3321	516	128	0
10x2	2x10	3122	5113	592	200	0
12x2	2x12	4426	7297	676	288	0
14x2	2x14	5962	9873	784	392	0
16x2	2x16	7730	12841	904	512	0
18x2	2x18	9730	16201	1036	648	0
20x2	2x20	11962	19953	1192	800	0
20x4	4x20	17962	27956	1593	1200	1
20x6	6x20	23742	39956	2193	1600	201
20x8	8x20	27562	47556	2793	2000	400
20x10	10x20	33162	59556	3393	2400	601
20x12	12x20	37162	67156	3993	2800	801
20x14	14x20	42762	79156	4593	3200	1000
20x16	16x20	46762	86756	5193	3600	1201
20x18	18x20	52362	98756	5793	4000	1401
20x20	20x20	56362	106356	6393	4400	1600


- ✓ Faster and more efficient execution of many algorithms with large data for example filtering algorithms
- Saving CPU cycles, saving power, resulting longer battery life
- Option to win sockets against faster CPUs

The Benefits...

- Dedicated ML computing subsystem next to the CPU: Matrix Vector Processor (MVP)
- Optimized MVP to accelerate ML inferencing with a lot of processing power offloading the CPU
- Up to 8x faster inferencing over Cortex-M (see below perf. benchmark)
- Up to 6x lower power for inferencing (see below perf. benchmark)
- Dedicated OPNs for MVP accelerated parts → EFR32MG24B[2]... or [3]

Performance data with ML hardware accelerator vs. pure SW on CortexM*

^{*}Standardized performance benchmark validated by independent benchmarking body **MLCommons.org**. Published in MLPerf Tiny v1.0. Results are for inferencing only (not for the complete application). You can refer to MLCommons as validated results-

How Silicon Labs is enabling AI/ML through software?

Machine Learning Development Steps

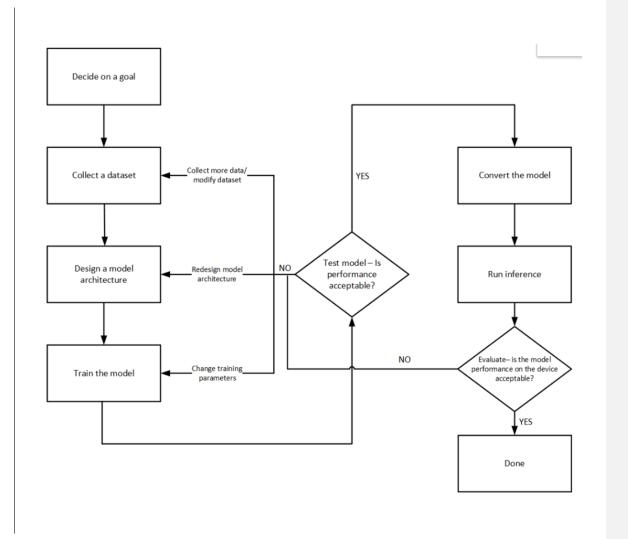
Goal

What are you trying to achieve?

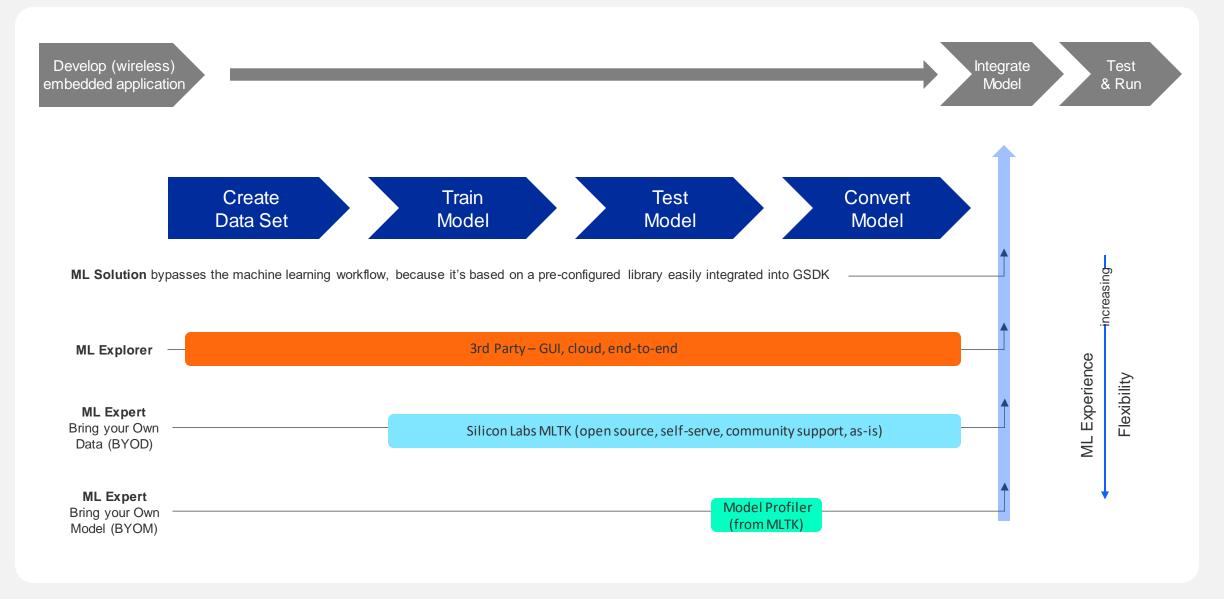
Collect a dataset

 Construct a dataset that you will use to train the model, some will be kept aside for testing the model.

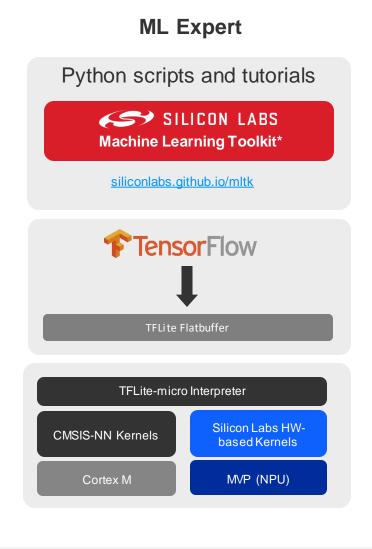
Design Model architecture

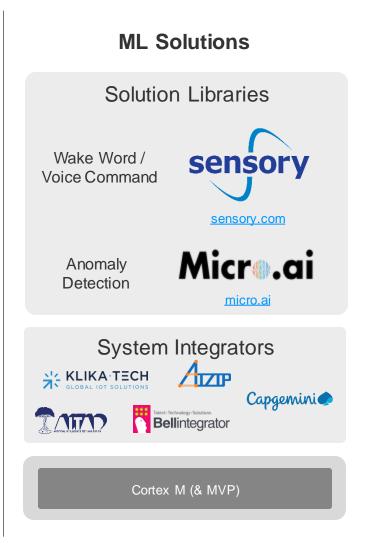

- It is not the raw data that is inputted into the model, it is the pre-processed data.
- Therefore, we must choose a pre-processing block that is relevant for the type of data we are dealing with.

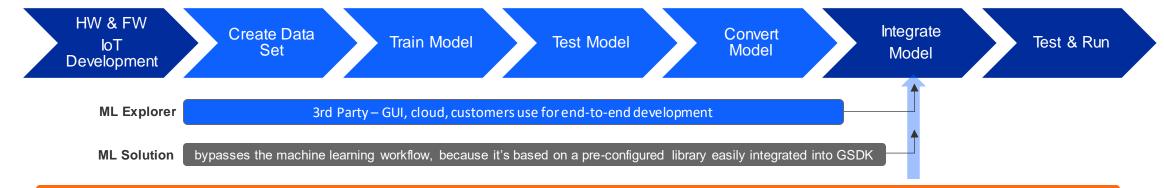
Train the Model


- About 80% of the dataset should be used at this stage.
- the desired output is good predictions on generalized inputs.
- Need to avoid underfitting and overfitting.

Test the Model


check the performance of the model


Embedded Development with Machine Learning (supervised)


Software and Tool Support by customer skills: know your customer's skills

ML Partnership Overview

Full Development Services

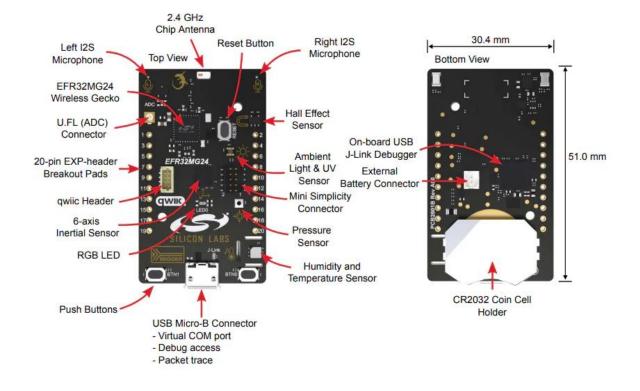
	Edge Impulse	SensiML	MicroAl*	Sensory	AIZIP	NeutonAl	Klika-Tech	AITAD
Low-Rate Sensors	✓	✓	✓		✓	✓	✓	✓
Audio Pattern Matching	✓	✓			√	√	✓	✓
Voice Commands	√	√		✓	√	√	✓	✓
Low-Resolution Vision	✓				√			✓
Regions	AMER, EMEA, APAC	AMER, EMEA, APAC	AMER, APAC	AMER, EMEA, APAC	AMER, EMEA, APAC	AMER, EMEA, APAC	AMER, EMEA, APAC	EMEA

^{*}Micro Al has a platform for users to develop their own application, but it's solely for anomaly detection or system health score

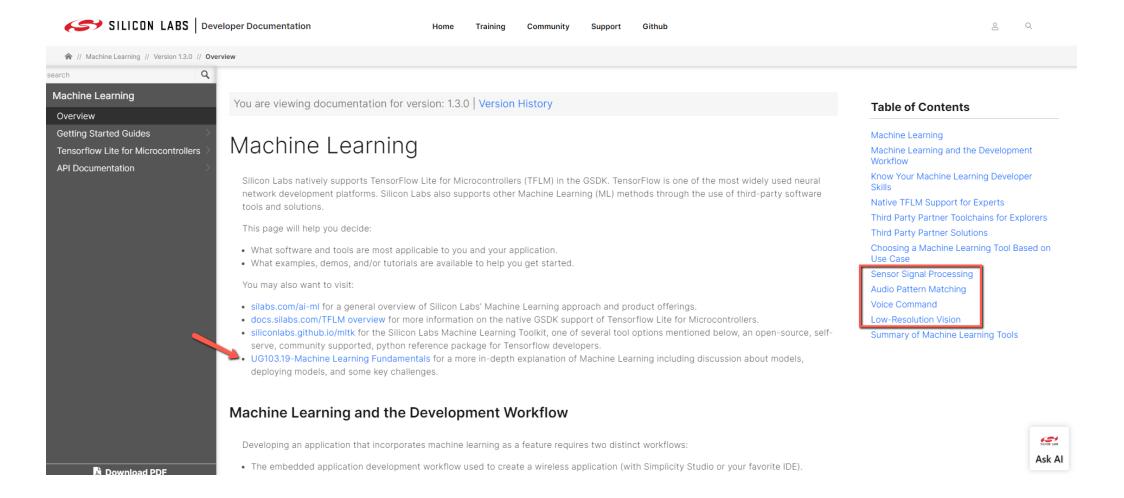
ML Explorer

ML Solution

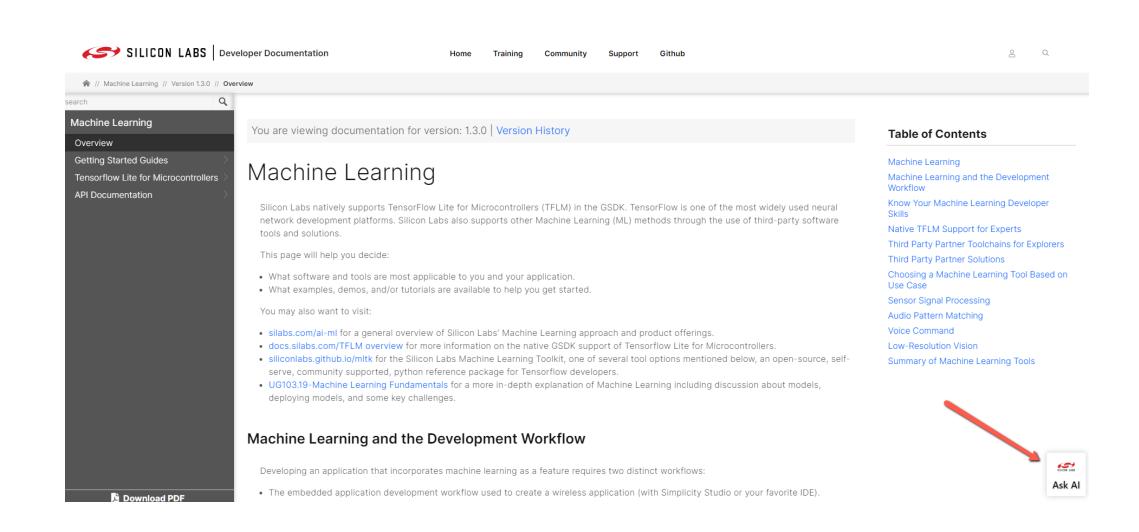
Full Dev Service



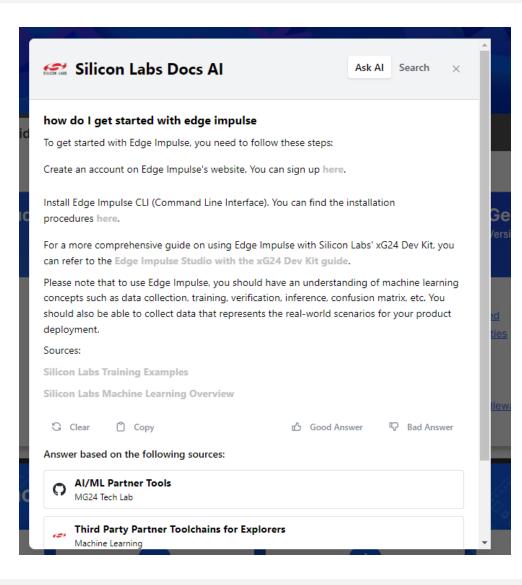
How to get Started?

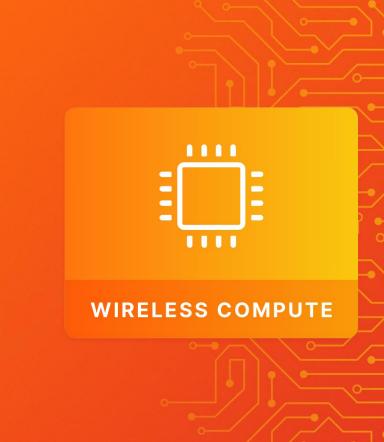

The Kit I Recommend to get Started with...

- You can pick up a xG24 Development Board here:
 - https://www.silabs.com/development-tools/wireless/efr32xg24-dev-kit?tab=overview

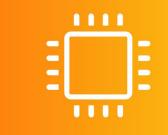


Visit our Machine Learning Landing Page...


https://docs.silabs.com/machine-learning/1.3.0/machine-learning-overview/


Check Out our Partner Tools...

It's Response...


Q&A

Thank You

Watch ON DEMAND

WIRELESS COMPUTE