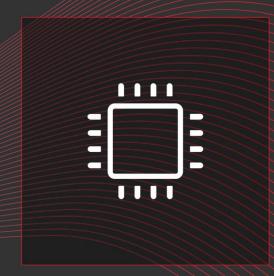
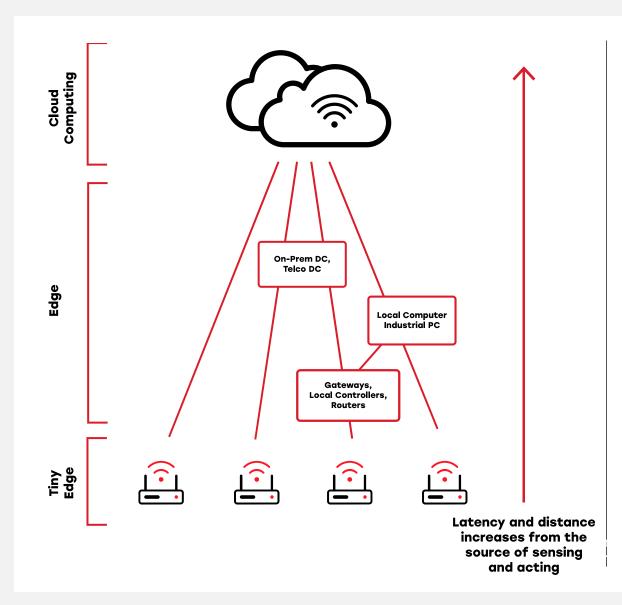
**Presentation Will Begin Shortly** 

| JUNE SESSIONS              |          |                                                          |
|----------------------------|----------|----------------------------------------------------------|
| DATE                       | TIME     | SESSION                                                  |
| THURS, JUNE 5 <sup>™</sup> | 10 AM CT | Real-World AI/ML Applications<br>on a Wi-Fi Wireless MCU |
| TUES, JUNE 17 <sup>™</sup> | 10 AM CT | Bringing Bluetooth 6.0<br>Channel Sounding to Market     |


# Enabling Al/ML at the Edge – With or without Connectivity

Chad Steider – Sr Product Marketing Manager, Silicon Labs

Mark Milligan – Head of Business Development and Product


Marketing, Eta Compute





WIRELESS COMPUTE

# Artificial Intelligence(AI) and Machine Learning(ML) at the Tiny Edge



#### Lower latency

 Moving decision making closer to where data is collected allows for better real time decision making

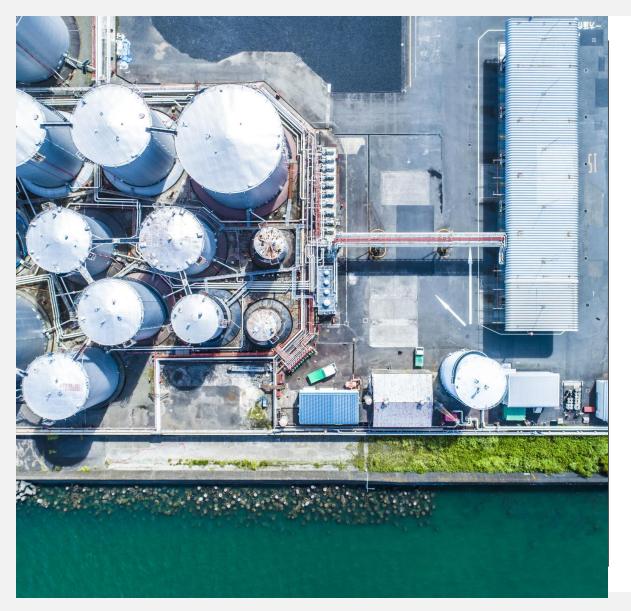
#### Privacy, IP Protection, and Security

 Can now send anonymous decisions to larger monitoring system rather than sensitive data

#### Removes bandwidth constraints

 Decision centric data transmission limits overall amount of bandwidth needed

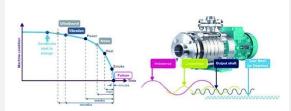
#### Enables offline mode operation


 Eliminates the need for connectivity to make use of critical AI/ML capability

#### Reduces overall system and operational costs

 Simplified BOM and data usage lowers overall implementation cost for ML enabled edge devices




# **Benefits of non-Wireless TinyML**



- Localized decision making allows for broadened use cases and higher reliability
  - Removes dependency on cloud or other infrastructure capability
- Existing wired interfaces can provide backbone to send decisions to central location if needed
  - Eliminates need for adoption of wireless technologies alongside AI/ML
- Alerts or notifications can be made via localized interfaces
  - Can use sounds or LEDs to alert operators, technicians, or consumers when attention is needed
- Al/ML can be added to existing setups quickly and with minimal disruptions
  - Add intelligent sensors to equipment or networks without impacting overall system

# Machine Learning Applications Supported by Silicon Labs

#### SENSOR



# Signal processing (time series low-rate)

- Predictive/Preventative Maintenance
- Bio-signal analysis (healthcare and medical) e.g., pulse detection, EKG
- · Cold chain monitoring
- Accelerometer use-cases e.g., fall detection, pedometer, step counting
- · Battery monitoring
- Agricultural use-cases e.g., moisture sensing
- Anomaly detection

RAM\*: 96kB Ops/s: 5M

#### AUDIO





#### Audio pattern matching

- Security applications e.g., Glass break, scream, shot detection
- Cough detection
- Machine malfunction detection
- Breath monitoring

RAM\*: 128kB Ops/s: 6M

#### VOICE



#### Voice commands

- 10 words command set for smart appliance
- Wake-word detection (Always-On voice)
- · Smart device voice control
- Voice assistant

RAM\*: 128kB Ops/s: 40M

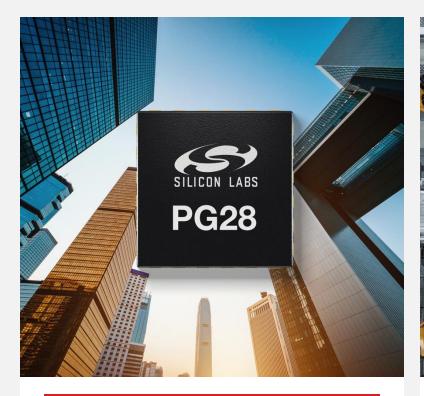
#### VISION



#### Low-resolution vision

- Wake-up on object detection
- Presence detection
- People counting, people-flow counting
- · Movement detection
- Fingerprint

RAM\*: 256kB w/hardware accelerator,


Ops/s: 100M

\*Suggested minimum chip RAM size

ML Applications at the Tiny Edge with Silicon Labs



## AI/ML Enabled MCU Portfolio



#### LOW POWER, HIGH PERFORMANCE

- Cortex M33 + AI/ML Accelerator
- Up to 256kB RAM and 1024kB Flash
- High performance analog peripherals
- LCD Controller for up to 192 Segments



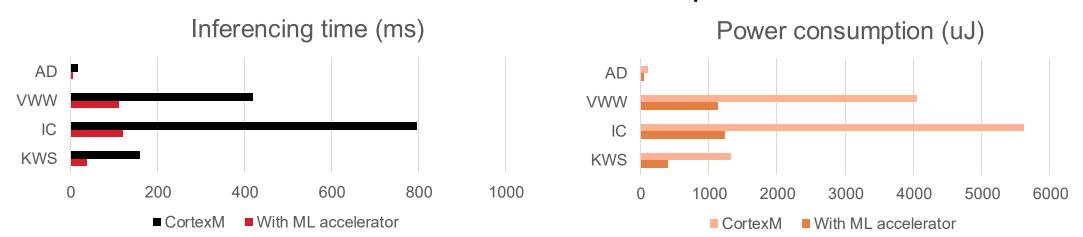
#### MORE MEMORY, MORE GPIO

- Cortex M33 + AI/ML Accelerator
- Up to 512kB RAM and 3200kB Flash
- Up to 64 GPIOs
- High performance analog peripherals

### Benefits of the MVP ML Hardware Accelerator

Dedicated ML computing subsystem next to the CPU: Matrix Vector Processor (MVP)

Optimized MVP to accelerate ML inferencing with a lot of processing power offloading the CPU


Up to 8x faster inferencing over Cortex-M (see below perf. benchmark)

Up to **6x lower power** for inferencing (see below perf. benchmark)

Dedicated OPNs for MVP accelerated parts → EFR32MG24B[2]... or [3]



#### Performance data with ML hardware accelerator vs. pure SW on CortexM\*



<sup>\*</sup>Standardized performance benchmark validated by independent benchmarking body **MLCommons.org**. Published in MLPerf Tiny v1.0. Results are for inferencing only (not for the complete application). You can refer to MLCommons as validated results-





# New feature in GSDK: MVP Math library

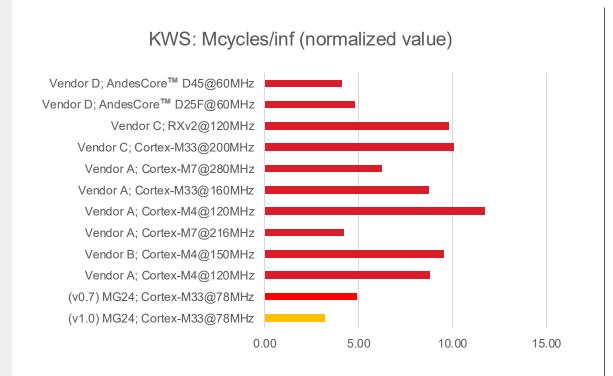
- Accelerate and do more efficient linear algebra operations with internal MVP subsystem
- Math APIs (alternative to CMSIS\_DSP) available in GSDK

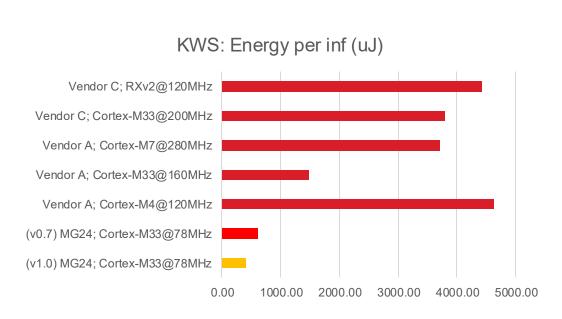
#### **VECTOR OPERATIONS**

- Vector Add
- Vector Absolute Value
- Vector Clip
- Vector Dot Product
- Vector Multiply
- Vector Negate
- Vector Offset
- Vector Scale
- Vector Sub
- Complex Vector Conjugate
- Complex Vector Dot Product
- Complex Vector Magnitude
- · Complex Vector Magnitude Squared
- Complex Vector Multiply
- · Complex Vector Multiply Real
- Vector Copy
- Vector Fill

#### **MATRIX OPERATIONS**

- Matrix Initialize
- Matrix Multiply
- Matrix Scale
- Matrix Sub
- Matrix Transpose
- Matrix Multiply Vector
- Matrix Add
- Complex Matrix Multiply
- Complex Matrix Transpose


|       |          | CMSIS<br>f32 cpu- | CMSIS<br>f16 cpu- | MVP cpu- |       |        |  |  |  |
|-------|----------|-------------------|-------------------|----------|-------|--------|--|--|--|
| Matri | ix dims. | cycles            | cycles            | cycles   | instr | stalls |  |  |  |
|       |          | -                 |                   | _        |       |        |  |  |  |
| 2x2   | 2x2      | 226               | 304               | 403      | 8     | 0      |  |  |  |
| 4x2   | 2x4      | 602               | 913               | 424      | 32    | 0      |  |  |  |
| 6x2   | 2x6      | 1210              | 1921              | 464      | 72    | 0      |  |  |  |
| 8x2   | 2x8      | 2050              | 3321              | 516      | 128   | 0      |  |  |  |
| 10x2  | 2x10     | 3122              | 5113              | 592      | 200   | 0      |  |  |  |
| 12x2  | 2x12     | 4426              | 7297              | 676      | 288   | 0      |  |  |  |
| 14x2  | 2x14     | 5962              | 9873              | 784      | 392   | 0      |  |  |  |
| 16x2  | 2x16     | 7730              | 12841             | 904      | 512   | 0      |  |  |  |
| 18x2  | 2x18     | 9730              | 16201             | 1036     | 648   | 0      |  |  |  |
| 20x2  | 2x20     | 11962             | 19953             | 1192     | 800   | 0      |  |  |  |
| 20x4  | 4x20     | 17962             | 27956             | 1593     | 1200  | 1      |  |  |  |
| 20x6  | 6x20     | 23742             | 39956             | 2193     | 1600  | 201    |  |  |  |
| 20x8  | 8x20     | 27562             | 47556             | 2793     | 2000  | 400    |  |  |  |
| 20x10 | 10x20    | 33162             | 59556             | 3393     | 2400  | 601    |  |  |  |
| 20x12 | 12x20    | 37162             | 67156             | 3993     | 2800  | 801    |  |  |  |
| 20x14 | 14x20    | 42762             | 79156             | 4593     | 3200  | 1000   |  |  |  |
| 20x16 | 16x20    | 46762             | 86756             | 5193     | 3600  | 1201   |  |  |  |
| 20x18 | 18x20    | 52362             | 98756             | 5793     | 4000  | 1401   |  |  |  |
| 20x20 | 20x20    | 56362             | 106356            | 6393     | 4400  | 1600   |  |  |  |

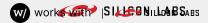

~ 9x less cycles

CortexM only

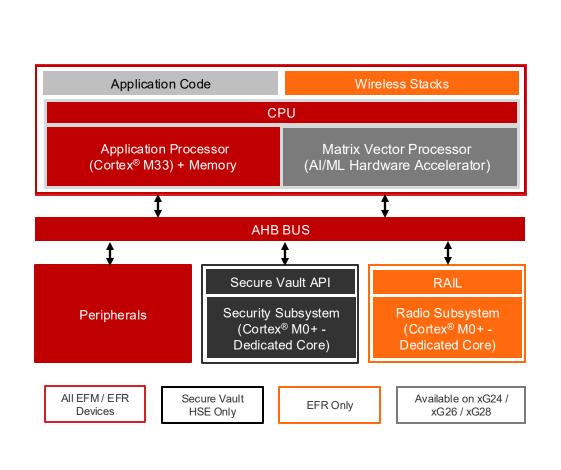
- ✓ Faster and more efficient execution of many algorithms with large. data for example filtering algorithms
- Saving CPU cycles, saving power, resulting longer battery life
- ✓ Option to win sockets against faster CPUs

# ML\_Perf-Tiny v0.7 (and v1.0) Performance Benchmark\*





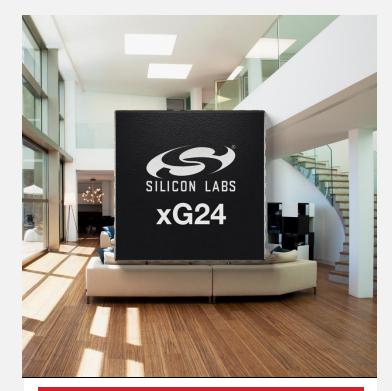

MLPerf Tiny 0.7 benchmark results on xG24-DK2601B board; source: mlcommons.org




\*Standardized performance benchmark validated by independent benchmarking body.

Results are for inferencing only (not the complete application).




### Multi-Core and AI/ML Solution



- Multi-core architecture gives design flexibility and optimization across EFM and EFR platforms
- Dedicated application, radio<sup>1</sup>, and security<sup>2</sup> cores share system burden for better resource utilization
- Common development platform for connected and non-connected products
  - Simplicity Studio gives developers a common development platform for entire product portfolio
- Common Security and AI/ML subsystems
  - Allows for design consistency independent of connectivity needs
- Footprint and firmware compatibility between EFM and EFR families
  - Simplified SKU management and code base development lowers development cost and complexity

|      | BG<br><b>ॐ</b> | MG<br>☆ | FG | ZG<br>@ | SG<br>amazon sidewalk | PG           |
|------|----------------|---------|----|---------|-----------------------|--------------|
| xG21 | ✓              | ✓       |    |         |                       |              |
| xG22 | ✓              | ✓       |    |         |                       | ✓            |
| xG23 |                |         | ✓  | ✓       | ✓                     | ✓            |
| xG24 | ✓              | ✓       |    |         |                       |              |
| xG25 |                |         | ✓  |         |                       |              |
| xG26 | ✓              | ✓       |    |         |                       | $\checkmark$ |
| xG27 | ✓              | ✓       |    |         |                       |              |
| xG28 |                |         | ✓  | √       | ✓                     | √            |
|      |                | EFM     |    |         |                       |              |

### AI/ML Enabled Wireless SoCs





- Cortex M33 + AI/ML Accelerator
- **Bluetooth, Matter, Proprietary Support**
- Up to 256kB RAM and 1536kB Flash
- High performance analog peripherals



SUB-GHZ + BLUETOOTH AND AI/ML

- Cortex M33 + AI/ML Accelerator
- Sub-GHz and Sub-GHz + Bluetooth
- Up to 256kB RAM and 1024kB Flash
- High performance analog peripherals
- LCD Controller for up to 192 Segments



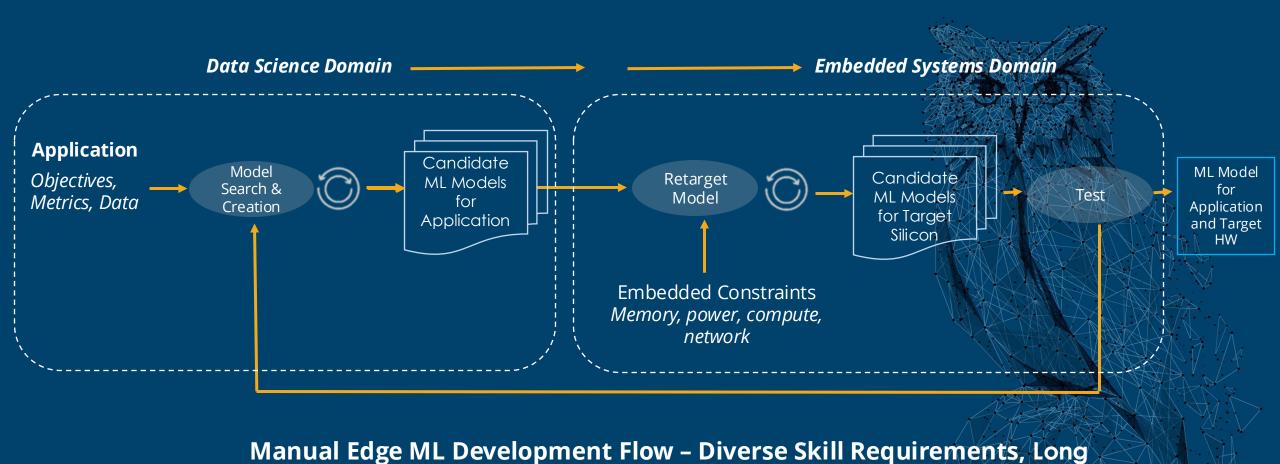
#### FUTURE PROOF AI/ML SOLUTION

- Cortex M33 + AI/ML Accelerator
- **Bluetooth, Matter, Proprietary Support**
- Up to 512kB RAM and 3200kB Flash
- High performance analog peripherals
- LCD Controller for up to 160 Segments

# Silicon Labs Machine Learning Solution Benefits

- Industry's widest portfolio of low power solutions combined with ML for Tiny Edge devices
  - ▶ Platformed approach to Al/ML for simplified use across connected and non-connected products
  - ▶ Options for Bluetooth, 802.15.4/ZigBee/Thread, Matter, Z-Wave, Prop, Wi-Sun, Sidewalk
- Integrated ML hardware accelerator provides 8X faster ML inferencing with 1/6th of energy
  - ► Reduces BOM, footprint and design complexity while minimizing latency
  - Allows for smaller batteries and extended maintenance cycles
- ML development tools and solutions for explorers to experts for faster application development
  - ▶ TensorFlow Lite Micro supported in GSDK
  - ▶ Partnerships with Edge Impulse, SensiML, MicroAl, and Eta Compute accelerate embedded ML development
  - Silicon Labs' ML Tool Kit on GitHub provides complete control & flexibility for the expert developers
- Wide range of use cases including low data rate sensors, audio/voice and low-res images

End-to-End Machine Learning Solution for Wireless IoT Edge Devices

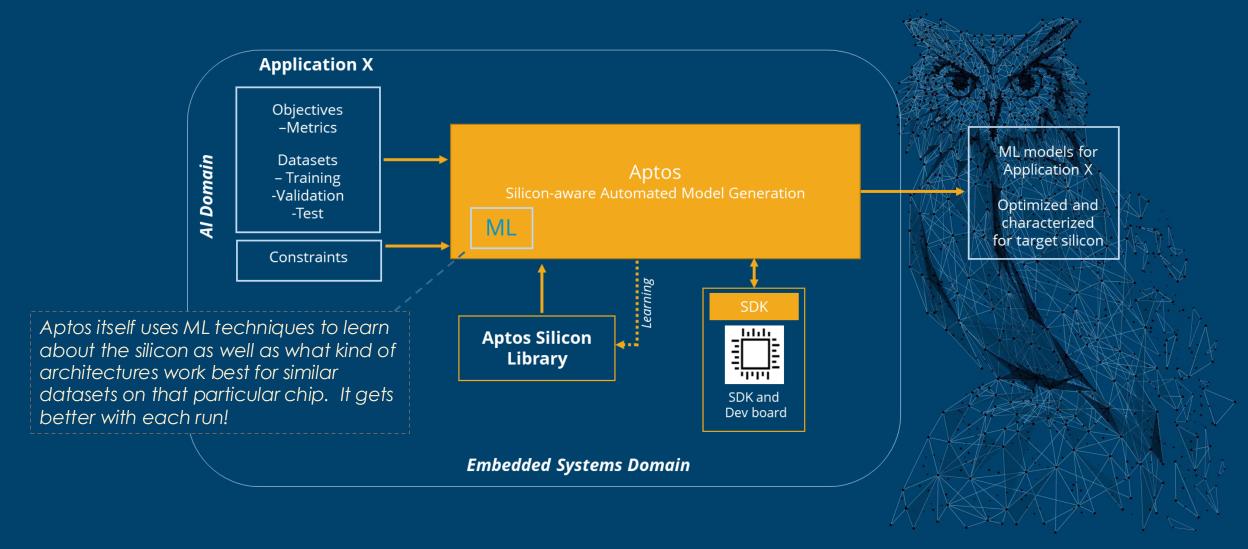



Speeding ML Model Development for Silicon Labs Devices

Eta Compute's Aptos Edge-ML Software Toolchain

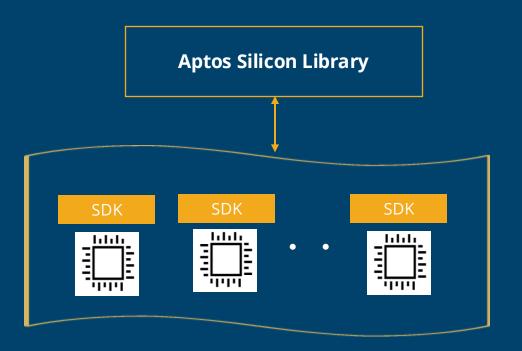


# Unique Challenges for Edge-ML Development




© Eta Compute 2022-2025

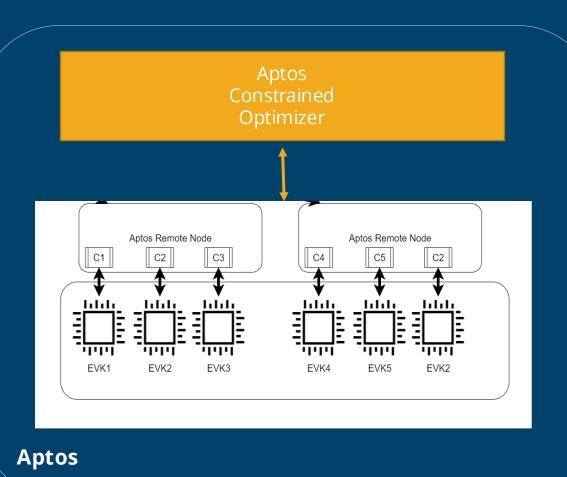
Cycles, Poorly-optimized Results




# Aptos Encapsulates State-of-the-Art Data Science + Learned Constraints of the Target Embedded ML Environment



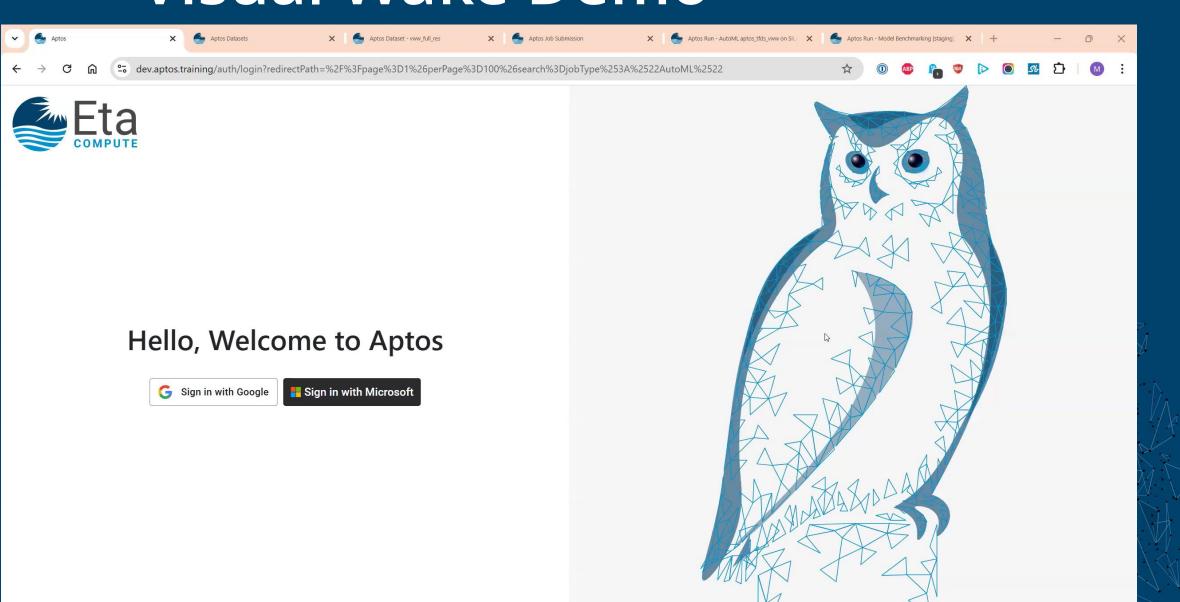



Eta Compute Worked with Silicon Labs to "onboard" Devices into Aptos Silicon Library



- Aptos characterized the devices with Simplicity Studio and Silicon Labs development boards, and learned the range of ML capabilities and constraints
- Users can select their choice of target silicon from the library (initially EFR32MG26 and EFR32MG24)
- Aptos continuously learns what works well (and what doesn't). Each use gets smarter




# Aptos Generated Models are Characterized on Silicon Labs Actual Development Boards



- Aptos Cloud connects to development kits and physical boards
- Aptos automatically performs final runs of candidate models on actual devices and tools
- Your job results you see in Aptos are validated models with accurate, measured attributes (latency, energy, etc)

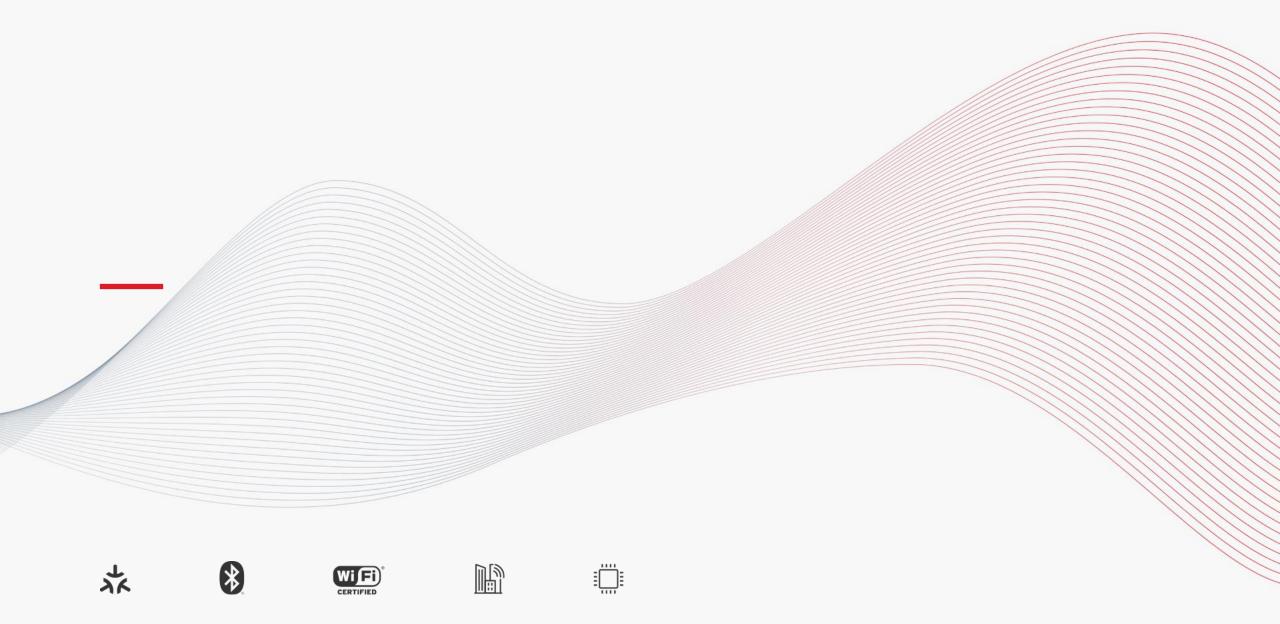


# Visual Wake Demo



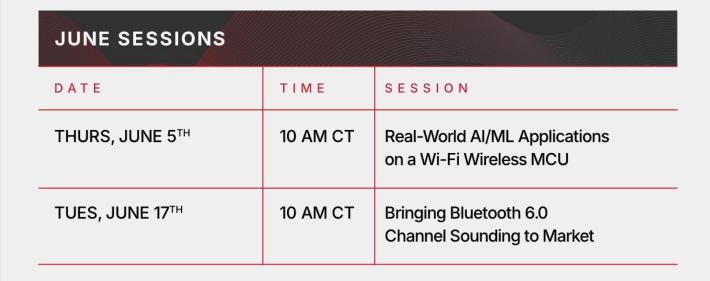


Aptos Accelerates the Development of Edge ML


Drive more Products into Volume Production

 Overcomes the gap between ML and Embedded Systems through advanced tooling and automation

- No-code toolchain enables engineers to rapidly and successfully develop optimal edge ML models
- Enables ML talent to succeed in an embedded systems environment & leverage a target chip's unique ML capabilities










# Thank you











