

Welcome

Enhancing Bluetooth[®] LE Advertising Range with Novel Bits

BLUETOOTH SERIES

Arnold Kalvach & Mohammad Afaneh

BLUETOOTH SERIES

Presentation Will Begin Shortly

BLUETOOTH SERIES SCHEDULE						
NEW						
NOV 16 TH Enhancing Bluetooth LE Advertising Range with Novel Bits						
ON DEMAND						
OCT 26 TH Bluetooth App Development with CircuitPython						
FEB 23 RD ML in Predictive Maintenance and Safety Applications						
MAR 23 RD Unboxing: What's New With Bluetooth						
APR 20 TH What's New with Bluetooth Mesh 1.1						
MAY 18 TH Bluetooth Portfolio: What's Right for Your Application						
JUN 15 TH The Latest in HADM With Bluetooth LE						

We will begin in:

SILICON LABS

0:00

BLUETOOTH SERIES

BLUETOOTH SERIES SCHEDULE							
NEW							
NOV 16 TH	Enhancing Bluetooth LE Advertising Range with Novel Bits						
ON DEMAND							
OCT 26 [™]	Bluetooth App Development with CircuitPython						
FEB 23 RD	ML in Predictive Maintenance and Safety Applications						
MAR 23 RD	Unboxing: What's New With Bluetooth						
APR 20 TH	What's New with Bluetooth Mesh 1.1						
MAY 18 ^{тн}	Bluetooth Portfolio: What's Right for Your Application						
JUN 15 TH	The Latest in HADM With Bluetooth LE						

About Me – Arnold Kalvach

- PhD in electrical engineering
- Embedded and firmware developer since 2011
- Supported 100s of Bluetooth LE developers during 6 years as an Application Engineer
- Bluetooth Product Manager at Silicon Labs since 2022

Arnold Kalvach Bluetooth Product Manager Silicon Labs

About Me – Mohammad Afaneh

- Embedded developer since 2006
- Bluetooth LE embedded developer since 2014
- Founded <u>Novel Bits</u> in July 2015
- Focused on helping developers learn Bluetooth LE development via in-person training sessions, books, tutorials, video courses, and more
- Worked for and consulted for companies like the Bluetooth SIG, Motorola, Allegion, Stanley Security, Technicolor, and more
- Published three books on the topic of Bluetooth LE
- 2nd Edition of "Intro to Bluetooth Low Energy" published October 2023

Agenda

What's new with Bluetooth[®] 5.4

Scaling Bluetooth Networks with PAwR

Encrypted Broadcasting with EAD

Extend Your Range with Coded PHY

Summary and Q&A

Bluetooth[®] 5.4

Why Bluetooth 5.4?

Need for standardized large scale star networks

- Capability to host thousands of nodes
- Encrypted data traffic
- Ultra-low power consumption
- Driven by electronic shelf label (ESL) market

Enhancements

- Optimizing access to secure data
- Better control for LE Coded PHY for extended advertising

Bluetooth 5.4 New Features

Scaling Bluetooth Networks with PAwR

Arnold Kalvach

Advertising Modes in Bluetooth 5.4

(unsynchronized nature causes collisions)

mode network.

Applications beyond ESL

PAwR vs Bluetooth Mesh

SILICON LABS

Periodic Advertisement with Responses (PAwR) Explained

PAwR train setup

- Sets timing parameters
- Configure number of Subevents and Response Slots

Subevents

- · Each Peripheral belongs to one Subevent
- Maximum 128 Subevents
- Maximum 255 Peripherals in one Subevent (group)
- Total max 32,640 Peripherals in the network

Inside a Subevent

- All Peripherals in one Subevent receive the Central Device transmission (downlink)
 - Keeps up the synchronization to the PAwR train
 - Transmits downlink payload data
- A given number of Peripherals can respond in dynamically allocated response slots (uplink)

Example of PAwR Current Consumption

Peripheral device use case

- Receives Central Device downlink transmission at given Subevent time slot
- Responses uplink at given Response Slot
- Remains in sleep mode rest of time

Measurement condition

- MG22 Radio Board
- Vinput 3.0V, DC/DC in use
- SoC Current only
- TX 0dBm
- LFXO accuracy 50ppm

Encrypted Broadcasting with EAD

Arnold Kalvach

Bluetooth Security

Bluetooth Connections

- Encryption with ECDH
- Authentication with passkey / OOB data
- Re-authentication with stored LTK (pairing/bonding)

Bluetooth Mesh Network

- Network key, IV secures the whole network
- Application key secures a group of devices
- Device key for device-to-device security

Broadcasting (Advertisements)

Only application layer security

Encrypted Advertisement Benefits

- Enables full privacy along with Private Addresses
 - device cannot be tracked based on their address nor based on their advertisement data
- Enables encrypted data exchange over PAwR and other broadcasting mechanisms (beacons, periodic advertisements)
 - Closed network of advertisers
- Enables super low power secure communication
 - For ex., an energy harvesting lamp switch shall only send out a single advertisement, and it can still securely control the lamp

Encrypted Advertising Data (EAD)

Standardized Encryption for Broadcasting

- Can be applied in any type of advertisement
- Re-uses cryptographic methods used in connection encryption

Advertisement Payload Format

- Length Type Value triplets
- Type = 0x31 means EAD

header	L T Va	lue L T	Value				
Type=0x31							
Rnd	Encrypted Payload						
L T Val	lue L T	Value	MIC				

Encryption method

Payload encrypted with CCM method (same as on connections) using Rnd field, Session key and IV

Key Exchange

- Session key and IV must be exchanged
- May be exchanged
 - Over encrypted connection using Encrypted Data Key Material characteristic
 - Out-of-band
 - Using ECDH over PAwR (non-standard)
 - Via other non-standard methods

Software Support

Transmitter:

sl_bt_ead_session_init()

- Initializes session with a given Key and IV
- sl_bt_ead_randomizer_set()
- Sets random data field
- sl_bt_ead_randomizer_update()
- Updates random data field
- sl_bt_ead_encrypt()
- Encrypts advertisement data
- sl_bt_ead_pack_ad_data()
- Formats advertisement data

Receiver:

sl_bt_ead_session_init()

• Initializes session with a given Key and IV

sl_bt_ead_unpack_ad_data()

- Parses advertisement data
- sl_bt_ead_decrypt()
- Decrypts advertisement data
- sl_bt_ead_unpack_decrypt()
- Parses and decrypts advertisement data

Extend Your Range with Coded PHY

Mohammad Afaneh

PAwR vs Bluetooth Mesh

SILICON LABS

Coded PHY + PAwR Example Applications

SMART RETAIL

Large-scale, long-range ESL and inventory management systems

INDUSTRIAL

Monitoring sensors and controlling actuators spread across extensive facilities

AGRICULTURE

Monitoring and control of agricultural equipment and sensors spread across large farmlands

EVENT MANAGEMENT

Crowd monitoring, emergency response coordination, and asset tracking across concerts or sporting events

What is Coded PHY?

Introduced in Bluetooth Core Spec v5.0

- New LE PHY (optional)
- Achieves up to 4x range of LE 1M PHY
- Without the need to increase the TX Power

• How?

- By utilizing Forward Error Correction (FEC)
- Introduces data redundancy in transmitted data
- Allows error correction in addition to error detection

Two Coding Schemes

- The coding scheme defines the # of symbols/data bit
 - S=2, uses 2 symbols to represent each data bit
 - S=8, uses 8 symbols to represent each data bit
- The data throughput depends on the coding scheme used:
 - S=2 leads to 500 kbps data rate
 - S=8 leads to 125 kbps data rate

Comparison of LE PHYs

РНҮ	1M PHY	2M PHY	Coded PHY	Coded PHY
Parameter			S=2	S=8
Symbol Rate	1 Ms/s	2 Ms/s	1 Ms/s	1 Ms/s
Data Rate	1 Mbps	2 Mbps	500 kpbs	125 kbps
Max App Data Rate	700 kbps	1400 kbps	400 kbps	100 kbps
Error Detection	CRC	CRC	CRC	CRC
Error Correction	None	None	FEC	FEC
Range Multiplier	1	0.8	2	4
Requirement	Mandatory	Optional	Optional	Optional
Rx Sensitivity (dBm)	≤ -70	≤ -70	≤ -75	≤ -82

Advantages and Disadvantages of Coded PHY

- Long Range Communication +
 - Up to 4x the range of 1M PHY
 - Does not require higher TX power
 - Ranges of over 1km line-of-sight!
- Limited Smartphone Support
 - Most LE applications rely on smartphones
 - Coded PHY support is very limited in smartphones
 - Smartphones need to support Coded PHY for both extended advertising and connections for full utilization of its capabilities
- Great for SoC-based Systems +
 - Wide support for Coded PHY in Bluetooth SoCs
 - Supported by all Silicon Labs Bluetooth SoCs
 - Great for systems that utilize embedded systems on both ends

Not Just for Long Range +

Coded PHY can also help in the following scenarios:

- Noisy RF environments
- Increased reliability in the presence of physical obstacles
- Lower Data Throughput

Coded PHY will reduce the data throughput:

- S=2, reduced to 500 kbps
- S=8, reduced to 125 kbps
- Higher Power Consumption
 - Due to the increased radio-on time
 - Especially compared to 1M or 2M PHY

Coded PHY and PAwR – Design Parameters

Important Parameters

- Periodic Adv Interval: 7.5 ms to 81.91875 sec
- Number of Subevents (n): 1 to 128
- Subevent Interval: 7.5 ms to 318.75 ms
- Number of responses (m): 0 to 255
- Response Slot Delay: 1.25 ms to 317.5 ms
- Response Slot Spacing: 0.25 ms to 31.875 ms

Periodic Advertising Interval > # of SubEvents * Subevent Interval SubeventInterval > Response Slot Delay + (# of response slots * Response Slot Spacing) Response Slot Delay > Amount of time needed to transmit a transmit packet Response Slot Spacing > Amount of time needed to transmit a response packet

Uncoded 1M PHY Advertising Packet Format and Duration

Total Packet Time Required > 80 μs

Coded PHY Advertising Packet Format and Duration

LE Coded PHY Advertising Packet Format and Transmit Timing Data rate = 1 Mega symbols / second

> $S = 2 \rightarrow data rate = 500 kbps$ $S = 8 \rightarrow data rate = 125 kbps$

Total Packet Time Required > 462 μ s, for S=2 Total Packet Time Required > 720 μ s, for S=8

Coded PHY and PAwR – Design Parameters

Important Considerations

- Coded PHY takes much longer to transmit the same data compared to 1M PHY
- This applies to both:
 - Transmit packets (t₀, t₁, ..., t_n)
 - Response packets (r₀, r₁, ..., r_m)

Periodic Advertising Interval > # of SubEvents * Subevent Interval SubeventInterval > Response Slot Delay + (# of response slots * Response Slot Spacing) Response Slot Delay > Amount of time needed to transmit a transmit packet Response Slot Spacing > Amount of time needed to transmit a response packet

Coded PHY and PAwR – Recap

- Coded PHY can be beneficial for:
 - Long-range applications
 - More robust communication
 - Or both
- PAwR provides a solution for:
 - Large-scale systems
 - Synchronized applications
 - Centralized systems (star topology)
 - Low power applications
- Utilizing Periodic Advertising with Responses (PAwR) with Coded PHY requires careful consideration in the design of the timing parameters

BLUETOOTH SERIES

Thank You

BLUETOOTH SERIES

Watch ON DEMAND