

WELCOME

Silicon Labs LIVE:

Wireless Connectivity Tech Talks

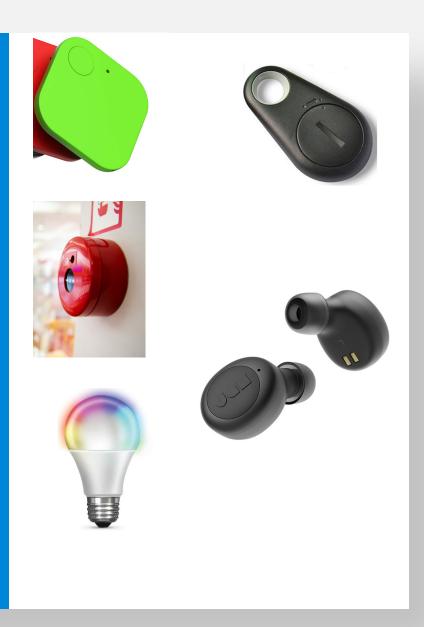
Tech Talks LIVE Schedule

Topic	Date
Bluetooth AoX Solutions	Thursday, April 2
15.4 Mesh Networking Technologies	Tuesday, April 7
Bluetooth Mesh Solutions & Tools	Thursday, April 9
Device & Network Security for the IoT	Tuesday, April 14
Evolution of Bluetooth 5, 5.1, & 5.2	Thursday, April 16
Future-proofing your design for Project Connected Home over IP	Tuesday, April 21

https://www.silabs.com/about-us/events/tech-talks

Agenda

BT 5


- 2x data throughput with 2Mbps PHY : Faster OTAs
- 4x range: Building automation
- 8x Enh Advertisements configuration: Multiple Beacons

BT 5.1

- Direction finding: Asset tracking
- Gatt Caching : Lower power on service discovery

BT 5.2

- LE Isochronous Channel: Audio peer to peer and Broadcast
- LE Power Control: Dynamic TX change, lower power more reliability

Silicon Labs Confidential

Bluetooth 5 Summary

is transformative.

2x Speed

- 2M PHY will double the throughput up to 1.4Mbps
- 15-50% lower power consumption

4x Range

- 125/500kbps codec PHYs improve sensitivity /range
- New channel selection algorithm enables +20dBm TX

8x Advertisement Capacity

- Advertisement payload grows from 31B to 255B
- 37 new advertisement channels help offload 3 primary advertisment channels
- New advertisement schemes for advanced beacons
- Periodic Advertisement

Bluetooth 5 - 2M PHY

Bluetooth 4 uses a single 1M PHY

Bluetooth 5 adds an optional 2M PHY

- Faster data rate up to 1400kbps
- ~15%-50% lower power due to shorter TX/RX
- 0.8x range

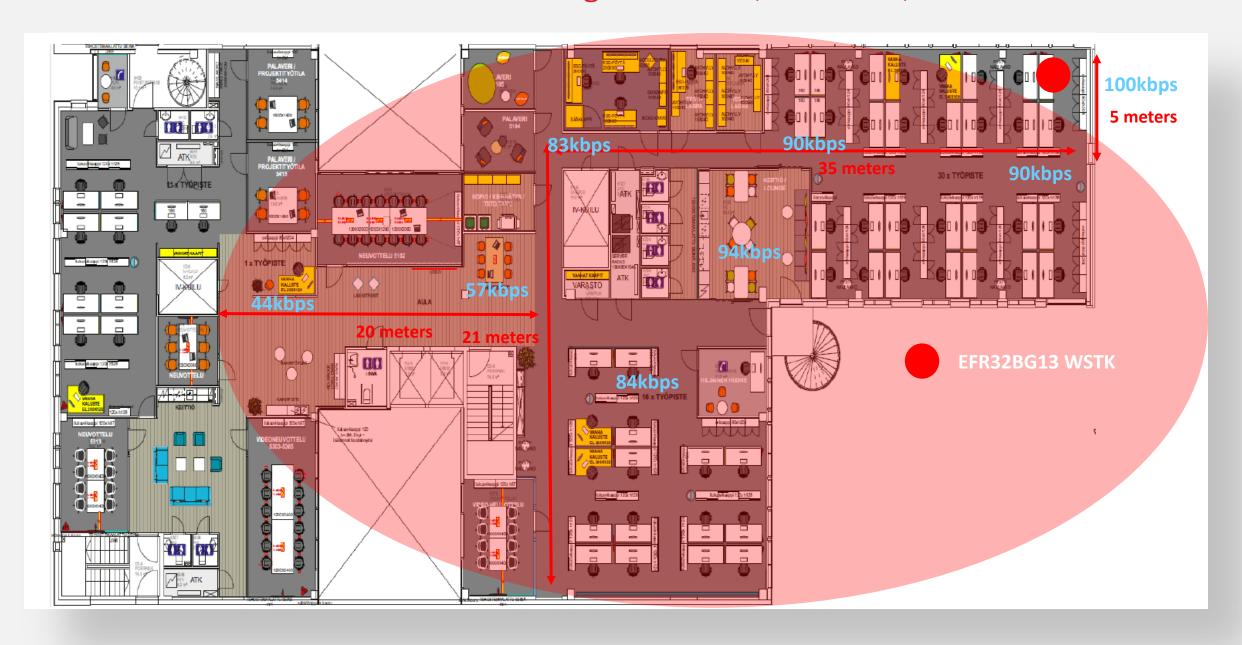
PHY	Symbol rate	Range multiplier	PDU Length	Minimum packet time	Maximum packet time	Maximum throughput
1M	1 M symbols/s	1x	0-257 B	80us	2.12ms	800 kbps
2M	2 M symbols/s	0.8x	0-257 B	44us	1.064ms	1438 kbps

Bluetooth 5 – LE Coded PHY or LE Long Range PHY

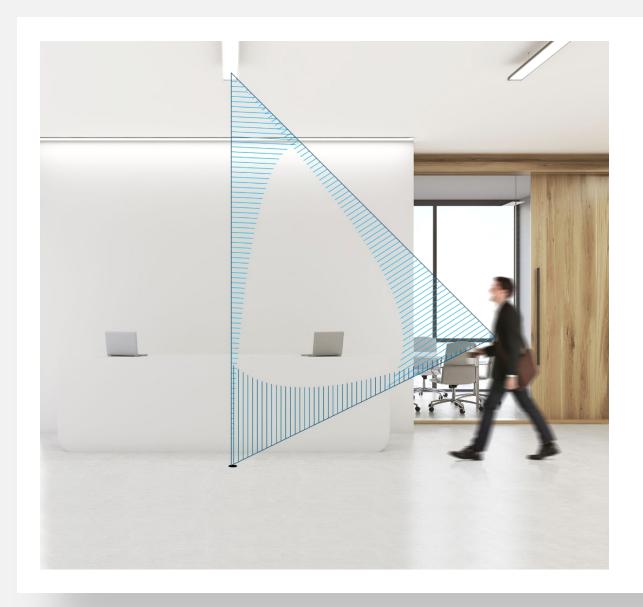
Bluetooth 5 adds two new long range PHYs

- Use 1M PHY but payload is coded at 125kbps or 500kbps
- Also adds Forward Error Correction and Pattern Mapper
- Improves sensitivity from 4 to 6dB and this means roughly 2x range
- LE Coded PHY can also be used for advertisement

Up to 2x range improvement


However, reduces throughput and increases TX/RX times (current consumption)

Coded PHY	Symbol rate	Error correction	Range multiplier	PDU Length	Minimum packet time	Maximum packet time	Maximum throughput
500 kbps	1 M symbols/s	FEC	1.5x	0–257 B	462 μs	4.54 ms	382 kbps
125 kbps	1 M symbols/s	FEC	2x	0–257 B	720 μs	17.04 ms	112 kbps


EFR32BG13 to EFR32BG13 Indoor Range: +10dBm, 1M PHY, PCB antenna

EFR32BG13 to EFR32BG13 Indoor Range: +10dBm, 125k PHY, PCB antenna

Bluetooth 5.1 Summary

Direction finding

- Detecting Bluetooth signal direction with AoA
- Adding signal direction to outgoing packets with AoD
- Benefits asset tracking and indoor positioning applications
- <1m accuracy vs. 3-5m accuracy with RSSI</p>

Faster and lower power connections

- GATT caching
- Reduces need for GATT service discovery
- Faster and lower power connections

Reduced interference for busy RF environments


- Randomizing the advertisement packet collisions
- Reduces the number of packet collisions and improves PER

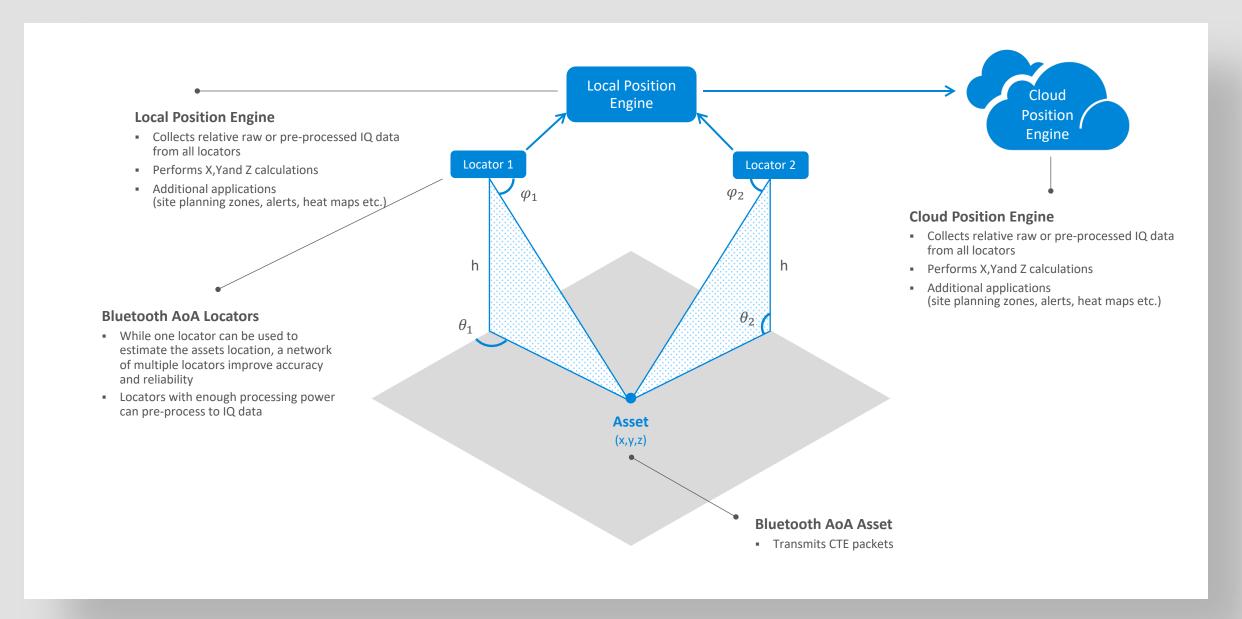
Periodic advertising sync transfer

• Transfer of periodic advertising sync between devices

Other minor enhancements

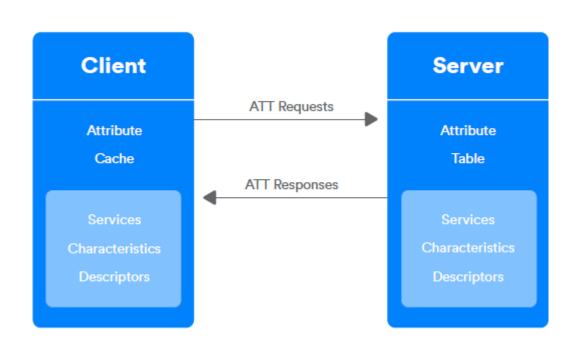
How Angle-of-Arrival (AoA) Works?

An asset wants to broadcast its location


- Continuous tone extension (CTE) is added to the end of a Bluetooth advertisement or connection packet
- Asset can support other Bluetooth functions while being tracked as CTE does not use the payload

A locator wants to find the asset

- A locator needs to have multiple antennas, as antenna is switched during the CTE reception
- A locator listens for CTE packets and measures IQ data from the CTE payload
- Can perform spherical azimuth and elevation calculation, or pass the IQ data forward to back-end processing


10 Silicon Labs Confidential

How AoA Works at a System Level?

11 Silicon Labs Confidential

GATT Caching

How it works?

- A hash value is calculated over the GATT service database
- Its value is exposed via Generic Attribute Service
- Reading the value does not require bonding

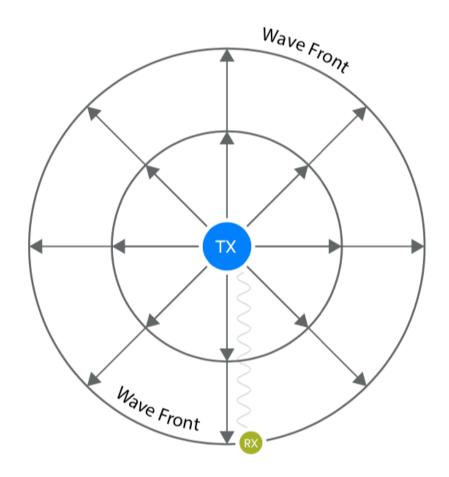
Benefit

- Client device can easily check if GATT database has changed
- Reduces the need for service discovery and therefore saves power and enables faster connections
- If client connects to multiple same type devices, can reduce the need for service discovery significantly

Applications that benefit

Any that use connections

Bluetooth 5.2 Summary


LE Isochronous Channels

- Audio enablement over BLE and High Data throughput
- Broadcast Audio to multiple devices
- Time-bound data distribution to one or more devices
- Enhanced Attribute Protocol making concurrent ATT transactions possible
- Reduced overall latency

More reliable connections, lower power and better coexistence

- LE Power Control
- Reduction of overall power consumption by dynamic power management conducted between connected devices.
- Improvements in reliability through the active maintenance of receiver signal strength
- Improvements relating to coexistence with other wireless devices that are in the environment and are using the 2.4 GHz frequency range.

LE Power Control

How it works?

- Dynamic changing of the Transmitter Power level based on Receiver RSSI
- Allows receiving device to be on the *Golden Receiving Range*
- Monitors and reports path loss

Benefit

- Optimization on Power from TX and RX sides
- Improvement on Reliability and requiring less retries
- Better Over the Air Coexistence with other 2.4Ghz protocols
- Better experience for users in terms of their experience of throughput and responsiveness.

Applications that benefit

Any that use connections

BG21: Optimized for Secure Mains Powered Devices

Radio

Up to +20 dBm TX Extremely good RX sensitivity Bluetooth 5.1 802.15.4

Current Consumption

8.8 mA RX (1 Mbit/s GFSK) 10.5 mA TX @ 0 dBm 33.8 mA TX @ 10 dBm 4-8uA EM2

World Class Protocol Stacks

Bluetooth 5.1 and Bluetooth mesh Zigbee 3.0 OpenThread Apple HomeKit

Compact Size

4x4 QFN32 (20 GPIO)

ARM Cortex-M33 with TrustZone

80 MHz w/ FPU and DSP Up to 96kB RAM and 1024kB flash 50.9 μA/MHz

Peripherals Fit for Purpose

3x USART, 2x I2C 1x 12-bit ADC, 2x ACMP 7x timers Up to 20x GPIO

Security

True Random Number Generator Hardware Accelerated Crypto Engine Secure Boot with root of trust Secure debug with lock/unlock **DPA Countermeasures**

With Secure Vault™

Anti tamper Secure attestation Secure key management and storage Advanced crypto

BG21 can be paired with EFP to reduce active TX/RX current consumption

BG22: Optimized for Battery Powered Bluetooth LE, Mesh and AoX

Optimized

Secure Bluetooth 5.2 SoCs for High-Volume Products

Radio

Bluetooth 5.2 +6 dBm TX -99 dBm RX AoA & AoD

Ultra-Low Power

4.1 mA Radio TX
3.6 mA Radio RX
1.4uA EM2 with 32kB RAM
0.54uA in EM4
RTC in EM4

World Class Software

Bluetooth 5.2 Bluetooth mesh LPN Direction Finding

Compact Size

5x5 QFN40 (26 GPIO) 4x4 QFN32 (18 GPIO) 4x4 TQFN32 (18 GPIO)

ARM Cortex-M33 with TrustZone

76.8 MHz FPU and DSP 352/512kB of flash 32kB RAM

Peripherals Fit for Purpose

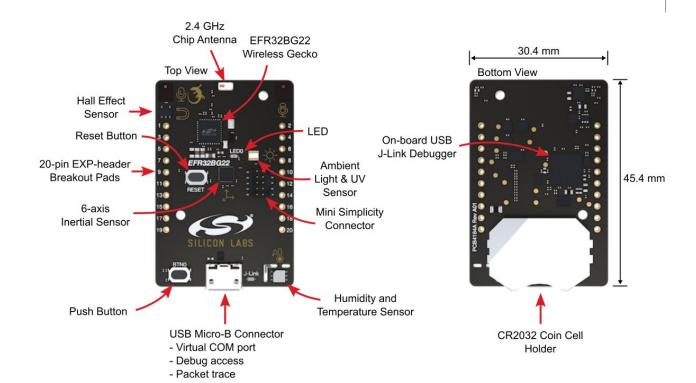
2x USART, 2x I2C, 2x PDM and GPIO 12-bit ADC (16 channels) Built-in temperature sensor with +/- 1.5 °C 32kHz, 500ppm PLFRCO

Security

True Random Number Generator Hardware Accelerated Crypto Engine Secure Boot with root of trust Secure debug with lock/unlock

BG22 Virtual Workshop

Learn how to develop and deploy more powerful, efficient, and secure IoT products with your own BG22 Thunderboard – free for all registrants!


North America: May 19th-21st, 2020

10:00AM -11:30 AM CST

(Other sessions available for Asia Pacific and Europe)

Register today! https://www.silabs.com/about-us/events/virtual-bluetooth-workshop

Thunderboard BG22

- Bluetooth 5.2 BG22 Soc
- Relative Humidity Sensor
- Ambient Light and UV Index Sensor
- Hall effect sensor
- 6 axis Gyro and Accel Sensor (Asset Tags and Beacons)
- 2 Digital mems Microphones with PDM output
- Built-in Debugger
- Free iPhone and Android App
- **\$19.99**

18 Silicon Labs Confidential

Silicon Labs' Bluetooth SoC Families


	Series 1 - xG13	Series 2 - xG21	Series 2 - xG22	
Target applications	General purpose Bluetooth LE and mesh	Mains powered Bluetooth LE and mesh	Lowest power Bluetooth LE, Direction Finding and Bluetooth mesh LPNs	
Bluetooth features	5.1 and mesh 1.0 (1M, 2M, LE Coded PHYs and AE)	5.1 and mesh 1.0 (1M, 2M, LE Coded PHYs and AE)	5.2 and Bluetooth mesh LPN (1M, 2M, LE Coded PHYs, AE and AoA/D)	
Proprietary 2.4G	2/4(G)FSK, OQPSK/(G)MSK, DSSS, BPSK/DBPSK TX, OOK/ASK	IN/A		
TX / RX (1M, GFSK)	+19 dBm / -95.8 dBm	+20 dBm / -97.5 dBm	+6 dBm / -99 dBm	
TX Current (0 dBm)	10.5 mA	10.5 mA	4.1 mA 7.4 mA (6 dBm)	
RX Current (1M, GFSK)	9.5 mA	8.8mA	3.6 mA	
CPU / Clock Speed	Cortex M4 (38.4 MHz)	Cortex M33 (80Mhz)	Cortex M33 (up to 76.8MHz) Cortex M0+ for radio	
Flash (kB)	512	Up to 1024	Up to 512	
RAM (kB)	64	Up to 96	32	
Sleep Current (EM2)	1.3μA (16kB RAM)	4.5 uA (96 RAM)	1.24 uA (8kB RAM) - 1.44 uA (32kB RAM)	
Active Current (EM0)	70μA/MHz	51uA/MHz	25uA/MHz	
Security	2x AES-128/256, ECC, SHA-1/224/256, TRNG	AES-128/256, SHA-1/2 ECC, ECDSA and TRNG DPA countermeasures Secure boot with RTSL Secure debug with debug lock/unlock	AES-128/256, SHA-1/2 ECC, ECDSA and TRNG Secure boot with RTSL Secure debug with debug lock/unlock	
Operating Voltage	1.8V – 3.6V	1.8V – 3.8V	1.71V – 3.8V	
Packages (mm)	7x7 QFN48, 5x5 QFN32	4x4 QFN32 (20x GPIO)	5x5 QFN40 (26x GPIO) 4x4 QFN32, TQFN32 (18x GPIO)	

Silicon Labs' Bluetooth Module Families

	SILEDI LAES BIU Gaeko BGM3P BGM13P	STILICEN LARS BGM13S BGM13S	SILICON LABS DISPRISE BGM210P	BGM210L	SILICON LABS BGM220P BGM220P (Q3'20)	SILICUN LABS BGM220S BGM220S (Q3'20)
Protocols	5.1 and mesh (1M, 2M, Coded PHY and AE)	5.1 and mesh (1M, 2M, Coded PHY and AE)	5.1 and mesh 1.0 (1M, 2M, Coded PHY and AE)	5.1 and mesh 1.0 (1M, 2M, Coded PHY and AE)	5.2 and mesh 1.0 LPN (1M, 2M, Coded PHY, AE and AoA/D)	5.2 and mesh 1.0 LPN (1M, 2M, Coded PHY, AE and AoA/D)
EFR32 SoC	BG13	BG13	BG21	BG21	BG22	BG22
Antenna	Built-in or U.FL	Built-in or RF pin	Built-in or RF pin	Built-in	Built-in	Built-in or RF pin
Max TX power	+8 / +19 dBm	+8 / +18 dBm	+10 / +20 dBm	+12.5 dBm	+8 dBm	+6 dBm
Sensitivity (1M)	-94.8 dBm	-94.1 dBm	-97 dBm	-97 dBm	-98 dBm	-98 dbm
Flash (kB)	512	512	1024	1024	512	512
RAM (kB)	64	64	96	96	32	32
GPIO	25	30	20	12	24,25	25
Operating Voltage	1.8V – 3.6V	1.8V – 3.6V	1.8 – 3.8V	1.8 – 3.8V	1.71V – 3.8V	1.71V – 3.8V
Operating Temp.	-40 to +85C	-40 to +85C	-40 to +125C	-40 to +125C	-40 to +105C	-40 to +105C
Dimensions W x L x H (mm)	13.0 x 15.0 x 2.2	6.5 x 6.5 x 1.4	13.0 x 15.0 x 2.2	13.0 x 15.0 x 2.2	13.0 x 15.0 x 2.2	6 x 6 x 1.3
Certifications	BT, CE, FCC, ISED, Japan, S-Korea and Taiwan	BT, CE, FCC, ISED, Japan & S-Korea	BT, CE, FCC, ISED, Japan & S-Korea	BT, CE, FCC, ISED, Japan & S-Korea	BT, CE, FCC, ISED, Japan & S-Korea	BT, CE, FCC, ISED, Japan & S-Korea

Thank You | Questions

