## LPWAN SERIES

## Presentation Will Begin Shortly



| FEB 16 <sup>TH</sup> | Amazon Sidewalk: Using Battery-Powered Sensors |
|----------------------|------------------------------------------------|
| MAR 16 <sup>TH</sup> | Getting Started with Amazon Sidewalk           |
| APR 13 <sup>TH</sup> | Introducing FG25 for Wi-SUN FAN 1.1            |
| MAY 11 <sup>TH</sup> | Optimizing FG23 for Battery Life & Performance |
|                      |                                                |

JUN 8<sup>TH</sup> Designing Long Range Devices with Amazon Sidewalk

We will begin in:







# Welcome

Optimizing FG23 for Battery Life and Performance

Chad Steider Zoltan Than Philipp Luebeck



### LPWAN SERIES



## **Why Battery Operated?**





- Resource sustainability
- Consumer awareness
- Cost impacts
- User convenience
- Regulatory environment
- Functionality additions



## **Architecture and types of devices**



- Similarities vs. differences in IoT networks
- Mix of line-powered and battery-operated nodes
  - Gateway/Border router
    - Line Powered
  - Routing nodes
    - Line powered or battery operated
  - End nodes
    - Battery operated



### **Use Cases Drive Battery Requirements**



- Regular vs. User-triggered
  - Device behavior and connection interval determined by the needs of the network
  - Determination of regular vs triggered reporting strategy can greatly impact power consumption of devices
- Wireless technology choice affects battery lifetime
  - Different network selections have different requirements for advertising interval, connection maintenance, and protocol overhead that can greatly affect power consumption









### **End-device challenges and solutions**



- Environment sensing functionality
- MCU wake-up periods affect consumption
- MCU activity minimisation required for sensing
- LESENSE and PRS major contributors for minimising sensing time



Figure 1: High Energy Consumption with CPU Polling and Active during Every Measurement



Figure 2: Each LESENSE-Enabled Sensor Input/Output is Independent and Configurable



### FG23 and FGM230S for battery operated sub-GHz devices



The first sub-GHz SoCs to combine long-range RF & energy efficiency with PSA<sup>TM</sup> Level 3 security

- Simultaneous 1+ mile wireless connectivity & 10+ year battery operation
- Secure Vault<sup>TM</sup> (certified PSA Level 3) safeguards against hardware and software attacks
- Broad support for sub-GHz frequencies, modulations and wireless protocols
- 868 MHz and 915 MHz sub-GHz frequencies, modulations and wireless protocols
- Compact form factor and antenna matching with SiP module package



## Analog Peripheral Focused Techniques



## Minimize Analog Energy Use Through Fine-Tuning

#### Suspend the IADC clock when using PRS triggering

- Doesn't matter if the PRS producer is a timer (e.g. LETIMER) or GPIO
- Current draw reduction is appreciable (5.5x for single-channel sampling at 100 Hz, better still for asynchronous use cases)

#### • Use the duty-cycled sample-and-hold ACMP inputs in EM2/3 low-energy modes

- Available for the reference options (1.25V, 2.5V, and divided AVDD) and the VSENSE0/1 power supply monitoring channels (AVDD, DVDD, and VDDIO)
- Per comparator savings of 4 µA for reference inputs and 1.8 µA for supply monitor inputs

#### Minimize VDAC drive time with sample-off mode in EM2/3 low-energy modes

- Take advantage of the RC filtering probably already connected to the VDAC main output(s)
- Use sample-off mode to drive the VDAC outputs at less than 100% duty cycle
- At 30% duty cycle, for example, current reduction is 50% whether just one or both VDAC outputs are driven



## **Turn to Hardware Functionality to Save Energy**

#### Stop reading the battery voltage with the IADC

- · Hard to get accurate results when load currents cause the battery output voltage to fluctuate
- Use the ACMP VSENSE0 channel to monitor AVDD in EM2 instead when quiescent current is low
- Set an initial trip voltage to request an interrupt to warn about the low battery condition
- Go into EM4 after tripping at a subsequent lower threshold until the battery can be recharged/replaced
- Software overhead is zero once the ACMP is configured and until an interrupt is requested
- Use the LDMA to move data in EM2 instead of waking the CPU via interrupt
  - Low frequency IADC scan of analog inputs is a prime example
  - At 1 Hz, current draw is around 100 µA to save the results of an 8-channel scan via interrupt
  - Moving the operation to the LDMA reduces this to around 18.5 μA, a reduction of 5.5x
  - The CPU must wake every 8 samples; the LDMA can save 2048 results before waking the system







## **Other possible optimizations**

#### Turn off parts of the RAM while staying in EM2 / EM3

- FG23 has 64 kB of RAM, consisting of 4 RAM banks of 16 kB each
- If not needed you can turn off one or more RAM banks in EM2 / EM3
- Current optimizations is approx. 100 nA per RAM bank
- However, at least one RAM bank (bank 0) must remain enabled

#### Enable Voltage Scaling in EM2 / EM3 and use VSCALE0 level

- The internal voltages will go down to 0.9 V which will reduce the current consumption in EM2 / EM3
- However, when using voltage scaling, the wake-up time from EM2 / EM3 will slightly increase as the internal regulator will need more time to settle on the higher voltage level that is being used in EM0 / EM1 active mode.

#### Turn off debug interface in EM2 / EM3

- If debugging is not needed make sure to not keep the debug interface enabled in EM2 / EM3
- $\rightarrow$  Clear the EM2DBGEN bit in the EMU\_CTRL register



### **Other possible optimizations**

#### Use LESENSE (on xG23 devices) to automate sensor sampling

 LESENSE can automatically sample resistive, inductive and capacitive sensors and will trigger an interrupt once certain sensor conditions are met

#### Reduce active currents (EM0 / EM1) by:

- Reducing the clock speed if the application can run at lower speed.
- E.g. let the application run from HFRCO and reduce its clock frequency to down to 1 MHz











## LPWAN SERIES



## LPWAN SERIES

## Join Us Next Month



| FEB 16 <sup>TH</sup> | Amazon Sidewalk: Using Battery-Powered Sensors            |
|----------------------|-----------------------------------------------------------|
| MAR 16 <sup>th</sup> | Getting Started with Amazon Sidewalk                      |
| APR 13 <sup>TH</sup> | Introducing FG25 for Wi-SUN FAN 1.1                       |
| MAY 11 <sup>TH</sup> | <b>Optimizing FG23 for Battery Life &amp; Performance</b> |

#### JUN 8<sup>TH</sup> Designing Long Range Devices with Amazon Sidewalk

