Presentation Will Begin Shortly

4:00

ВLUETOOTH

FEB 29 [™]	Small Bluetooth Devices - How to Minimize Size without Compromising Performance and Reliability
APR 4 TH	Bluetooth LE Application Development Journey
МАҮ 9тн	Unboxing Silicon Labs' Latest Bluetooth SoC for Energy Harvesting
JUN 13 TH	Explore Bluetooth Channel Sounding

Welcome

Small Bluetooth Devices: How to Minimize Size without Compromising Performance and Reliability

Introduction

Matt Maupin

 Matt Maupin is a Senior Marketing Manager at Silicon Labs where he leads a Marketing team for IoT wireless hardware and software. Matt joined Silicon Labs in 2012 and has been in the semiconductor industry for over 20 years, defining and launching wireless ICs and modules, including Wi-Fi[®], Bluetooth[®], Zigbee, Z-Wave and proprietary solutions.

Brian Blum

 Brian Blum is a Senior Marketing Manager at Silicon Labs focused on the Portable Medical market segment. Brian has worked in the semiconductor industry in design, development, and marketing for over 18 years in a variety of technical roles. Brian has a deep technical background in the domain of embedded hardwre, software and wireless protocols.

Pasi Rahikkala

 Pasi Rahikkala is a Senior Systems Engineer at Silicon Labs with 18 years working experience with radio modules, antennas and regulatory certifications. He holds antenna patents for Silicon Labs modules and has been developing antennas and simulations methods for systems such as AoA (Angle of Arrival) and HADM (High Accuracy Distance Measurement).

Agenda

01 Why Miniaturize

02 Challenges of Miniaturization

03 How to Miniaturize

04 Case Studies

05 Silicon Labs Small Bluetooth Solutions

06 Summary and Q&A

Why Miniaturize Wireless Devices

Wireless miniaturization is being driven across industries

- Medical, consumer, commercial and industrial
- May be a small form factor device, or just space constrained

Bluetooth is ideal for miniaturization

- Low power consumption
- Connection to mobile phone

Drivers

- 1. Consumer Appeal
 - Buyers prefer small and sleek designs
- 2. Enables New Connected Applications
 - Watches, rings, CGM, trackers, sensors, circuit breakers
- 3. New Revenue Opportunities
 - · Enables new use cases and ability to differentiate
- 4. Increased Usability
 - Ergonomic, convenient, and discrete

The Challenges of Miniaturizing Wireless Devices

Design complexity

• Layout, interference and thermal issues

Battery life

• Smaller batteries provide lower capacity and voltage

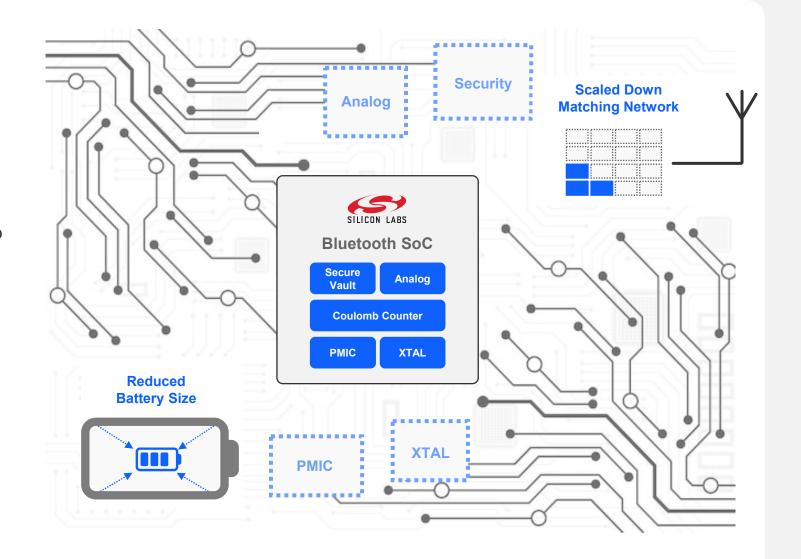
Product features

- Additional features increase area
- RF performance and regulatory compliance
 - Smaller designs impact RF performance
- Cost
 - Increased MFG and components cost

How to Miniaturize

Reducing Device Size Through SoC Integration

Wireless communication

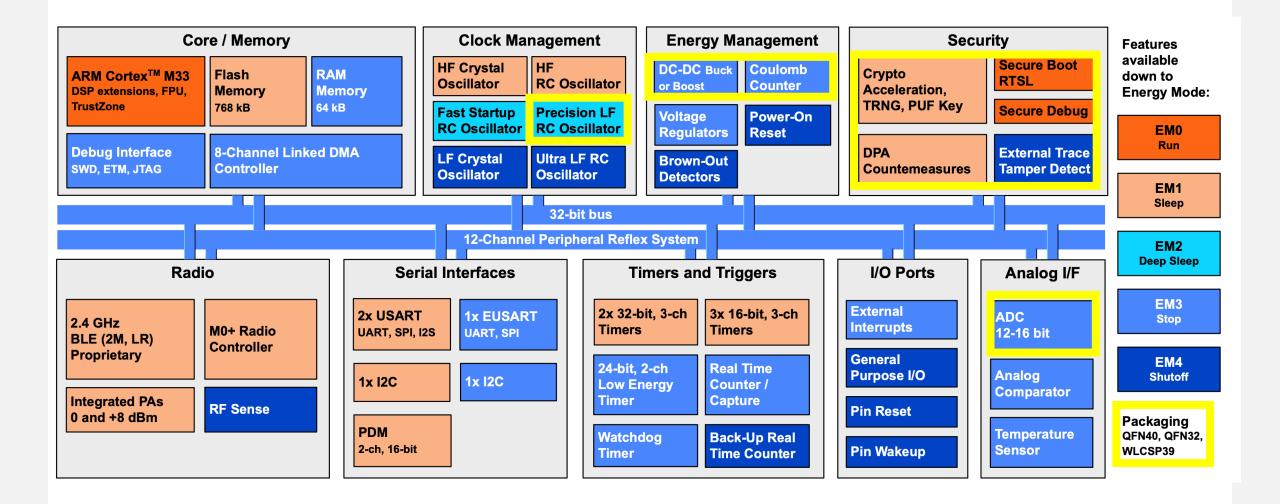

- High performance wireless
- Simplified RF matching network

Power management

• Integrated DC-DC

Security

- · Eliminates need for external security chip
- Low-frequency RC oscillator
 - Eliminates external 32KHz XTAL
- Analog peripherals ADC/DAC
 - Eliminates external analog components
- Low active and sleep currents
 - Enables smaller capacity batteries


Choosing the Right Package for Your Application

Feature	QFN	TQFN	WLCSP	SiP
Size	BG22 (4 x 4 x 0.85mm)	BG22 (4 x 4 x 0.3mm)	BG27 (2.3 x 2.6 x 0.5mm)	BGM220S (6 x 6 x 1.1mm)
Thickness	Standard	Thinnest option	Thinner than standard QFN	Varies
I/O Count	Low to Moderate	Low to Moderate	Low to High	Moderate to High
Heat Dissipation	Good	Good	Depends on design	Good
Semiconductor Cost	Low	Low	Higher, due to processing costs	Higher, due to complexity
Product Manufacture Design Complexity	Normal	Normal	Higher due to more advanced routing	Higher due to more advanced routing
Assembly	Standard SMT techniques	Standard SMT techniques	Requires precision placement	Varies. May require precision placement
Time-To-Market	Normal	Normal	More than normal*	Fastest (RF Certified)

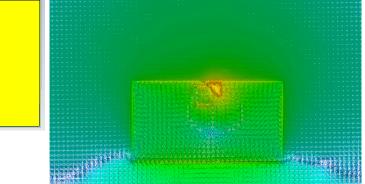
*Advanced Hardware Designs can extend Development time

BG27 SoC Integration Block Diagram Example

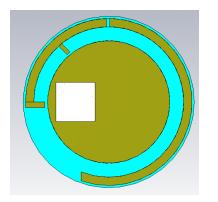
Antenna Design for Small Form Factor Devices

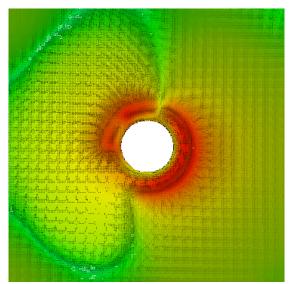
No one size fits all for antenna design

- · No single antenna design will work optimally for all designs
- The optimal selection of the antenna type depend on
 - Physical size of the product
 - Range expectation
 - Technology (Wi-Fi, Bluetooth, etc.)
 - Mechanical constraints of the product


Most common antenna types for 2.4 GHz IoT are

- · Ground radiating loop antennas
 - · Ground radiating loop antennas are commonly used with modules
 - > Due to their small size and immunity to loading with dielectric materials
- Planar inverted-F antennas
- Monopole / chip monopole antennas


The ground plane of the PCB is part of the antenna

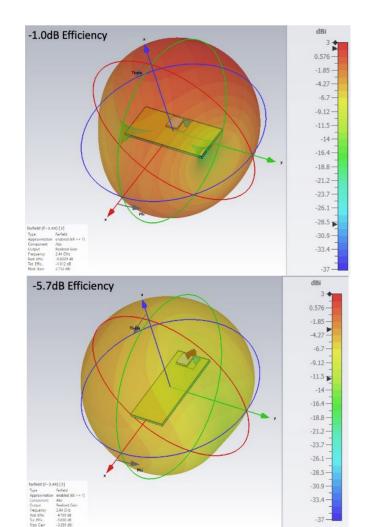

- GND size/shape affects resonant frequency and radiation
- Antenna can be designed into any size and shape board
- The antenna can have significant impact to the link budget
 - The antenna efficiencies typically vary between -1dB and -8dB
 - This means -2dB to -16dB variation in the link budget

Ground Radiating Loop Antenna

Planar Inverted-F Antenna

Silicon Labs Bluetooth Modules with Integrated Antennas

SiP Antenna Design Benefits

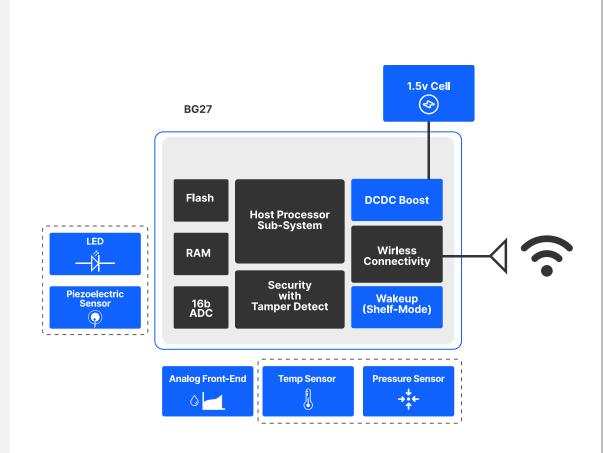

- Saves PCB space and design time
- Pre-certified for various wireless standards and regions
 - Reduces time and cost of regulatory compliance and certification
- Matched and tuned for the module's RF and PCB layout
 - Eliminates the need for external matching components and manual tuning
- Optimized for performance and efficiency
 - Provides reliable wireless connectivity and low power consumption

Placement of module is still important

• Same size board can have 10 dB difference in the link budget

A custom antenna design is possible

- Connect the antenna to the RF pad of the module
- Will need to certify the new antenna



-37 -

Example System Solution for Miniature Portable Medical Device

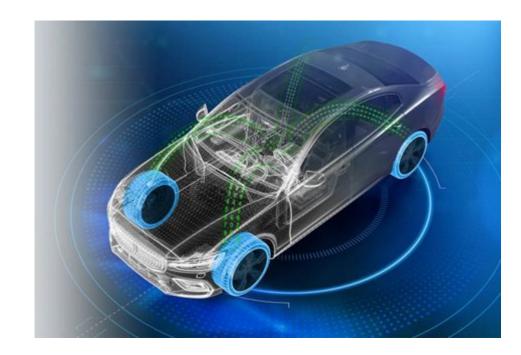
• BG27

- Integrated application MCU + Bluetooth / 802.15. SoC
- · Memory for application and Bluetooth connectivity
- Analog peripherals and interface to AFE (Analog Front-End)
- 0.8-1.7V supply for optimized battery selection (button cell)
- Secure Vault Mid Secure Key Management, Anti-Tamper, more.
- 16-bit ADC, GPIO, Serial interfaces, ACMP
- Coulomb counter for accurate battery level tracking
- Tiny 2.3 x 2.6 mm WL-CSP package
- Shelf Mode draws <20 nA for stocking and transport

Questions

Case Studies

Lura Health Sensor for Salivary Diagnostics



Application and Use Case

- · Smallest wearable medical device to date
- The first device to continuously measures pH to help fight against tooth decay and erosion.
- Future possibility to measure electrolytes, glucose, and other Biologics
- Product
 - EFR32BG27
 - Bluetooth protocol
- Key Features
 - Small form factor (BG27 CSP package)
 - Lura Health device is less than 4x7mm
 - DC/DC Boost enabled tiny battery and low power
 - They needed months battery life
 - · High level of security

Tire Pressure Monitoring

Application and Use Case

- Bluetooth LE Connected Tire Pressure Monitoring Sensor
- Leveraged existing Bluetooth LE technology in vehicle
- Products
 - BG22
 - Bluetooth protocol
- Key Features
 - Low power consumption for longer batter life
 - OOK option to wake up device
 - Small package 4x4 package
 - +125°C operating temperature

Silicon Labs Small Bluetooth Solutions

BG22

BG24

BG27

BG22 and BGM220: Lowest Power for Battery Powered End Devices

SOCS AND MODULES	SOC DEVICE SPECIFICATIONS	DIFFERENTIATED FEATURES	SEGMENTS AND APPLICATIONS
<image/>	 High Sensitivity 2.4 GHz Radio -98.9 dBm RX @ BLE 1 Mbps Efficient ARM® Cortex®-M33 Up to 76.8 MHz 512kB Flash, 32kB RAM Low Power 27 μA/MHz 4.1 mA TX @ 0 dBm 3.6 mA RX (BLE 1 Mbps) 3.9 mA RX (802.15.4) 1.4 μA EM2 sleeps (32 kB retained) Multiple protocol support Bluetooth 5.3 (1M/2M/LR) Bluetooth mesh LPN Direction Finding Proprietary 2.4 GHz SoCs and Modules 5x5 QFN40 (26 GPIO) +125°C 4x4 QFN32 (18 GPIO) +85°C 4x4 TQFN32 (18 GPIO) +85°C 6x6 SiP Module (25 GPIO) +105°C 	<list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item>	 Smart Cities Livestock Management Industrial Access Control Human Machine Interface Predictive Maintenance Asset Tracking Commercial / Building Electronic Shelf Labels Clinical Medical Point of Sale Loss Prevention Indoor Real Time Location Services Smart Home Appliances Locks Switches Sensors HVAC Portable Medical Smart Hospitals
BGM220P PCB Module	 12.9x15.0 PCB Module (25 GPIO) +105°C 		Smart Wearables

BG24 and BGM240: Ideal for Battery Powered IoT Mesh Devices

SOCS AND MODULES	SOC DEVICE	DIFFERENTIATED	SEGMENTS AND
	SPECIFICATIONS	FEATURES	APPLICATIONS
<image/> <image/> <image/> <image/> <image/> <image/>	High Performance Radio • Up to +19.5 dBm TX • +4 dBm TX (CSP) • -97.6 dBm RX @ BLE 1 Mbps Efficient ARM® Cortex®-M33 • 78 MHz • 1536kB Flash, 256kB RAM Low Power • 33.4 μ A/MHz • 5.0 mA TX @ 0 dBm • 5.1 mA RX (802.15.4) • 4.4 mA RX (BLE 1 Mbps) • 1.41 μ A EM2 sleep (32 kB retained) Multiple protocol support • Bluetooth 5.3 (1M/2M/LR) • Bluetooth mesh • Direction Finding • Proprietary 2.4 GHz Socs and Modules • 5x5 QFN40 (26 GPIO) +125°C • 6x6 QFN48 (32 GPIO) +125°C • 3.1x3.0 WLCSP42 (20 GPIO) +125°C • 7x7 SiP Module (32 GPIO) +105°C • 12.9x15.0 PCB Module (26 GPIO) +105°C	<section-header><section-header></section-header></section-header>	 Smart Home HVAC Locks LED Lighting Switches Sensors Gateways, Hubs and Panels Connected Health Portable Medical Clinical Medical Clinical Medical Access Control HVAC Predictive Maintenance Asset Tracking Smart Cities EV Charging Access Points Lighting Access Points Clinical Medical Indoor Real Time Location Services

BG27: Most Battery Versatile Series-2 SoC

SOCS AND MODULES	SOC DEVICE	DIFFERENTIATED	SEGMENTS AND	
	SPECIFICATIONS	FEATURES	APPLICATIONS	
<image/>	 High Performance 2.4 GHz Radio Up to +8 dBm TX +4 dBm TX (CSP) -99.2 dBm RX @ BLE 1 Mbps Efficient ARM® Cortex®-M33 76.8 MHz 768kB Flash, 64kB RAM Ultra Low Power 4.1 mA TX @ 0 dBm 3.6 mA RX (BLE 1 Mbps) 1.43 µA EM2 sleeps (32 kB retained) Multiple protocol support Bluetooth 5.3 (1M/2M/LR) Bluetooth mesh Direction Finding Proprietary 2.4 GHz 2.3x2.6 WLCSP (19 GPIO) +85°C 5x5 QFN40 (26 GPIO) +125°C 4x4 QFN32 (18 GPIO) +125°C 	 Flexible battery support DCDC Buck/Boost Supports 0.8 to 1.7 volts Supports 1.7 to 3.6 volts Enhanced security Secure Vault™ Mid Tamper detect Secure Key Management w/PUF Battery management Coulomb counter Make-up pin (BOOST_EN) allows the device to be off (<20 nA) for long-term storage Up to 10 years of shelf storage Eliminates need for 32 KHz xtal Small form-factor 2.3 x 2.6mm WLCSP39 package 	 Medical and Health and Fitness Portable Medical Clinical Medical Wearables Smart Home Appliances Door Locks Sensors Switches HVAC LED Lighting Industrial & Commercial HVAC Smart Buildings Asset Tracking Indoor RTLS Point of Sale Commercial Lighting Predictive Maintenance 	

Choosing the Right Package for Your Application

	QFN		TQFN		WLCSP		SiP	
	BG22	BG24	BG27	BG22	BG24	BG27	BGM220S	BGM240S
Device Type	IC	IC	IC	IC	IC	IC	Module	Module
Dimensions (mm)	4 x 4 x 0.85	5 x 5 x 0.85	4 x 4 x 0.85	4 x 4 x 0.30	3.1 x 3.0 x 0.4	2.29 x 2.62 x 0.5	6 x 6 x 1.1	7 x 7 x 1.18
Max Flash	512 kB	1536 kB	768 kB	512 kB	1536 kB	768 kB	512 kB	1536 kB
Max RAM	32 kB	256 kB	64 kB	32 kB	256 kB	64 kB	32 kB	256 kB
Max Output Power	+6 dBm	+19.5 dBm	+8 dBm	+6 dBm	+4 dBm	+4 dBm	+6 dBm	+10 dBm
RX Sensitivity (Bluetooth LE 1 Mbps)	-98.9 dBm	-97.6 dBm	-99.2 dBm	-98.9 dBm	-98.1 dBm	-99.6 dBm	-98.6 dBm	-97.0 dBm
TX Current (0 dBm transmitting packet)	4.3 mA	5.0 mA	4.3 mA	4.3 mA	4.9 mA	4.1mA	4.6 mA	4.6 mA
RX Current (1 Mbps receiving packet)	3.8 mA	4.7 mA	3.8 mA	3.8 mA	4.5 mA	3.8 mA	4.2 mA	5.1 mA
Sleep Current (EM2 32 kB retained)	1.40 µA	1.41 µA	1.43 µA	1.40 µA	1.41 µA	1.43 µA	1.40 µA	1.41 µA
Shutoff Current (EM4, wake on pin)	0.17 µA	0.25 µA	0.18 µA	0.17 µA	0.25 μA	0.18 µA	0.17 µA	0.31 µA
AI/ML Accelerator		4			1			
Analog to Digital Converter	16-bit	20-bit	16-bit	16-bit	16-bit	16-bit	16-bit	16-bit
Digital to Analog Converter (VDAC)		1			1			1
Analog Comparator (ACMP)		4	4		4	4		4
PLFRCO (500 ppm LFRCO)	4	4	4	4	4	4	1	4
Coulomb Counter			1			4		
Operating Voltage	1.71 to 3.8 V	1.71 to 3.8 V	0.8 to 1.7 V 1.8 to 3.8 V	1.71 to 3.8 V	1.71 to 3.8 V	0.8 to 1.7 V 1.8 to 3.8 V	1.8 to 3.8 V	1.8 to 3.8 V
Security	Secure Vault Mid	Secure Vault High	Secure Vault Mid	Secure Vault Mid	Secure Vault High	Secure Vault Mid	Secure Vault Mid	Secure Vault High
Security Certifications	SESIP L3 with DTSec PP	PSA L3, SESIP L3 w/ PSA, MCU, MPU profile	*SESIP L3 with DTSec PP	SESIP L3 with DTSec PP	PSA L3, SESIP L3 w/ PSA, MCU, MPU profile	*SESIP L3 with DTSec PP	SESIP L3 with DTSec PP	PSA L3, SESIP L3 w/ PSA, MCU, MPU profile

*Certification by similarity (BG22 subsystem)

Summary

- Product miniaturization is a system level approach
- SoC integration, low component count, battery type and antenna design are all key considerations
- Antenna design is critical for small form factor
- Silicon Labs provides a variety of solutions and reference designs to help with your design

BLUETOOTH

Thank you

🗱 вluетоотн

- FEB 29THSmall Bluetooth Devices How to Minimize Size
without Compromising Performance and Reliability
- APR 4TH Bluetooth LE Application Development Journey
- MAY 9TH Unboxing Silicon Labs' Latest Bluetooth SoC for Energy Harvesting
- JUN 13TH Explore Bluetooth Channel Sounding: High-Accuracy Distance Measurement and Its Use Cases

BLUETOOTH