Presentation Will Begin Shortly

4:00

MAR 7 TH	Unboxing SiWx917 Wi-Fi 6 + Bluetooth LE Pro Kit
APR 11™	How to Develop Wi-Fi 6 Software Applications with SiWx917 SoC
MAY 16 ^{тн}	Measure Power and Throughput on the SiWx917 Wi-Fi SoC
JUN 20 TH	Design Battery Based Wi-Fi Cameras with SiWx917

Welcome

Unboxing SiWx917 Wi-Fi 6 + Bluetooth LE Pro Kit

Tom Nordman, Nik Von Huben

tech t>lks

WI-FI

Agenda

General SiWx917 Introduction

SiWx917 Development Tools

Software Overview

How to get started

Introducing SiWx917 Wi-Fi 6 SoC

Wiff)6

8 Bluetooth 🕺 🛣 matter

- Ultra-Low Power
 - Increases Battery life and Recharging Interval
- IoT-Optimized Wireless Performance
 - 2.4GHz: Long-range, low-power, effective wall penetration, high-throughput
- Multiprotocol Co-Existence
 - High-performance Wi-Fi 6 and Bluetooth Low Energy 5.4
- Large Memory
 - Up to 672kB RAM, 8MB Flash/PSRAM, 16MB External Flash/PSRAM
- Single-Chip Matter over Wi-Fi Solution
 - · Wi-Fi, Bluetooth LE, and Matter in One Package
 - Certified Solution
- Edge Computing + System Integration
 - Separate Application MCU and Wireless Processor
 - Rich Peripherals, Sensor Hub, High GPIO
- Robust Security
 - A High Level of Security for the Device, Wi-Fi Protocol, and Networking

The Most IoT-Optimized Wi-Fi SoC

Optimized for Low-Power IoT Designs - SiWx917 IC Block Diagram

SiWx917: Lowest Wi-Fi Power – Longest IoT Battery Life

Hundreds of µA

Connected standby power consumption (a.k.a. WLAN Standby Associated Mode) is the most critical battery life metric for Wi-Fi IoT devices.

55μΑ DTIM10/WLAN keep-alive 30s **20μΑ***

TWT interval 60s Wi-Fi 4 Wi-Fi 6

Typical Competing Solutions

Wi-Fi 6

Wi-Fi 4

* Wi-Fi 6 TWT with auto config feature enabled. TWT Rx latency 60s with 8ms wakeup duration. WLAN keep-alive every 60s. 352K RAM retention.

SiWx917 Battery Life Estimation

How the battery life of up to 2.5 years was estimated:

- Assuming typical sleepy IoT applications such as sensors and smart locks
- Measurements are taken in optimal RF conditions (chamber)
- Average power consumption ~30µA at 3.3V
- 802.11ax TWT with Auto Config feature enabled
- No TCP keep-alive
- TWT Rx latency 30 secs with 8ms wakeup duration
- WLAN keep-alive 30 secs. 352K RAM retention
- Arm Cortex-M4 operates in sleep mode (PS4). 320kB RAM retention
- Battery capacity 1000mAh (example AAA rechargeable battery)

SiWx917 Intelligent Power Management

More Flexible Power Optimization

- Multiple optimized power domains. Power management per domain.
- Four Power Modes, each with Power States
- · Power States per domain for perfected optimization
- Turn On/Off different portions of the IC to use power only where needed

Dynamic Gear Shifting

- · Switch from one power state to another based on processing requirements via SW triggers
- Fast wakeup time e.g., 200usec from Sleep to Active in PS2

Dynamic Voltage/Frequency Scaling (DVFS)

• The system adjusts supply voltage per domain for different clock speeds automatically to reduce current draw while simplifying development

Symmetric SW Processing

- · Can run the same code in Ultra-low-power and High-performance modes
- Avoids the typical limitations of asymmetric dual-core designs: inter-core communication, limited instruction set of the smaller core, code incompatibility, code redundancy – Simplifies software development!

Lowest Power for Wi-Fi 6: ~20 µA*

MCU Subsystem Active current:

- 32 µA/MHz at 20MHz Low-Power mode
- 50 µA/MHz at 180MHz High-performance mode

SiWx917 Power Domains

Power Modes	Power States	Functions
	PS4	Different voltage and CLK
Activo	PS3	frequencies and SRAM PS1-
Active	PS2	ULP peripherals active
	PS1	
	PS4	Different voltage and CLK
Standby	PS3	frequencies and SRAM PS2
-	PS2	Sleep peripherals off
	PS4	CLK frequencies
Sleep	PS3	
-	PS2	
Deep Sleep	PS0	No Retention

SiWx917 Ultra-Low-Power Sensor Hub

ULP – Ultra-Low Power HP – High-performance

SiWx917 - Large Memory

- A large internal RAM allowing more space to run application and stacks
- Three software-configurable MCU application memory options for sharing the RAM between the wireless, system, and application:
 - For application: 192 / 256 / 320 kB

8MB Embedded Flash or PSRAM

- A large Embedded Flash or PSRAM to accommodate application, OTA, Matter, and code growth
- Embedded Flash: 0, 4, or 8 MB
- Embedded PSRAM: 0, 2, or 8 MB
- Encrypted XiP

16MB

External Flash or PSRAM

- Supports a Large External Flash or PSRAM for ultimate design flexibitility, space, and growth
- External Flash or PSRAM up to 16MB
- Encrypted XiP

Get More Space for Your Application, OTA, Matter, and Future Growth!

SiWx917 – A Rich Set of Peripherals

- Enables a wide range of use cases on a single design
- Runs multiple peripherals at the same time
- Many Ultra-low-power Peripherals
 - Operate even when SiWx917
 is on Standby
 - Long battery life

DIGITAL PERIPHERALS

- 1x Universal Synchronous/Async Receiver Transmitter (USART)
- 3x Inter-Integrated Circuit (I2C)
- 2x Inter-IC Sound Bus (I2S)
- Serial Peripheral Interface (SPI)
- 2x QSPI (M4)
- Serial Input Output (SIO)
- Pulse Width Modulation (PWM)
- Quadrature Encoder Interface (QEI)

Host Interface Peripherals:

- Secure Digital Input Output (SDIO) 2.0 secondary
- 2x Universal Asynchronous Receiver Transmitter (UART)
- Serial Peripheral Interface (SPI)

GPIO:

- Up to 45 General Purpose Input Outputs
- GPIO multiplexer

Timers:

- 4x 16/32-bit
- 1x 24-bit
- Watchdog Timer (WDT)
- Real Time Counter (RTC)

ANALOG PERIPHERALS

- 12-bit 16-ch, 5 Mbps Analog to Digital Converter (ADC)
- 10-bit Digital to Analog Converter (DAC)
- 3x Op-amps
- 2x Comparators
- InfraRed (IR) detector and Temperature Sensor
- 8 capacitive touch sensor inputs

ULTRA-LOW-POWER (ULP) PERIPHERALS

- Real Time Counter (RTC)
- Brown-out Detect (BOD)
- ULP I2C
- ULP I2S
- ULP UART
- ULP GPIO

0110 1010

0011

ULP Timers

High Level of Security for the Device and Networking

Wi-Fi Protocol & Networking Security	WPA2 Personal/Enterprise, WPA3 Personal, TLS 1.3		
Secure Boot & Secure OTA	 Ensures your device runs authentic code in the boot and OTA update to eliminate malware insertion threats Secure Immutable Primary (First Stage) Bootloader in ROM. Authenticates* signatures of all other SW using public keys in Flash. Protocol and Application flash images can be encrypted with separate keys. 		
True Random Number Generator	 Generates high-entropy random numbers based on RF noise, increasing the effort/time needed to expose secret keys 		
Secure Zone	A barrier between the Security/Protocol core and Application core. No access to the security processor, memory, and HW registers from external peripherals, including the Cortex-M4		
Secure Key Storage	Unlimited PUF wrapped key storage in flash		
Secure Debug	Debug ports are disabled in HW by default and can be enabled in SW using cryptographically secure host interface commands validated by immutable bootloader		
Anti Rollback	• Firmware downgrade to a lower version is prohibited through OTP to prevent the use of older, potentially vulnerable FW version		
Encrypted XiP	 Execute SW directly from Flash instead of copying it into RAM Images are saved in encrypted format and decrypted using device-specific PUF intrinsic keys while executing. In-line decryption based on-the-fly AES engine (based on PUF keys). Multiple protection levels can be set for flash, including unmodifiable. XTS/CTR modes supported. 		
Secure Attestation	Allows a device to authenticate its identity using a cryptographically signed token and exchange of secret keys		
Crypto Accelerators	AES-GCM/CMAC/ECB/CBC/CTR mode (Key support of 128,192,256), Chacha-poly, CRC, DES/3DES, DH, ECDH, HMAC, IID, SHA, SHA3, TRNG		

* Authentication of flash contents like user configurations MBR, keys etc. happens using OTP keys. Authentication of ThreadArch and Cortex-M4 FW happens through flash keys.

11 © 2024 Silicon Laboratories Inc.

Wi-Fi 6 – 2.4 GHz and 5 GHz Benefits

Wi-Fi 6 Features		2.4 GHz	5 GHz	Benefits to IoT Applications
tll	Range & Indoor Propagation	****		 Robust and full home coverage - 2.4GHz travels almost TWICE as far as 5GHz 2.4GHz has better penetration through walls - attenuation is less at lower frequency
	Battery Life	****		 2.4 GHz devices consume significantly less current than 5 GHz devices enabling longer battery life 2.4 GHz Wi-Fi devices are better suited for low power IoT applications
	Throughput	***	****	 2.4 GHz supports up to 86 Mbps data rates, enough for most IoT applications including video streaming 5 GHz offers even higher data rates, but very few IoT applications will ever require those rates
Wifi)6	Device Density	****	****	 Wi-Fi 6's OFDMA, MU-MIMO, Beamforming, BSS coloring, and Target Wake Time, allow for higher bandwidth and denser 2.4 GHz deployments, reducing the need to move to 5GHz
	Regulatory Certifications	****	***	 2.4 GHz solutions use the ISM frequency band with no RADAR restrictions and fewer regulatory steps for worldwide deployment than 5 GHz (additional regulatory testing needed for DFS Radar channels)
	Lower Cost and Design Complexity	****	***	 Support for dual-band is more expensive and complex due to support needed for higher frequency 5GHz front end and antenna components.

2.4 GHz is Optimized for IoT, Considering the Range, Power, Throughput, and Cost Balance!

Target Markets and Application Examples

Smart Home Security Cameras HVAC Smart Sensors Smart Appliances Health and Fitness Pet Trackers

Industrial and Commercial

Unboxing Demo Video

Nik Von Huben Senior Software Engineering Manager

Thank You

Watch ON DEMAND

WI-FI