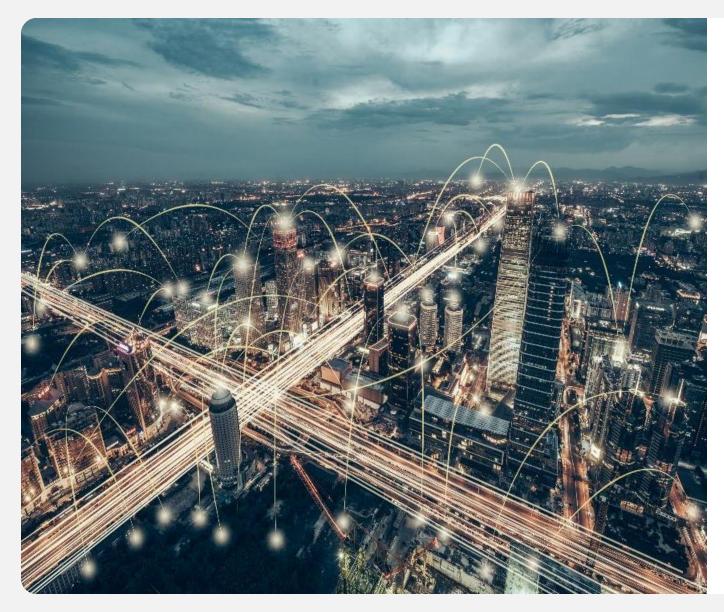
Presentation Will Begin Shortly

4:00

FEB 8 TH LPWAN 101 - A Look at the Emerging LPWAN Solutions and the Applications They Serve	
MAR 14 TH Wi-SUN FAN 1.1 Rollout	
APR 18 TH Amazon Sidewalk – New Features and Market Applications	
MAY 23 TH Why Sub-GHz?	

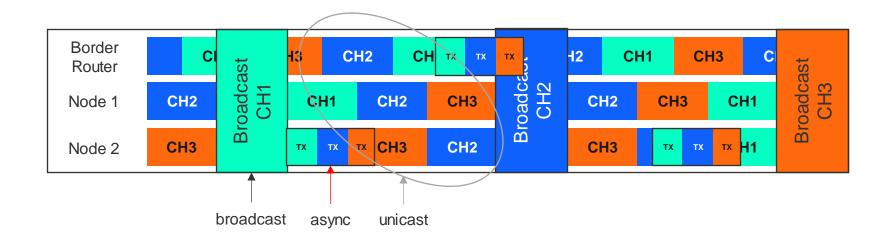
Welcome


Wi-SUN FAN 1.1 Rollout WIP

Kris Young – Staff Field Applications Engineer

tech t⊾lks

Wi-SUN FAN 1.0 Review



Wi-SUN Network Topology: Routing Mesh

- More like a tree than true mesh
- · All nodes are routing nodes and are always active
- Border router maintains routing tables and ensures network backhaul
- Primary Applications:
 - Smart Cities
 - Smart Metering
 - Infrastructure
 - Energy Distribution
- 3 Types of Network Messages
- Unicast
 - From one node to another, communication flow ing through neighbors
 - Routing with RPL (Routing Protocol for Low Pow er and Lossy Networks)
- Broadcast
 - Messages transmitted to all nodes within the range
 - Propagated with MPL (Multicast Protocol for Low -Pow er and Lossy Networks)
- Asynchronous messages
 - Messages transmitted to all nodes within the range
 - Mainly used for network discovery and configuration (PAN Advert, PAN config, ...)
- PHYs
 - A single PHY is used for all messages (<u>base PHY</u>), i.e. all nodes talking the same language
 - Selection between 50, 100, 150, 200 & 300 kbps FSK
 - The PHY is selected upon the higher distance (range) between nodes and regional regulation
 - Frequency hopping is used

Wi-SUN Communication Summary and frequency hopping

Broadcast

- · Has priority over Unicast
- · All nodes switch to broadcast channel to listen

Asynchronous

- · Has priority over Unicast and Broadcast
- Transmits on all channels
- Unicast
 - · Impacted by broadcast and asynchronous traffic
 - · The transmitter adapts to receiver node channel

=> Configuration is key to adapt the Wi-SUN stack and its performance to the application.

What is FAN 1.1?

- FAN 1.1 is an <u>extension</u> of FAN 1.0 to address <u>higher bit rates</u> and <u>low power</u> nodes
 - Keeps the basis of FAN 1.0
- Indeed, these new topics are optional in FAN 1.1 specification, so we get 3 pieces:
- 1. FAN 1.1 Core (aka FAN 1.0+)
- Only one feature added: PAN-wide Information
 Element
- 2. FAN 1.1 High Performance option (HP)
 - Introduces SUN-OFDM PHYs
 - Introduces mode switch
- **3.** FAN 1.1 Low Energy option (LE)
 - Introduces Limited Function Nodes (LFN)

FAN 1.1 Low Energy: Limited Function Nodes (LFN)

- LFN allows <u>battery powered</u> applications as nodes are sleeping most of the time
- The typical use case is a node transmitting 1-2 kB per day
 - The goal is to reach a lifetime of 20 years with a typical LiMnO2 3.x volt / 2 AH battery
- These nodes cannot be routers, so this is limited to leaf nodes
 - Routers are referred to as Full Function Nodes (FFN)
- The "LFN parenting" feature is required on a router to allow support of LFN children
 - The FFN parent is managing LFN Broadcast and Unicast schedules
 - The FFN parent is buffering the message to be delivered to the LFN
- LFN is available for
 - EFR32FG28 (FSK only)
 - EFR32FG25 (FSK & OFDM)

xG28: Single or Dual Band SoC for the Next Generation of IoT

Single or Dual Band More GPIOs

DEVICE SPECIFICATIONS

High Performance Dual Band Radio

- Up to +20 dBm Sub-GHz Output Pow er
- -125.8 dBm Rx Sensitivity @ 915 MHz 4.8 kbps O-QPSK
- Up to +10 dBm 2.4 GHz Output Pow er
- -94.2 dBm Rx Sensitivity @ BLE 1 Mbps

Efficient ARM® Cortex®-M33

- Up to 78 MHz
- Up to 1024kB Flash, 256kB RAM

Low Power

- 82.8 mA TX Current (915 MHz, +20 dBm)
- 26.2 mA Tx Current (915 MHz, +14 dBm)
- 4.6 mA RX (915 MHz 4.8 kbps O-QPSK)
- 22.5 mA TX Current (2.4 GHz +10 dBm)
- 5.2 mA RX (BLE 1 Mbps)
- Active Current: 33 µA/MHz @39 MHz
- 1.3 μA EM2 (16 kB Retained) / 2.8 μA EM2 (256 kB Retained)

Protocol support

- Wi-SUN
- Amazon Sidew alk
- CONNECT
- Wireless M-BUS
- Proprietary
- Bluetooth LE

Package Options

- 6x6 QFN48 (31 GPIO)
- 8x8 QFN68 (49 GPIO)

DIFFERENTIATED FEATURES

Single and Dual Band Support

- Supports Sub-GHz and Sub-GHz + Bluetooth LE Large memory footprint
- Support larger stacks or applications in a single chip **Al/ML accelerator**
- · Faster inferencing with lower power
- Secure Vault[™] Mid and High options
- · Flexible platform for evolving security needs

Support for Wi-SUN Mode Switch

 Support for use of multiple FSK PHYs in a single network

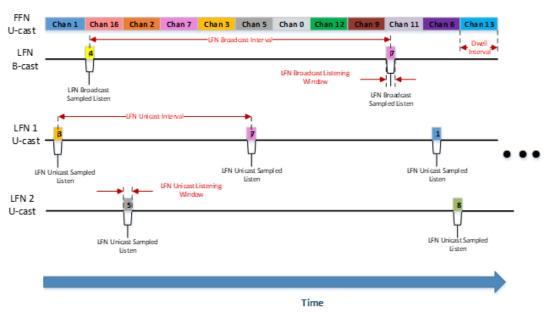
16-bit ADC

• Up to 14-bit ENOB for better analog resolution

Preamble Sense

Ultra low power receive mode

Antenna Diversity


• 6-8 dBm better link budget (Sub-GHz only)

Segment LCD

- 4x48 segment LCD
- **High GPIO count**
- Support up to 49 GPIO

Limited Function Nodes (LFN): some figures

<u>Schedules</u>

Power Consumption

Conditions:

- · Balanced configuration
 - LFN Unicast interval: 60 sec
 - LFN Broadcast Interval: 5 minutes
- Traffic scenario
 - 50kbps FSK
 - Transmission of a 100 B packet every 8 hours
 - Wake up for unicast and broadcast listening windows

=> Average consumption 1.5μA on top of EM2, i.e. 6 μA total for EFR32FG28

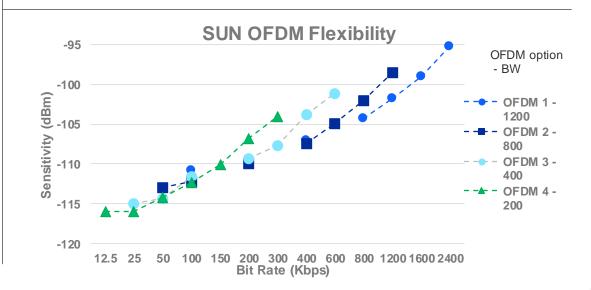
Specific schedules for LFN Unicast and LFN broadcast on top of usual (FFN) schedules

- · LFN broadcast interval: from 10 sec to 10 minutes
- LFN Unicast interval: 30 sec to ... 4 h
- => Network to be configured to tradeoff latency and consumption

=> Leads to <u>>30 years</u> lifetime for a 2000mAh battery

FAN 1.1 High Performance: OFDM

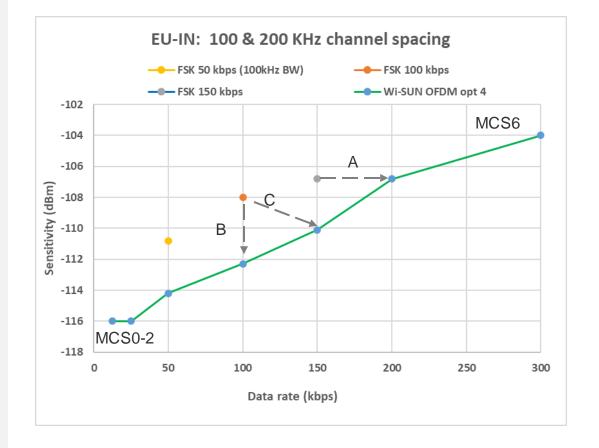
OFDM brings


- High bit rates, up to 2.4 Mbps
 - 3.6 Mbps w/ EFR32FG25 additional mode
- Intrinsic flexibility on bit rates and performance levels
 - Sometimes referred to as MR-OFDM (multi-rate)
 - Packet-by-packet flexibility, within the same bandwidth
 - Each option has 7 Modulation and Coding Schemes
 - MCS0 (low bit rate) to MCS6, in-packet signaling
- High bit rates bring
 - · Higher throughputs which are helpful for OTA
 - Shorter burst duration leading to
 - Better latency
 - Improved network performance & less congestion

bandwidth (KHz)	modulation	bit rate (kbps)	Tx duration (ms)	
	FSK 1b	50	241.92	
200	FSK 2a	100	120.96	
	OFDM 4 MCS6	300	41.52	
	FSK 3	150	80.85333333	
400	FSK 4a	200	60.64	
	OFDM 3 MCS6	600	21.48	
600	FSK 5	300	40.74666667	
800	OFDM 2 MCS6	1200	11.52	
1200	OFDM 1 MCS6	2400	6.12	

Example for 1500-Byte frame

OFDM high bit rates


OFDM option	Bandwidth (kHz)	Main regions	Bit rates (kbps)	Sensitivity (dBm)
1	1200	NA, BZ	100 to 2400 (3600*)	-111 to -95
2	800	NA, BZ, JP	50 to 1200 (1800*)	-113 to -98
3	400	NA, BZ, JP	25 to 600 (900*)	-115 to -101
4	200	NA, BZ, JP, EU	12.5 to 300 (450*)	-116 to -104

OFDM Performance compared to FSK: Europe – India case

 Europe, India mainly use 200 kHz channel spacing

- OFDM advantage vs FSK:
 - A: increased bit rate for same range
 - ► +30 to 50%
 - + 200% from FSK 50kbps (100 KHz BW)
 - B: improved range for same bit rate
 - About 4 dB better sensitivity
 - C: can be a combination of both
 - ▶ +50% and 2 dB
- Note: same comparison applies for other countries
 - Europe & India are selected as the single channel bandwidth makes the comparison more fair
- Intrinsic flexibility of OFDM allows
 - To use low MCS to increase range
 - To use high MCS to increase throughput when conditions allow it

FG25: Optimized Solution for Smart Cities

Advanced MCU Low Latency

DEVICE SPECIFICATIONS

High Performance Radio

- Up to +16 dBm Output Power
- -125.8 dBm Rx Sensitivity@ 915 MHz 4.8kbps O-QPSK
- -95.3 dBm Rx Sensitivity@ 914 MHz 2.4 Mbps Wi-SUN OFDM Option 1, MCS6

Efficient ARM® Cortex®-M33

- Up to 97.5 MHz
- Up to 1920kB Flash, 512kB RAM

Low Power

- 186 mA Tx Current (914 MHz +16 dBm)
- 6.3 mA Rx Current (924 MHz 400kbps 4-GFSK)
- Active Current: 30 µA/MHz
- 4.6 μA EM2 (512 kB Retained) / 2.6 μA EM2 (32 kB Retained)

Protocol support

- Wi-SUN FAN 1.1
- Proprietary
- CONNECT

Package Options

• 7x7 QFN56 (37 GPIO)

DIFFERENTIATED FEATURES

Advanced Radio Functionality

- Supports OFDM and up to 3.6 Mbps data rates
- Concurrent Detection of OFDM and FSK

Robust Security

• Secure Vault[™] Mid and High options for evolving security needs

16-bit ADC

• Up to 14-bit ENOB for better analog resolution

Mode Switch

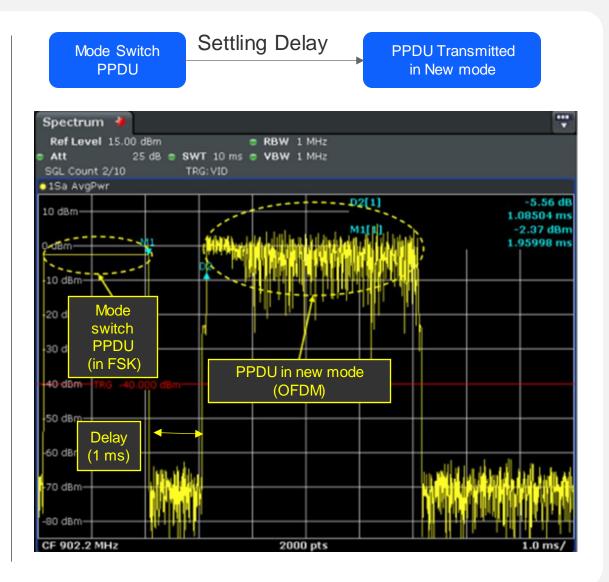
 Allows for coexistence of FSK and OFDM nodes on a single network

Large Memory Footprint

• Up to 1920kB Flash, 512kB RAM

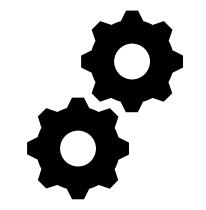
More GPIO

• Up to 37 GPIOs for better system integration



FAN 1.1 High Performance – Mode Switch

Entire Wi-SUN network uses single <u>base PHY</u>


- Defined by border router for Broadcast, Unicast, and Asynchronous messages
- Mode Switch allows for use of an <u>alternate PHY</u> for unicast messages
 - Signaling packet sent on base PHY
- Allows for switch between FSK PHYs or FSK to OFDM
 - Enables higher bandwidths for short amount of time for use cases like OTA
- Supported on both FG25 (FSK and OFDM) and FG28 (FSK only)
 - Exists natively as part of Silicon Labs Wi-SUN stack

Mode Switch

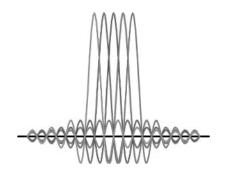
- Modulation and Data Rate (MDR) Switching
 - Introduced in FAN1.1
- Goal
 - Temporarily switch from one MDR to another for one or more packets exchange
 - Switching can be used to take advantage of the channel conditions or to meet application requirements
- Silicon Labs Implementation
 - As per FAN1.1 spec
 - Provides PHY Mode Switch and MAC Mode Switch APIs

BENEFITS

- · Best modulation and data rate for a specific channel condition
 - Reduced burst size, then power consumption
- · Best modulation and data rate for a specific use-case
- If channel condition allows select higher data rate for cases like OTA [OFDM or FSK]
- · Best modulation and data rate based on device capabilities
 - Devices advertise on the modes they support

DRAWBACKS

- · Need to transmit a Mode Switch PPDU
- Can be slow due to long CCA (160 micro-Sec) and settling delay (0.5 to 1.5ms as per spec.)
- · Reduced co-existence performance in technologies with short CCA
 - For example, 802.11ah (40 micro-second)


Concurrent Detection

Concurrent detection of two different PHYs

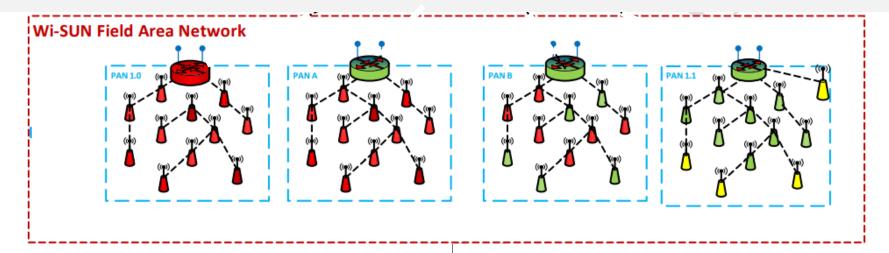
- The device listens to both FSK and OFDM at the same time
- The first incoming signal triggers reception, the other one is aborted
- Behaves like mode switch, without the need for the signaling packet (Mode Switch PPDU)
 - Concurrent Mode can be considered as a super Mode Switch

Silicon Labs Implementation

- Supported on FG25 [FSK & OFDM]
- Currently available concurrent detection PHY pairs:
 - OFDM_option1_FSK_50kbps_NA
 - OFDM_option3_FSK_100kbps_JP
 - OFDM_option4_FSK_50kbps_EU

BENEFITS

- Faster than Mode Switch
 - No additional signaling and settling time
- Better co-existence performance than Mode Switch
 - Mode Switch performance can degrade in the presence of technologies with faster CCA, for example 802.11ah
- · Increase throughputs without the overhead of a signaling packet
- · Allows hybrid networks
 - FSK for robustness and legacy, OFDM for high bit rates


DRAWBACKS

- · Only one payload can be received at a given time
 - It is not a dual reception
- · Limited to single FSK and OFDM PHY concurrently
 - Detection of 2 FSK or 2 OFDM is not possible
- Need pre-defined PHY pairs
 - Additional pairs can be implemented based on customer needs

Concurrent Detection is not specified in Wi-SUN, but a capability of EFR32FG25

FAN 1.1 Coexistence with FAN 1.0

• A FAN 1.0 Border Router locks the PAN to FAN 1.0

- Potential FAN 1.1 Routers would behave as FAN 1.0 routers
- FAN 1.0 and FAN 1.1 coexistence in a PAN require that
 - The Border Router is FAN 1.1
 - There is no LFN in the PAN
- A PAN including LFN must be 100% FAN 1.1 (does not allow FAN 1.0 routers)

- Migration path from FAN 1.0 to LFN support
 - Upgrade the Border Router to FAN 1.1
 - Upgrade all Routers to FAN 1.1
 - And enable LFN parenting
 - Configure the Border Router to
 - disable FAN 1.0 nodes support and
 - enable LFN support
 - Add LFNs
 - An LFN can connect only to routers with "LFN parenting" capability

FAN 1.1 Certification

FAN 1.1 Certification is coming

To be stopped once FAN 1.0+/

FAN 1.1 core is ready

PHY1.1 (2v02)

FSK

PHY Mode Switch

0

M*

FAN 1.0+ = FAN 1.1 Core	BR	R	LFN
PAN-wide IE	Μ	Μ	-
MAC-Command Mode Switch	0	0	-
PHY Mode Switch	0	0	-
LFN Parenting	-	-	-
LFN features	-	-	-
FSK	M*	M*	-
OFDM	-	-	-

FAN 1.1 Core + HP	BR	R	LFN
PAN-wide IE	М	Μ	-
MAC-Command Mode Switch	0	0	-
PHY Mode Switch	М	М	-
LFN Parenting	-	-	-
LFN features	-	-	-
FSK	M*	M*	-
OFDM	M*	M*	-

FAN 1.1 Core + LE	BR	R	LFN
PAN-wide IE	Μ	Μ	0
MAC-Command Mode Switch	0	0	0
PHY Mode Switch	0	0	0
LFN Parenting	М	М	-
LFN features	-	-	Μ
FSK	M*	M*	M*
OFDM	0	0	0

	 			►
2019	2023		2024 H1	2024 H2
	OFDM	0		

FAN 1.0

PHY 1.0

(1V08)

SILICON LABS

Certification of Silicon Labs products

• FAN 1.0 certified products

FAN 1.0						
	EFR32 FG12	EFR32 MG12				
Border Router	WSA285	WSA286				
Router	WSA265	WSA266				
PHY: 800MHz 900MHz	WSA291 WSA258	WSA292 WSA259				

Find WSA certificates at: <u>https://wi-sun.org/certified-products-list/</u>

• FAN 1.1 certifications plan

FAN 1.1						
	EFR32	EFR32 FG28				
	HP	LE				
Border Router		2024*				
Router	On-going	2024*				
LFN		2024*				
PHY: 800MHz 900MHz	Yes (CTBU) WSA345 WSA335		24Q2			

 CTBU: Certification Test Bed Unit - EFR32FG25 is part of the certification test beds (PHY and FAN)

2024*: pending certification Test bed completion

Thank You

Watch ON DEMAND

