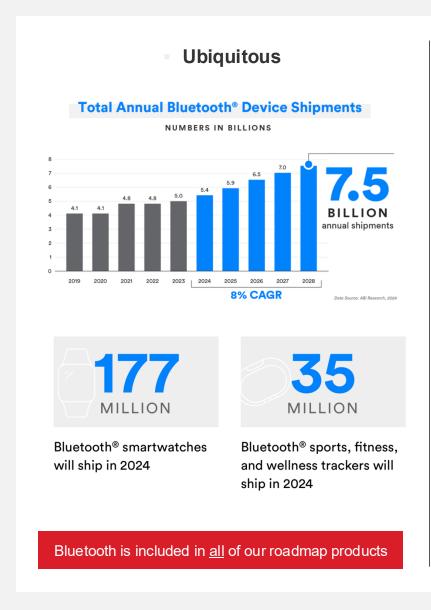
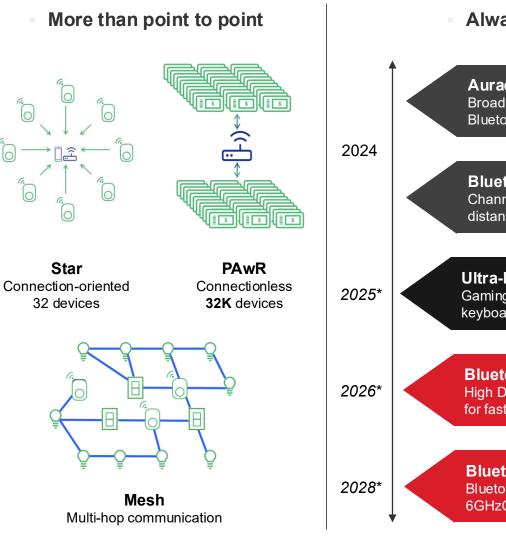
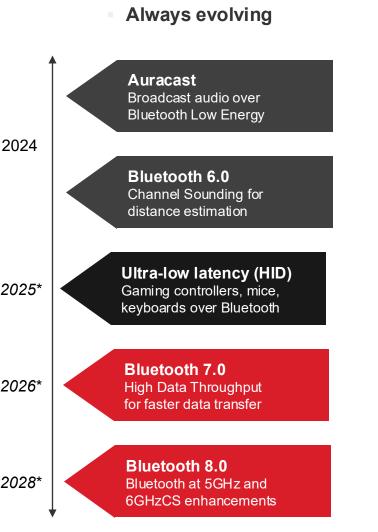


BLE-101

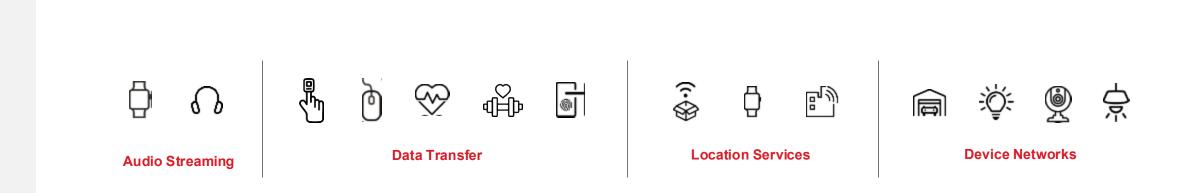
Next-Gen Bluetooth Applications: Driving Innovation and Transforming Connectivity




Contents


- Trends driving innovation in Bluetooth
- Channel Sounding
- PAwR
- Bluetooth Mesh
- Ambient IoT
- Bluetooth LE Audio
- Misc. (Trends to look forward to) HDT
- SiLabs Offerings/Portfolio
- Resources
- Q&A

Bluetooth is:



* dates subject to change

Trends in Bluetooth

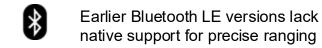
Past

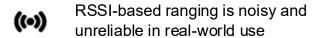
- Bluetooth Low Energy standard and initial goals
- Definition of the four quadrants (audio, data, location, network)
- Pre 5.0 Bluetooth Low Energy Feature overview

Present

- Bluetooth 5 big changes, major rev
- 5.x key features: Mesh, Audio, PaWR
- Bluetooth 6 Channel Sounding
- Ambient IoT

Future


- High Data Throughput
- High Frequency Bands



Bluetooth® Channel Sounding

THE CHALLENGE:

IOT applications need 'spatial' awareness to be more secure, reliable, and responsive

Direction Finding needs complex antennas, adding cost & complexity

UWB is accurate but often too costly, and bulky for IoT

THE OPPORTUNITY:

Channel Sounding for Bluetooth

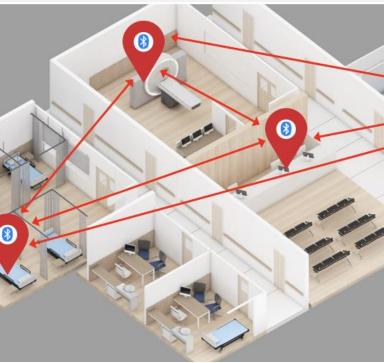
Standardized approach for accurate, secure ranging in Bluetooth 6.0

Enables sub-meter accuracy with robust performance, even in NLOS

Works with single or dual antenna setups - flexible for different form factors

More cost efficient than UWB; requires minimal external components

Built on existing Bluetooth infrastructure, simplifying adoption and ecosystem integration


Applications

Keyless entry

Geofencing - security alerts
Indoor asset management
Item finding - wallet, keys

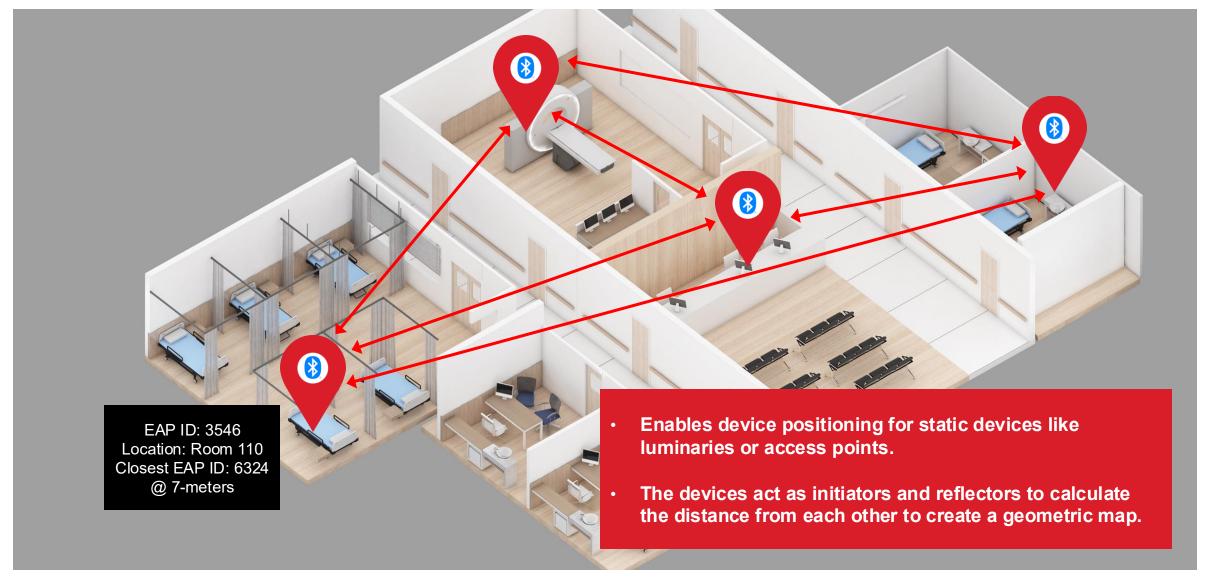
AUTOMAPPING

Solar Trackers

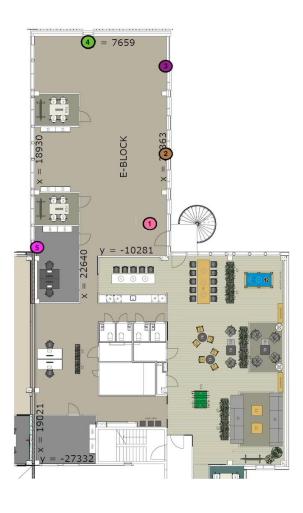
Luminaires

Access Points

Accurate Mapping for Battery Storage



Tracking/Item Finding



Channel Sounding for Static Device Positioning

Automapping

Silicon Labs Channel Sounding Algorithm

Algorithm Features

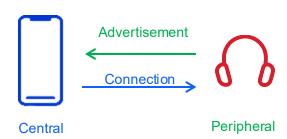
- Supports Multiple Channel Sounding Ranging Modes
 - ▶ PBR, RTT, PBR with RTT as sub mode
- Antenna Switching
 - Built-in support for antenna diversity
 - Supports 1, 2 and 4 antenna paths
- Supported Algorithm modes
 - Static mode Delivers the highest accuracy with high measurement latency; optimized for ranging between stationary devices
 - Real Time Basic Provides high accuracy with increased computational and measurement latency; supports tracking at speeds up to 1 m/s
 - ▶ Real Time Fast Balances moderate accuracy and range with low latency; supports tracking at speeds up to 2.1 m/s, additionally produces velocity metric
- Configurable Channel Selection (72, 37, or 20 Channels)
 - Selectable based on accuracy needs and power constraints

Key Benefits

- Licensing cost free
 - ▶ Eliminates third-party royalties, simplifying BOM cost structure
- Optimized HW-SW Co-Design
 - ▶ Tight coupling between silicon & firmware ensures seamless performance & efficiency
- Single-Vendor Lifecycle Support
 - Unified hardware & software ownership streamlines debugging, validation, and updates

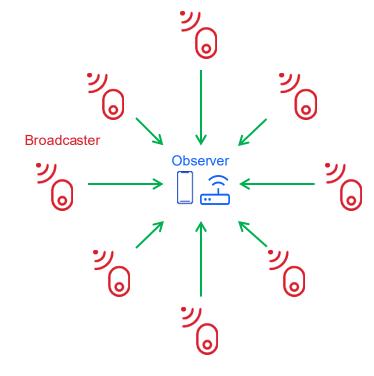
Performance in Indoor Office Environment

Ceiling rail infrastructure


- Internal test environment
- Multiple stationary EFR32 devices placed at different locations
- Mobile EFR32 device for controlled measurements (repeatability)
- Challenges heavy multi-path in an indoor office setting
- Statistical analysis
 - · Static measurements at multiple distances up to 33 meters
 - Hundreds of measurements per distance to determine min/max, mean, median, std, absolute error

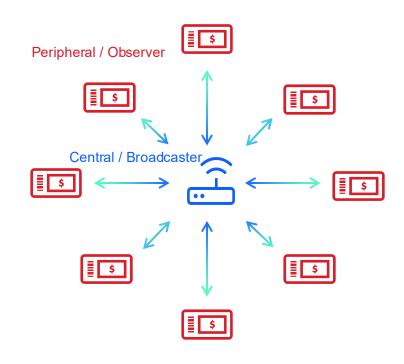
Why PAwR?

Advertising for Connection


(irregular, unidirectional)

Max number of connections: 32

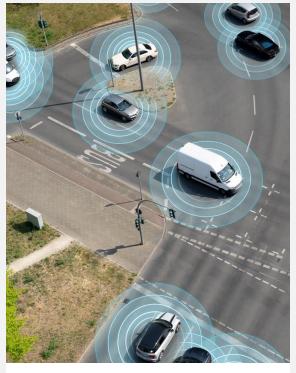
One-way "Beaconing"


(regular, unidirectional)

Max number of beacons: limited by channel capacity to a few 1000s (unsynchronized nature causes collisions)

Periodic Advertising with Responses

(regular, bidirectional)


Max number of Peripherals: 32k New mode enabling "Synchronized" mode network.

Applications

ASSET MANAGEMENT

Status updates from a huge number of items, location finding

SMART CITIES

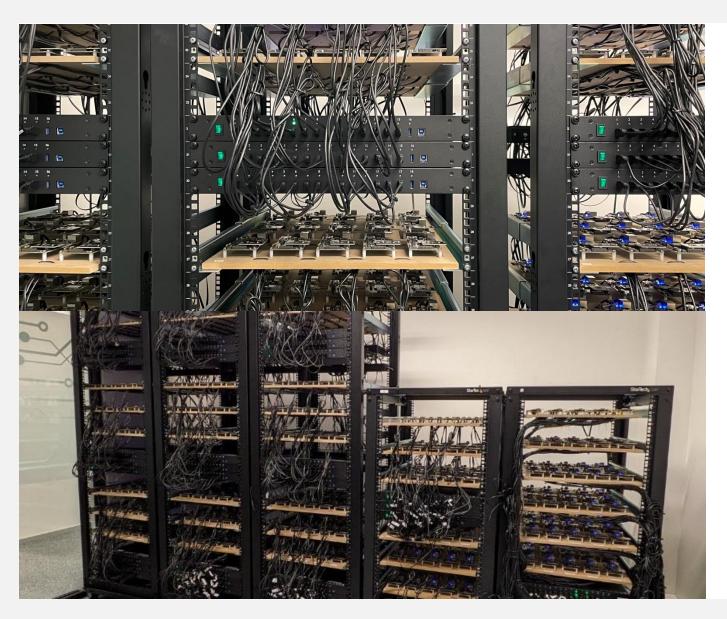
Access Points to connect to more than 32 Bluetooth devices nearby

AUTOMOTIVE

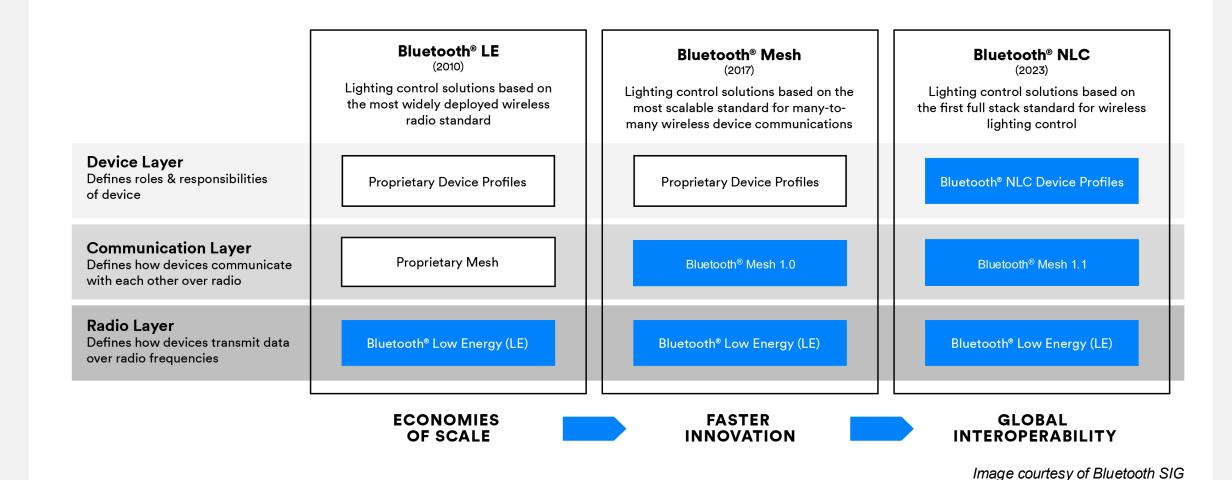
Non safety critical electronics to communicate with the central computer

SOLAR TRACKERS

Large Solar Farms controlled by PAwR in combination with **Channel Sounding**



Asset Management (PAwR)


Bluetooth ESL using PAwR - Test Lab Network

- Rack-mounted device farm based on MG24 development kits
 - Capacity for ~1500 devices
 - Network mimics a large-scale, real-life scenario
- Controlled test framework
 - Network deployment, ping with PAwR and network recovery tests conducted on ESL tag groups
 - Results show encouraging signs for a variety of use cases other than ESLs
- Generating realistic radio environment for **PAwR** testing
 - Flexible configurations demonstrated to show low latency and high reliability
 - Bluetooth PAwR viable for ultra-low power, centralized networks for industrial and commercial use

Bluetooth Mesh

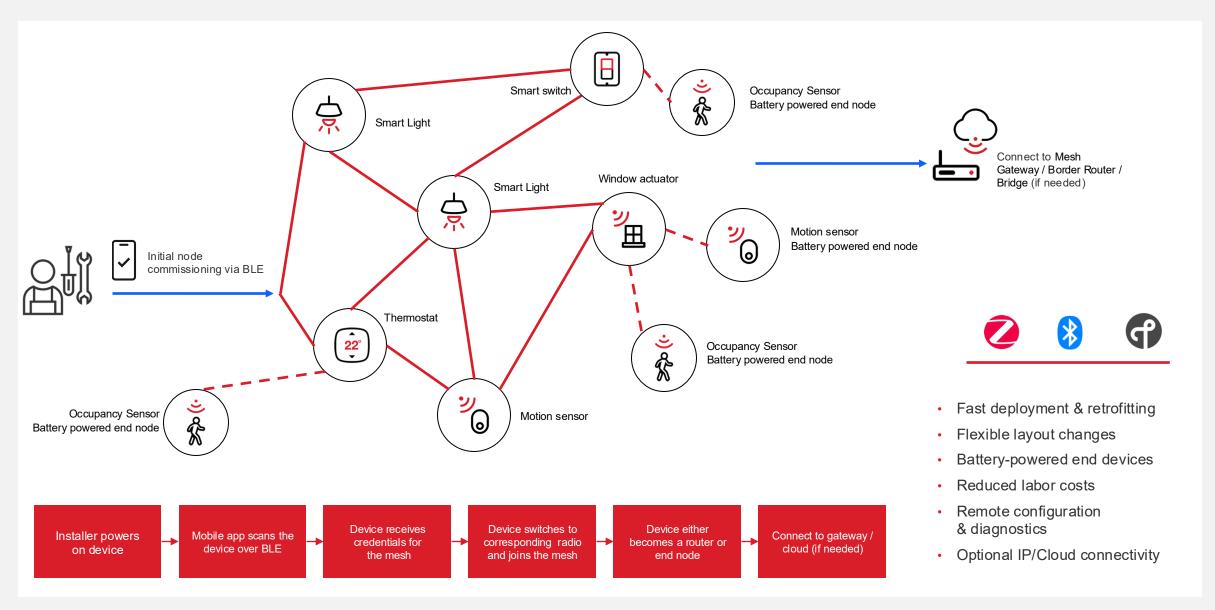
Bluetooth Mesh Overview

NETWORKED LIGHTING CONTROL (NLC)

- Commercial
- Residential
- Steet lighting

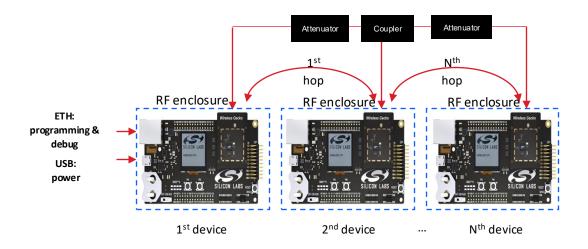
SMART HOME & BUILDING AUTOMATION

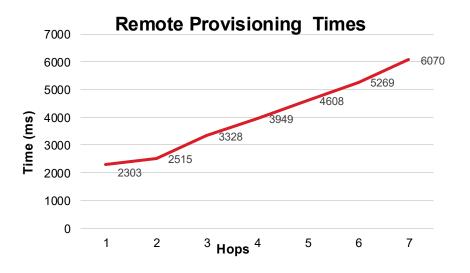
- HVAC
- Switches
- Sensors



Smart Building Automation with Network Lighting Control (NLC) Profiles

Silicon Labs Feature: Delta DFU operation


1. Download the GBL upgrade file **Application** Bootloader **Bootloader Storage** Full firmware updates take time Code mostly unchanged, just relocated Only minor changes, mostly bug fixes **GBL** Burdens nodes with low bandwidth Latency makes DFU slow, unstable Bootloader **Application GBL Benefits of DFU Compression** 2. Reconstruct the new application Smaller upgrades transmit much faster Delta DFU = changes only Bootloader New Application More efficient use of RF channel Application Silabs proprietary BT Mesh feature Cuts BT Mesh OTA size by 90% 3. Install the new application Supports standard BLE OTA too **New Application** Bootloader **Bootloader Storage**



Bluetooth Mesh Test Setup

'Ambient IoT' for 'Energy Harvesting'

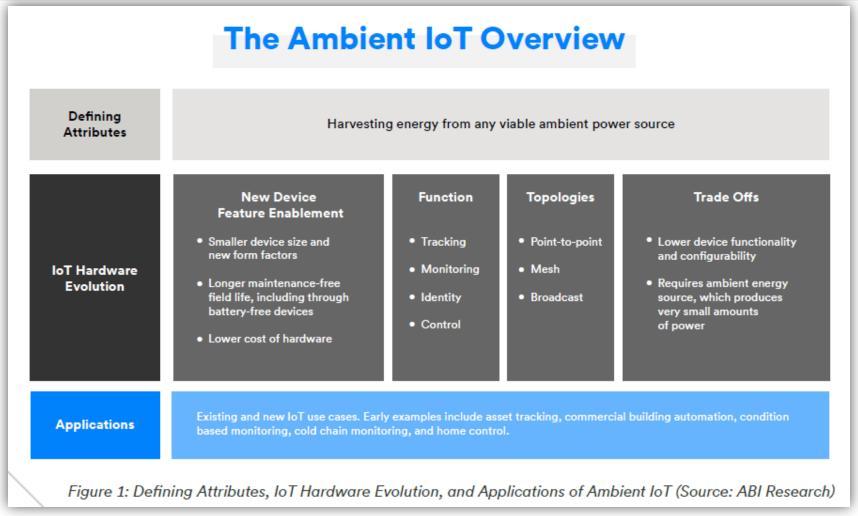
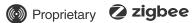


Image courtesy of Bluetooth SIG

Silicon Labs intends to be a pivotal member with Bluetooth SIG and Connectivity Standards Alliance to drive Ambient IoT needs into standards https://www.bluetooth.com/bluetooth-resources/mrn-ambient-iot/

LOGISTICS / LIVESTOCK **TRACKING**

Bluetooth[®]



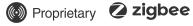
ASSET TRACKING / SMART BUILDING SENSORS

Bluetooth

SMART SWITCHES

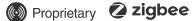
Bluetooth°

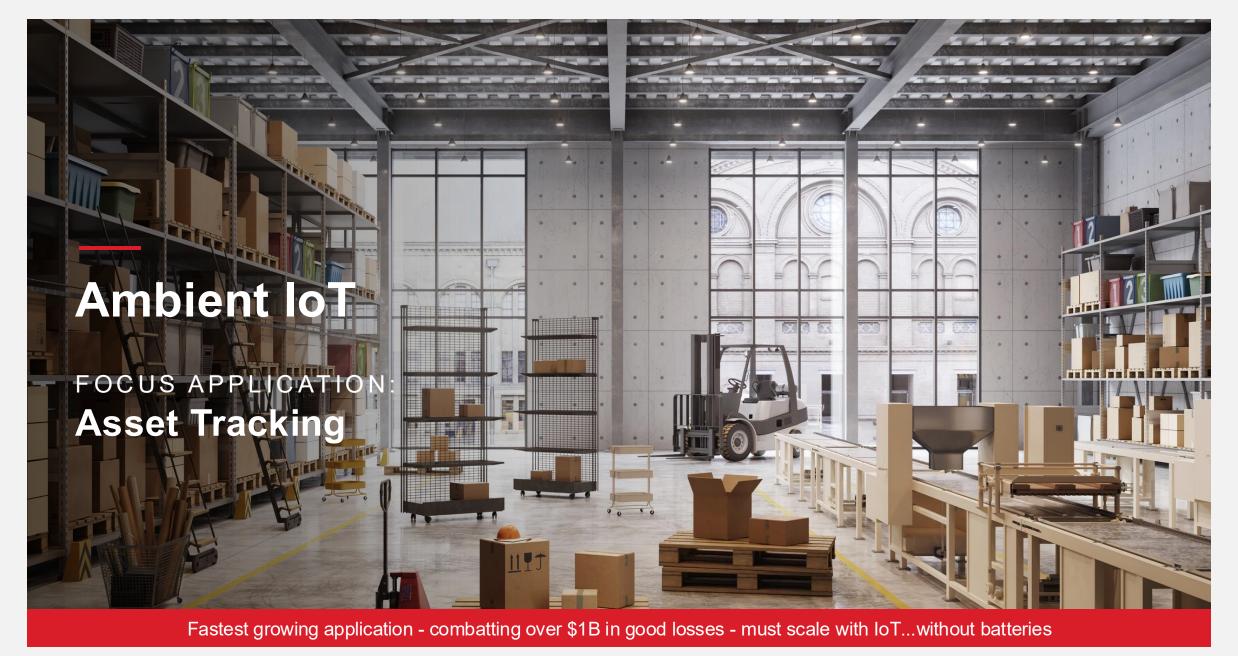
MACHINE MONITORING



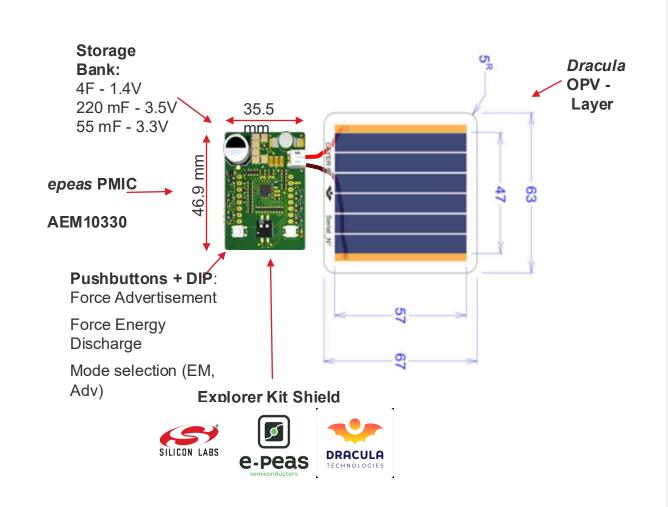
FACTORY AUTOMATION / AGRICULTURE / TPMS

Bluetooth
 Bluetooth




ELECTRIC SUB-METERING

Bluetooth



Battery-less Energy Harvesting Tags

- Constant Bluetooth LE beaconing data advertisement between deep-sleep intervals.
- Powered from ambient energy sources dynamically aware and configurable by energy level
- Optimized for long lifetime using capacitor-based energy storage.
- IoT SoC optimized for most efficient coldstart and deep sleep wake-up.

Bluetooth LE Audio

Overview:

- Introduced in Bluetooth 5.2 in 2020
- Connection-Oriented (Unicast audio) and Connectionless (Auracast™ broadcast audio)
- Based on use of isochronous streaming channels

How does Bluetooth LE audio compare to existing 'Classic' audio?

	Bluetooth Classic Audio (A2DP / HFP over "BR/EDR")	Bluetooth LE Audio (Isochronous channels over BLE, BT 5.2+)			
Typical power consumption	Headphones/speakers draw ~30-40 mA during playback; battery-operated devices often list 5-8 h play-time	Up to 40 % longer playback time on the same battery. Practical designs reach 10-20 h on earbuds of the same size.			
Audio quality and codecs	Mandatory SBC (16-bit/48 kHz, 320-512 kb/s) Optional higher-fidelity codecs: AAC , aptX/HD/Adaptive , LDAC , etc.—quality scales with bitrate but at the cost of power/latency	Mandatory LC3 : delivers equal or better Perceptual Evaluation of Speech Quality (PESQ) than SBC at half the bitrate LC3+ (optional) extends to hi-res 24-bit/48 kHz streaming.			
Latency (mouth-to-ear)	Typical 100-150 ms with SBC Can drop to ≈ 40 ms with aptX-LL	Sub-50 ms end-to-end paths in LC3			
Connection / stream model	Point-to-point single-stream Stereo earbuds relay right channel from left bud	Multi-Stream : phone sends L & R simultaneously to each earbud			
Broadcast / sharing	Not natively supported	Auracast™ broadcast audio standardized			
Other pros / cons Pros: 20-year ecosystem; works on legacy phones, PCs, cars. Cons: Higher power, higher latency, no broadcast, codec-fragmentation.		Pros: Lower power, better quality/robustness, multi-stream & broadcast, future-proof. Cons: Needs BT 5.2+ silicon/OS; 2025 adoption still ramping, limited backward compatibility.			

The Promise of Auracast

Public space retrofitting

- Public spaces like train stations and airports
- Subscribe for announcements and guidance

Products entering the market in 2025

- Google Pixel 10 supports Auracast for broadcast audio streams
- Seeing first televisions released with Auracast support

Accessibility and new audio experiences

- Performance spaces and theaters
 - Sydney Opera House one of the first spaces to make use of Auracast
- Alternate languages and help for hearing impaired

High Data Throughput overview

Faster data transfer

- Nearly 4x speed increase
- Higher-order modulations

Increased capacity

- Nearly 4x throughput increase
- Greater spectral efficiency

Better energy efficiency

- More efficient radio use
- Fewer and shorter retransmissions

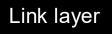
Enhanced reliability

- Robust RF performance
- Utilizes forward error correction

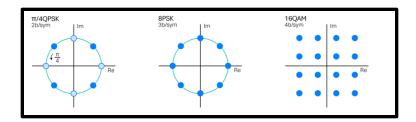
Target use cases

- Lossless or multi-channel audio
- OTA and file transfer

Note: HDT specification not yet adopted, all info here subject to change


Updates to the Bluetooth Standard

Minor changes only

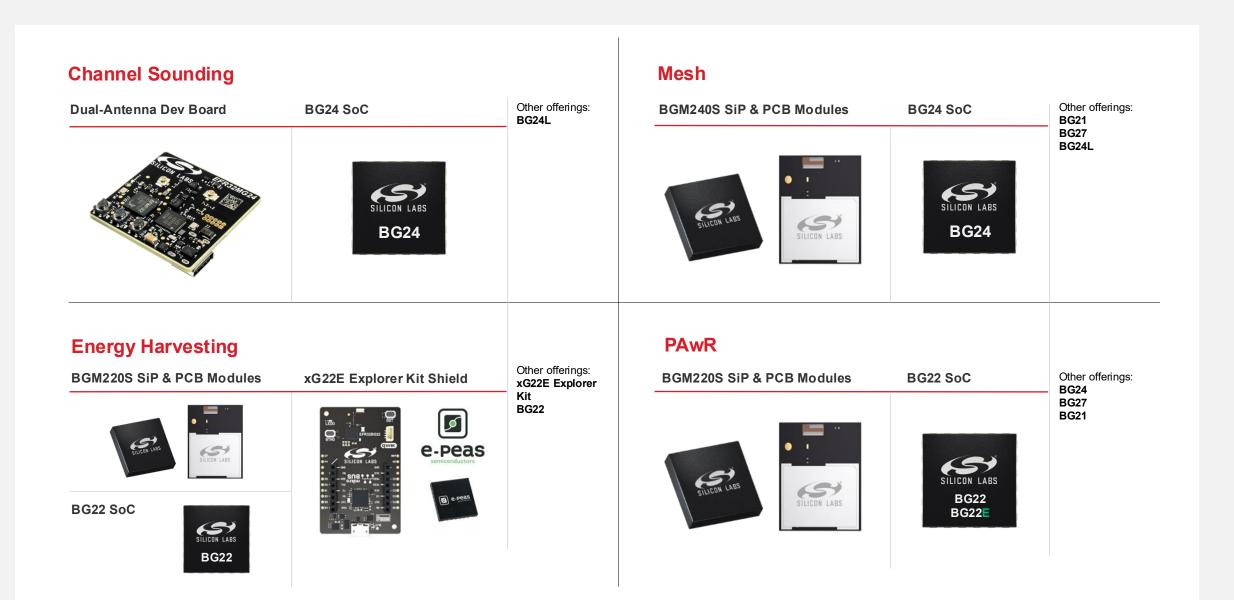

New commands and events Updates to existing commands/events

New HDT packet types Updated cryptography New and updated procedures

New bit rates: 2, 3, 4, 6, 7.5 Mbps New modulation schemes Forward error correction

Higher Frequency Bands

Higher Frequency Bands


- Specification expands Bluetooth beyond 2.4 GHz, into the 5-6 GHz spectrum
- Ensures better coexistence as 2.4 GHz band becomes more crowded
- Improves data throughput, lowers latency, and promises to improve Channel Sounding accuracy

Like so many innovations before them, HDT and HB expand Bluetooth's reach into new applications, pushing standardization of wireless communication still further

Portfolio Slide



Silicon Labs' SoC Portfolio

	BG21	BG22/22E	BG24	BG26	BG301	BG22L	BG24L	BG27	BG29
Protocols	2 1 8	2 80	◎ 8 ⊘ ⊕ ‡	◎ 🖇 ② ① ☆	林優 🔇 🖁 🔞	*	*	2 3 3	2 8 0
Core	Cortex-M33 (80 MHz)	Cortex-M33 (76.8 MHz)	Cortex-M33 (78 MHz)	Cortex-M33 (78 MHz) Cortex-M0+ (Radio) Cortex-M0+ (Security)	Cortex-M33 (150 MHz)	Cortex-M33 (38.4 MHz) Cortex-M0+ (Radio)	Cortex-M33 (78 MHz) Cortex-M0+ (Radio) Cortex-M0+ (Security)	Cortex-M33 (76.8 MHz)	Cortex-M33 (76.8 MHz) Cortex-M0+ (Radio) Cortex-M0+ (Security)
Max Flash	1024 kB	512 kB	1536 kB	3200 kB	4 MB	352 kB	768 kB	768 kB	1024 kB
Max RAM	96 kB	32 kB	256 kB	512 kB	512 kB	24 kB	96 kB	64 kB	256 kB
Security	Secure Vault Mid/High	Secure Vault Mid / Base	Secure Vault Mid/High	Secure Vault High	Secure Vault High	Secure Vault Mid	Secure Vault Mid	Secure Element, Secure Vault Mid	Secure Vault High
Rx Sensitivity (BLE 1Mbps)	-97.5 dBm	-98.9 dBm	-97.6 dBm	-97.6 dBm	-98.6 dBm	-98.9 dBm	-97.6 dBm	-99.2 dBm	-99 dBm
RX Sensitivity (15.4)	-104.3 dBm	-102.3 dBm	-105.4 dBm	-105.9 dBm	-106.3 dBm	NA	NA	-102.2 dBm	-102.2 dBm
Active Current		37 μA/MHz	49.1 μA/MHz	65.8 µA/MHz	47 μA/MHz	37 μA/MHz	49.1 μA/MHz	42 μΑ/MHz	47uA/MHz*
Sleep Current (EM2, 16 kB ret)	4.5 μA	1.2 μA (8 kB)	1.3 μΑ	1.4 μΑ	·	1.2 μA (8 kB)	1.3 μΑ	1.6 μA (64 kB)	1.5 μA* (16 kB)
TX Current @ +0 dBm (2.4 GHz)	9.3 mA	4.1 mA	5.0 mA	5.9 mA	11.4 mA	4.1 mA	5 mA	4.1 mA	4 mA*
TX Current @ +10 dBm (2.4 GHz)	33.8 mA	8.2 mA @ +6 dBm	19.1 mA	19.5 mA	28.6 mA	8.2 mA @ +6 dBm	19.1 mA	11.3 mA @ +8 dBm	11 mA* (at +8 dBm)
TX Current @ +20 dBm (2.4 GHz)	185 mA	N/A	156.8 mA	152.7 mA (@19.5 dBm)	N/A	N/A	N/A	N/A	N/A
RX Current (BLE 1 Mbps)	8.8 mA	3.6 mA	4.4 mA	5.4 mA	8.1 mA	3.6 mA	4.4 mA	3.6 mA	3.6 mA*
RX Current (15.4)	9.4 mA	3.9 mA	5.1 mA	6.2 mA	8.9 mA	NA	NA	3.9 mA	4.0 mA
Serial Peripherals	USART, I2C	USART, EUSART, I2C, PDM	USART, EUSART, I2C	USART, EUSART, I2C	EUSART, I2C, PIXELRZ	USART, EUSART, I2C	USART, EUSART, I2C	USART, EUSART, I2C, I2S, PDM	USART, EUSART, I2C
Analog Peripherals	12-bit ADC, ACMP	16-bit ADC	20-bit ADC, ACMP, VDAC	20-bit ADC, ACMP, VDAC	12-bit ADC, ACMP	16-bit ADC, ACMP, VDAC	20-bit ADC, ACMP, VDAC	16-bit ADC, ACMP, Coulomb Counter	16-bit ADC, ACMP
Other	Die Temp Sensor	Die Temp Sensor	Die Temp Sensor	Die Temp Sensor	Temp Sensor, LEDDRV	Die Temp Sensor, AI/ML Accelerator, PLFRCO	Die Temp Sensor, AI/ML Accelerator, PLFRCO	Temp Sensor, PLFRCO, Buck/Boost	Temp Sensor, PLFRCO, Buck/Boost
Operating Voltage	1.71 V to 3.8 V	1.71 V to 3.8 V	1.71 V to 3.8 V	1.71 V to 3.8 V	1.8 V to 3.63 V	1.71 V to 3.8 V	1.71 V to 3.8 V	0.8 – 1.7 V 1.8 – 3.8 V	1.2 - 1.7 V 1.8 - 3.8 V
GPIO	20	18, 26	26, 28/32	Up to 64	Up to 28	18	26	26, 18, 19	19, 25 / 26
Package	4x4 QFN32	4x4 TQFN32 4x4 QFN32 (AEC-Q100) 5x5 QFN40 (AEC-Q100) 4x4 QFN32, 5x5 QFN40	5x5 QFN40 (AEC-Q100) 6x6 QFN48 (AEC-Q100) WLCSP 3.1 x 3.0	6x6 QFN48, 8x8 QFN68 7x7 BGA136	4x4 QFN32 5x5 QFN40	4x4 QFN32	5x5 QFN40	5x5 QFN40,4x4 QFN32 2.3x.2.6 WLCSP	5x5 QFN40 2.6 x 2.8 WLCSP

Additional Resources

CHANNEL SOUNDING

Visit our website

Tech Talk: Bringing Bluetooth 6.0 Channel Sounding to Market

Blog: Improving Accuracy with a New Channel Sounding Dev Kit

PAWR

Learn more about BG22

Tech Talk: Enhancing Bluetooth LE Advertising Range with Novel Bits

Blog: Bluetooth PAwR in a Large-Scale Test Network

BLUETOOTH MESH

Visit our website

Tech Talk: What's New with Bluetooth Mesh

Blog: Bluetooth Large-Scale Network Testing using Mesh 1.1:

ENERGY HARVESTING

Visit our website

Tech Talk: Harvesting Energy for Smarter IoT with Silicon Labs xG22E

Blog: Simplifying Ambient IoT with xG22E Energy Harvesting Explorer Kit

SILICON LABS

CONNECTED INTELLIGENCE