

LR-103

The Evolving Landscape of RF Mesh: Enabling Smart Metering with In-Meter Gateway and HAN

Introduction

What We'll Explore Today:

Why the Grid Needs to Evolve

Learn about the digital transformation from centralized generation to distributed, intelligent systems

The Role of RF Mesh in Modern Grid Networks

Discover how RF Mesh enables scalable, secure, and reliable connectivity for smart energy applications

Applications Across the Grid

See how RF Mesh powers microgrids, solar infrastructure, smart metering, and in-meter gateways

Inside the Smart Home

Understand the growing importance of Home Area Networks and Matter over Wi-Fi in grid-aware homes

Silicon Labs' Technology Advantage

Explore our end-to-end SoC solutions built for grid automation and energy efficiency

End-to-End Vision for Grid Intelligence

Wrap up with how it all ties together from silicon to cloud for a smarter, cleaner energy future

Automating the Grid - Generation to Distribution

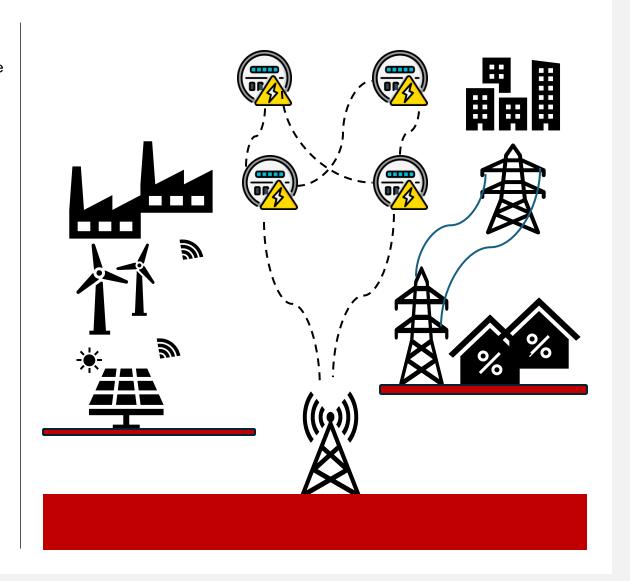
The Grid is Evolving

- Transitioning from a centralized, one-way system to a decentralized, real-time energy platform
- Driven by the rise of Distributed Energy Resources (DERs)

Smarter Energy Generation

- Dynamic control of solar, wind, and microturbines
- Local optimization of production based on real-time demand and availability

Edge Intelligence Enables Autonomy


- Edge devices make autonomous decisions without relying on central/cloud systems
- Enables self-healing grids, real-time fault detection, and fast recovery

From Monitoring to Action

- · Real-time sensors and SCADA systems enhance observability
- Use of synchro phasors and Al/ML drives predictive, high-resolution control

Silicon Labs Powers the Intelligent Grid

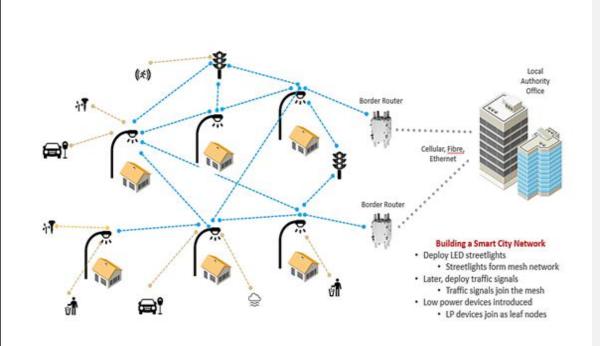
- Ultra-low-power wireless SoCs for edge nodes
- Built-in security, resilience, and low-latency mesh connectivity
- RF Mesh ensures secure, reliable communication across all grid layers

Introduction to RF Mesh Networks

Why RF Mesh is Transforming Utility Infrastructure

- Decentralized, self-healing communication over Sub-GHz ISM bands ensures uptime in harsh environments
- Every node is intelligent: smart meters, inverters, and controllers relay, receive, and forward data boosting reach and redundancy
- Dynamic rerouting around interference or failures provides unmatched field reliability

Designed to Scale with Your Grid


- RF Mesh grows stronger as more nodes are added improving coverage, path diversity, and network resilience
- Enables secure, two-way communication for firmware updates, DER control, and real-time billing
- Perfect for both urban density and rural distance where uptime and flexibility are non-negotiable

Silicon Labs: Enabling RF Mesh Success

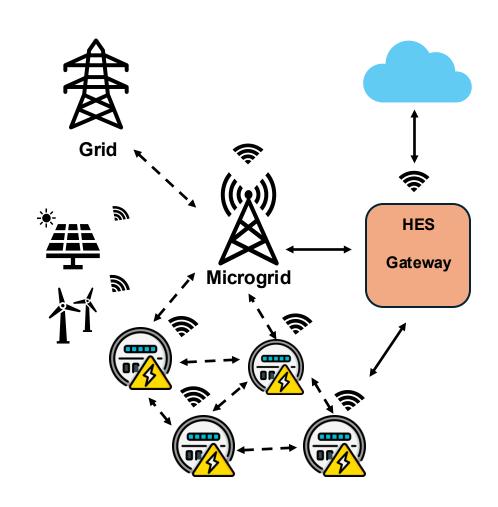
- Full-stack support for proprietary solutions like Wirepas Sub-GHz Mesh
- Certified Wi-SUN FAN 1.1 solutions with Silicon Labs SoCs for interoperable, standards-based deployments
- Ensures security, vendor flexibility, and a future-proof path to grid modernization

Bottom Line

• RF Mesh empowers smart utility networks with unmatched reliability, flexibility, and scalability and Silicon Labs provides the tools to build them.

RF Mesh in Microgrids

What is Microgrid & Why RF Mesh is Essential in Microgrids


- A microgrid is a localized energy system with its own generation (e.g., solar, wind), storage, and control, capable of operating independently
- RF Mesh provides fast, reliable, and scalable communication between DERs, batteries, smart inverters, and controllers
- · Maintains operational reliability even when disconnected from the main utility grid

Security Threats in Grid Automation

- Cyber Intrusions Includes device impersonation, MITM attacks, DoS floods, and over-theair spoofing targeting grid communications
- Physical vulnerability of Field Devices Smart meters and RTUs deployed in unsecured locations are susceptible to tampering and credential theft
- Weak Cryptographic Protection Unsecured key storage and lack of secure boot mechanisms enable attackers to extract credentials or install malicious firmware.

How Silicon Labs Secure Vault[™] Mitigates These Risks

- Built-in Device Trust Hardware Root of Trust and factory-installed Secure Device Identity (SDID) ensure only genuine, untampered devices operate on the grid.
- Verified and Secure Firmware Execution Secure Boot with Anti-Rollback blocks unauthorized or outdated firmware, protecting against injection of malicious code
- Cryptographic Security Secure key storage, hardware cryptographic acceleration, and tamper detection provide layered protection against both digital and physical threats.
- Secure Vault[™] meets PSA Certified Level 3, the highest level of IoT device security certification, ensuring resistance to both software and physical attacks

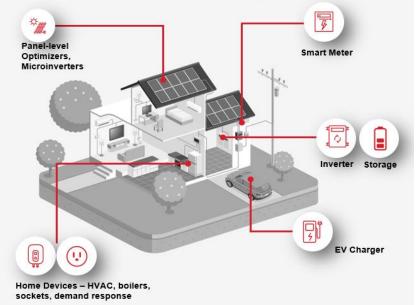
Empowering Solar Infrastructure with RF Mesh Networks

RF Mesh: Powering Scalable & Resilient Solar Networks

- Utility to Residential Scale: Supports both vast solar farms and distributed setups with inverters, controllers, and EV nodes
- Wireless Advantage: Outperforms wired systems in scalability, cost, and installation no trenching or rigid cabling needed
- Self-Healing & Maintainable: Mesh reroutes around failures and supports OTA updates for real-time diagnostics and low OPEX

Mesh in Industrial-Scale Solar Deployments

- Coordinated Infrastructure: Enables low-latency communication between inverters, MPPTs, tracking motors, and sensors across acres
- Edge Autonomy: Localized decision-making ensures continued operation even during central connectivity disruptions
- Terrain-Friendly Deployment: Avoids grid and fiber limitations; ideal for remote or rugged solar installations


RF Mesh in Residential Solar + EV Integration

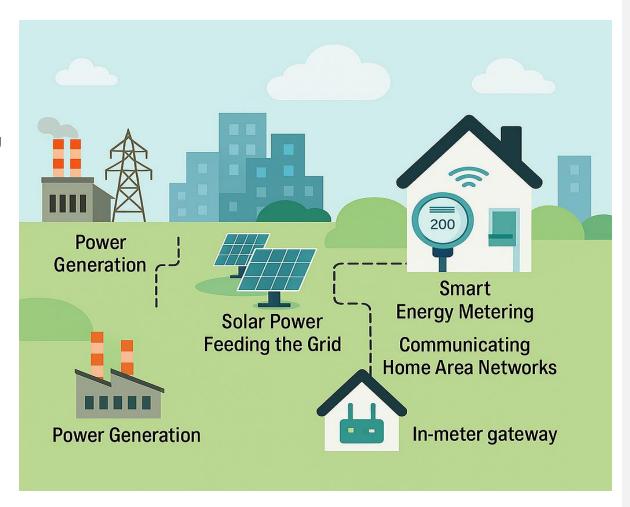
- Home Energy Synergy: Manages solar inverters, battery charge levels, and EV charging in a coordinated wireless ecosystem
- Why Mesh Still Matters: Delivers strong coverage (Sub-GHz), avoids single points of failure, and supports demand-response
- Neighborhood Intelligence: Forms the foundation for virtual power plants and energy coordination at the community level

Industrial-Scale Solar Deployments

Residential Microgrid

Smart Energy Metering & Dual Communication NIC

Smart Meters: Foundation of Grid Modernization


- Advanced Capabilities: Enable two-way communication, outage detection, and remote updates
- Global Adoption: Key to AMI rollouts for real-time billing and demand-side management
- India's Example: 250M+ meters targeted under RDSS, with RF Mesh leading in dense deployments

Dual Communication NIC: Solving Connectivity Gaps

- Hybrid Architecture: Dual NIC meters combine RF Mesh and Cellular (FG23 + Wirepas)
- High Coverage, Low Cost: 20 30% cellular coverage achieves 100%-meter connectivity via mesh
- Resilient Design: Ensures fallback paths and reduces reliance on cellular infrastructure

Bridging WAN to HAN: Extending Smart Meter Roles

- Inside-the-Home Integration: Connects meters to HAN devices via Wi-Fi
- Grid Edge Intelligence: Enables demand-response and load forecasting at device level
- Silicon Labs Solutions: Combines FG25 for Mesh and SiWx917 for Wi-Fi in secure, efficient gateways

Home Area Network (HAN) - Matter over Wi-Fi

Role of HAN in Smart Energy Homes

- Device Connectivity: Links EV chargers, thermostats, and appliances for energy monitoring and control
- Wi-Fi as Backbone: Offers fast, familiar, cost-effective connectivity across household devices
- Matter Protocol: Enables seamless, vendor-neutral interoperability over Wi-Fi for unified device control

Grid-Connected HAN via In-Meter Gateways

- Real-Time Visibility: Devices share energy usage data directly with utilities
- Demand Response Ready: Responds to grid signals for load shifting and optimization
- Granular Control: Supports targeted energy management (e.g., HVAC, EV charging) through the meter

Silicon Labs: Enabling Matter-Ready Smart Homes

- Matter Over Wi-Fi & Thread: Ultra-low-power SoCs enable flexible, IPbased HAN integration
- Thread Leadership: Key contributor to Thread protocol and certified SoC provider for smart homes
- Driving Standards: Founding member of CSA and top code contributor to Matter; SoCs support secure, future-ready deployments

Protocol for IP-Based Smart Home Cannectivity

Matter creates a unified language for seamless communication between devices over Wi-Fi

Ensures Interoperability Across Smart Home Brands

Devices from different manufacturers can operate together within the same network

Built-In Security Using Existing Wi-Fi Infrastructure

Supports encryption, authentication, and secure onboarding of devices

Silicon Labs' offerings in grid automation

End-to-End Leadership in Grid Automation

- Beyond Chips: Powering secure, intelligent, and connected grid infrastructure from cloud to endpoint
- From FAN to HAN: Extending smart metering leadership to full grid automation, covering all layers
- Future-Proof & Scalable: Building a seamless, standards-based foundation for utility modernization

Field Area Network (FAN) – Resilient RF Mesh with FG2x

- RF Mesh Expertise: Industry leader in Proprietary and Wi-SUN®-based Sub-GHz mesh solutions
- FG2x SoCs: Deliver high link budgets, dual-band support, and BLE-based provisioning for flexible deployment
- Edge Intelligence + Security: TinyML support for endpoint analytics; Secure Vault™ defends against HW/SW attacks

Home Area Network (HAN) – Smart Energy Inside the Home

- Matter Leadership: Founding member of CSA; shaping interoperable HAN ecosystems with major partners
- Diverse HAN SoC Portfolio:
- SiWx917: Wi-Fi 6 + BLE + Matter for energy gateways and appliances
- MG24: Thread + BLE for ultra-low-power HAN devices
- · BG2x: Bluetooth Mesh Networking
- Unified Vision: Bridging FAN to HAN with secure, intelligent, and interoperable devices that scale with the grid

- Single / Dual Band
- (Sub G & 2.4 G)
- High Performance RF
- OFDM
- Secure Vault
- AI/ML
- Metering

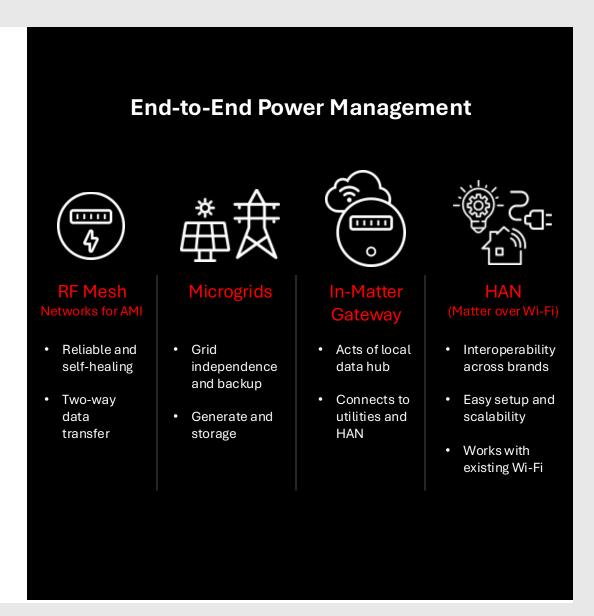
- Bluetooth 6.0
- Long Range
- Secure Vault PSA L3
- Metering / Asset tracking
- Channel Sounding

- Wi-Fi 6 & Bluetooth
- Ultra Low Power IoT
- Matter Certified
- Solar PV / In-meter GW
- HAN

- Multiprotocol 2.4G
- Thread + BIF
- High Performance RF
- Secure Vault
- Al/ML
- Metering

Conclusion: End-to-End Power Management

RF Mesh: The Digital Backbone of Smart Grids


- Provides robust, scalable, and low-power communication across grid devices
- Enables two-way data transfer, remote monitoring, and real-time updates
- Forms the foundation for reliable AMI, microgrids, and in-meter connectivity

Integrated, Intelligent, and Resilient Power Delivery

- Supports demand-response, outage detection, and autonomous fault recovery
- Empowers grid-aware devices like smart thermostats, EV chargers, and appliances
- Enhances visibility and control from generation through to in-home consumption

Toward a Sustainable, Future-Ready Grid

- Bridges Field and Home networks via Matter over Wi-Fi and in-meter gateways
- Facilitates renewable integration, energy automation, and load optimization
- Enables scalable, secure, and interoperable energy ecosystems with Silicon Labs SoCs

Q&A

SILICON LABS

CONNECTED INTELLIGENCE