

RS9116W BT Classic AT Command Programming Reference Manual

Version 2.0 10/21/2020

Table of Contents

	Project	
	tloader	
	t Interfaces	
3.1	UART Interface	
	ssic Command Mode Selection	
	ssic Command Format	
BT (Classic Commands	3
3.1	Generic Commands	
	6.1.1 Set Operating Mode	
	6.1.2 Set Local Name	
	6.1.3 Query Local Name	
	6.1.4 Set Local COD	
	6.1.5 Query Local COD	
	6.1.6 Query RSSI	
	6.1.7 Query Link Quality	
	6.1.8 Query Local BD Address	4
	6.1.9 Query BT Stack Version	
	6.1.10 Initialize BT Module	∠
	6.1.11 Deinitialize BT Module	
	6.1.12 BT Antenna Select	
	6.1.13 Set Feature Bitmap	
	6.1.14 Set Antenna Tx power level	
.2	PER Commands	
	6.2.1 BR-EDR PER Transmit	
	6.2.2 BR-EDR PER Receive	۷
	6.2.3 Per Stats	
.3	Core Commands	5
	6.3.1 Set Profile Mode	
	6.3.2 Get Device Discovery Mode	
	6.3.3 Set Connectability Mode	
	6.3.4 Get Connectablility Mode	
	6.3.5 Remote Name Request	5
	6.3.6 Remote Name Request Cancel	5
	6.3.7 Inquiry	
	6.3.8 Inquiry Cancel	
	6.3.9 Extended Inquiry Response Data	5
	6.3.10 Bond or Create Connection	5
	6.3.11 Bond Cancel or Create Connection Cancel	
	6.3.12 UnBond Or Disconnect	
	6.3.13 Set Pin Type	
	6.3.14 Get Pin Type	
	6.3.15 User Confirmation	
	6.3.16 Pass Key Request Reply	
	6.3.17 Pincode Request Reply	
	6.3.18 Get Local Device Role	
	6.3.20 Get Service List	
	6.3.21 Search Service.	
	6.3.22 Linkkey Reply	
	6.3.23 Set SSP Mode	
	6.3.24 Sniff Mode	
	6.3.25 Sniff Exit	
	6.3.26 Sniff Subrating	
	6.3.27 Add Device ID	
4	SPP commands	
. ~	6.4.1 SPP Connect	
	6.4.2 SPP Disconnect	
	6.4.3 SPP Transfer	
T	Classic Error Codes	
	Power Save Operation	
	AT CMD Configuration Changes/Enhancements	
	ision History	
чрр	endix A: Sample Flows	

About this Document

This document describes the Bluetooth (BT) Classic commands, including parameters used in commands, valid values for each command, and expected responses from the modules. This document is used to write software for host (to control and operate the module).

1 Overview

Architecture

The following figure depicts the software architecture of the RS9116-WiSeConnect

Host MCU/MPU (8/16/32-bit)

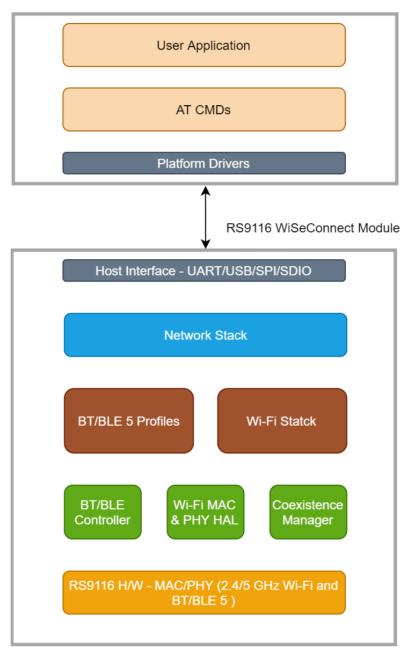


Figure 1: Architecture Overview for RS9116 WiSeConnect

Bluetooth Classic Architecture

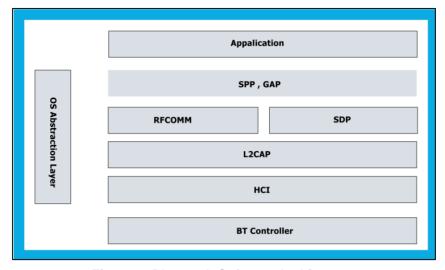


Figure 2: Bluetooth Software Architecture

Application

The application layer launches the Bluetooth stack and uses commands to access various profiles on remote Bluetooth devices over the network.

Profiles

There are number of Bluetooth profiles defined in the Bluetooth specification. This design currently supports profiles including Serial Port Profile (SPP), provided framework to develop new profiles very easily. We will continue to add new profiles.

Bluetooth Core

The Bluetooth core contains the following higher layers of the stack.

- RFCOMM
- SDP
- L2CAP
- HCI Generic Driver
- HCI BUS Driver

RFCOMM is a transport protocol based on L2CAP. It emulates RS-232 serial ports. The RFCOMM protocol supports up to 60 simultaneous connections between two BT devices. RFCOMM provides data stream interface for higher level applications and profiles.

SDP (Service Discovery Protocol) provides a means for applications to discover which services are available and to determine the characteristics of those available services. SDP uses an existing L2CAP connection. Further connection to Bluetooth devices can be established using information obtained via SDP.

L2CAP (Logical Link Control and Adaptation Protocol) provides connection-oriented and connection-less data services to upper layer protocols with data packet size up to 64 KB in length. L2CAP performs the segmentation and reassemble of I/O packets from the base-band controller.

HCI Generic Driver – This driver implements HCI Interface standardized by Bluetooth SIG. It establishes the communication between Stack and HCI firmware in the Bluetooth hardware. It communicates with the Bluetooth controller hardware via the HCI Bus driver.

HCI Transport Layer Driver – The Bluetooth controllers are connected to the host using interface like UART, USB, SDIO, SPI, USB-CDC etc. The HCI Transport Layer Driver provides hardware abstraction to the rest of the Bluetooth stack software. This driver makes it possible to use Bluetooth stack with different hardware interfaces.

Bluetooth Profiles are additional protocols that build upon the basic Bluetooth standard to more clearly define what kind of data a Bluetooth module is transmitting. While Bluetooth specifications define how the technology *works*, profiles define how it's *used*.

The profile(s) a Bluetooth device supports determine(s) what application it's geared towards. A hands-free Bluetooth headset, for example, would use headset profile (HSP), while a Nintendo Wii Controller would implement the human interface device (HID) profile. For two Bluetooth devices to be compatible, they must support the same profiles.

OS Abstraction Layer

This layer abstracts RTOS services (semaphores, mutexes and critical sections) that are used by the whole stack and the applications. The stack, which is designed in an RTOS-independent manner, can be used with any RTOS by porting this layer. It is also possible to use the Bluetooth stack standalone without RTOS.

Host-Module Interface

This document is primarily concerned with the host-module interface. The host can interface with RS9116-WiSeConnect using following list of interfaces to configure and send/receive data.

- SPI
- UART
- USB

Note:

USB-CDC/UART/USB/SPI are the host interfaces for RS9116 WiSeConnect.

2 Bootloader

This section briefs about features that are supported by Network and Security Processor (NWP) bootloader. It is applicable for RS9116 WiSeConnect.

Basic Features

- Load default firmware
- · Load selected firmware
- Upgrade firmware from host
- Selecting default images
- Enable / Disable host interaction bypass
- Support for multiple host interfaces (SDIO / SPI / UART / USB / USB-CDC)
- Firmware integrity check
- Upgrading Keys
- JTAG selection

The RS9116W module supports two boot loading modes:

1. Host Interaction (Non-bypass) Mode:

In this mode host interacts with the bootloader and gives boot up options (commands) to configure different boot up operations. The host tells the module what operations it has to perform based on the selections made by the user.

2. Bypass Mode:

In this mode bootloader interactions are completely bypassed and uses stored bootup configurations (which are selected in host interaction mode) & loads default firmware image in the module. This mode is recommended for final production software to minimize the boot up time.

Host Interaction Mode

In This mode host interaction varies based on host interface. Host interaction in SPI / USB and UART / USB-CDC are different. In UART & USB-CDC boot up options are menu based and in SPI / USB using command exchanges. The details are explained below.

Host Interaction Mode in UART / USB-CDC

This section explains the host interaction mode in UART / USB CDC mode.

Startup Operation

After powering up, host is required to carry out ABRD (Auto baud rate detection) operation. After successful ABRD, the module displays the menu of bootup options to host. The host needs to select the appropriate option.

Note:

On powerup, bootloader checks the integrity of the bootup options. If the integrity fails, it computes the integrity from backup. If integrity passes, it copies the backup to the actual location. If the integrity of the backup options also fails, the bootup options are reset/cleared. In either of the cases, bootloader bypass is disabled or corresponding error messages are given to host. In case of integrity failure and when the backup integrity check passes, "LAST CONFIGURATION NOT SAVED" message is displayed. When backup integrity also fails, "BOOTUP OPTIONS CHECKSUM FAILED" is displayed before displaying the bootup options.

Hyper Terminal Configuration

RS9116W uses the following UART interface configuration for communication:

Baud Rate: The following baud rates are supported by the module: 9600 bps, 19200 bps, 38400 bps, 57600 bps,

115200 bps, 230400 bps, 460800 bps, 921600 bps.

Data bits: 8
Parity: None
Stop bits: 1

Flow control: None

Follow sequence of steps as given below:

• Open Hyper terminal and enter any name in the "Name" field. After this, click "OK" button. Here, "WiSeConnect" is entered as shown in the figure below.

Note:

Default baud rate of the module is 115200.

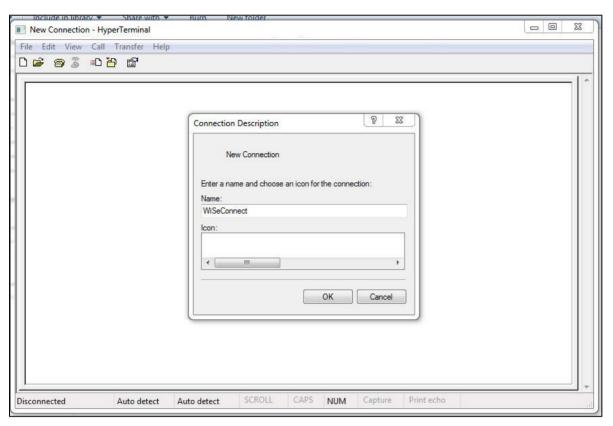


Figure 3: HyperTerminal Name field Configuration

• After clicking "OK", the following dialog box is displayed as shown in the figure below.

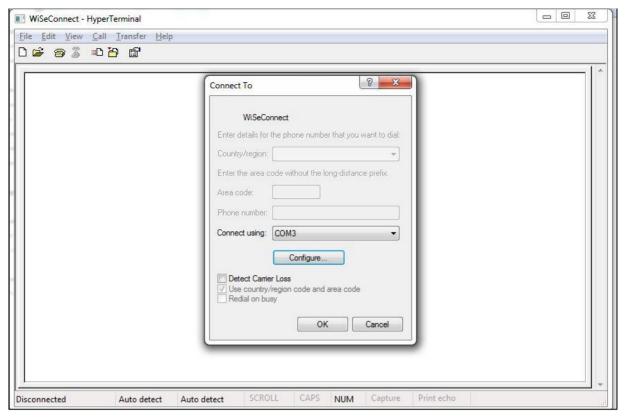


Figure 4: HyperTerminal COM Port Field Configuration

- In the "Connect using" field, select appropriate com port. In the figure above COM3 is selected. Click "OK" button.
- After clicking the "OK" button the following dialog box is displayed as shown in the figure below

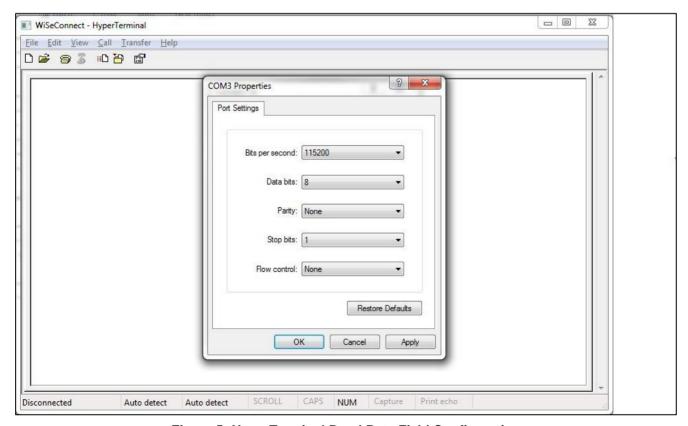


Figure 5: HyperTerminal Baud Rate Field Configuration

Set the following values for the fields shown in the Figure 6.

- Set baud rate to 115200 in "Bits per second" field.
- Set Data bits to 8 in "Data bits" field.
- Set Parity to none in "Parity" field.
- Set stop bits to 1 in "Stop bits" field.
- Set flow control to none in "Flow control" field.
- Click "OK" button after entering the data in all the fields.

Auto Baud Rate Detection (ABRD)

The RS9116W automatically detects the baud rate of the Host's UART interface by exchanging some bytes. The Host should configure the UART interface for the following parameters for ABRD detection.

RS9116W uses the following UART interface configuration for communication:

230400 bps, 460800 bps, 921600 bps.

Data bits: 8 Stop bits: 1 Parity: None

Flow control: None

To perform ABRD on the RS9116W, the host must follow the procedure outlined below.

- 1. Configure the UART interface of the Host at desired baud rate.
- 2. Power on the RS9116W.
- 3. The Host, after releasing the module from reset, should wait for 20 ms for initial boot-up of the module to complete and then transmit 0x1C at the baud rate to which its UART interface is configured. After transmitting '0x1C' to the module, the Host should wait for the module to transmit 0x55 at the same baud rate.
- 4. If the '0x55' response is not received from the module, the host has to re-transmit 0x1C, after a delay of 200ms.
- 5. After finally receiving '0x55', the host should transmit '0x55' to the module. The module is now configured with the intended baud rate.

Note:

Performing ABRD in host interaction mode is must for USB CDC mode.

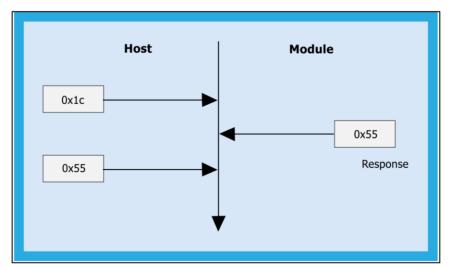


Figure 6: ABRD Exchange Between Host And Module

Below are the boot-up options, Firmware upgrade and Firmware loading procedures for WiSeConnect Product.

Start Up Messages on Power-Up

After powering up the module and performing ABRD you will see a welcome message on host, followed by boot up options:

Note:

Windows Hyper Terminal is used to demonstrate boot up /up-gradation procedure.

```
WiSeConnect - HyperTerminal
File Edit View Call Transfer Help
WELCOME TO REDPINE SIGNALS
 BootLoader Version 1.0
   Load Default Wireless Firmware
 A Load Wireless Firmware (Image No
B Burn Wireless Firmware (Image No
                                             0-f)
    Select Default Wireless Firmware (Image No : 0-f)
    Check Wireless Firmware Integrity (Image No : 0-f)
    Enable GPIO Based Bypass Mode
 8 Disable GPIO Based Bypass Mode
Q Update KEY
   JTAG Selection
Connected 0:01:33
                           115200 8-N-1
                                                            Capture
                                                                    Print echo
                 Auto detect
```

Figure 7: RS9116-WiSeConnect Module UART/USB-CDC Welcome Message

Loading the default wireless firmware in the module

To load the default firmware flashed onto the module, choose Option 1: "Load Default Wireless Firmware ".

Load Default Wireless Firmware

 After welcome message is displayed as shown in the above figure, select option 1 "Load Default Wireless Firmware " for loading Image.

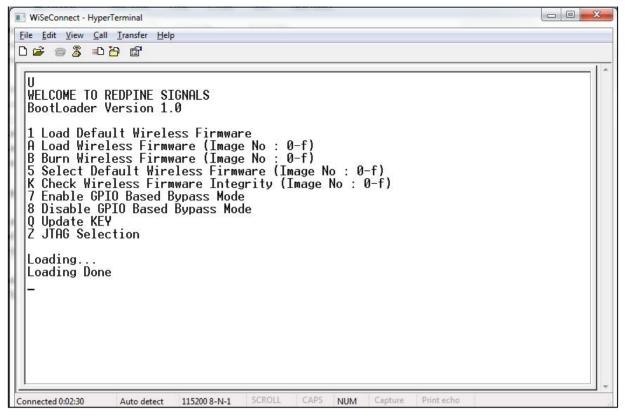


Figure 8: RS9116-WiSeConnect Module UART / USB-CDC Default Firmware Loaded

Note:

By default, the module will be configured in AT mode. If mode switch from AT plus command mode to binary mode is required, then user must give 'H' in the boot-loader options.

The module lasts in the binary mode unless it changed to AT plus command mode and vice-versa.

To change from binary mode to AT mode, then user must give 'U' in the boot-loader options.

Loading selected Wireless Firmware in the Module

To load the selected firmware (from flash) onto the module, choose Option A: "Load Wireless Firmware (Image No: 0-f)".

Load Wireless Firmware

- After welcome message is displayed as shown in the above figure, select option A "Load Wireless Firmware (Image No: 0-f)" for loading Image.
- In response to the option A, Module ask to Enter Image No.
- Select the image number to be loaded from flash.
- After successfully loading the default firmware, "Loading Done" message is displayed.
- After firmware loading is completed, module is ready to accept commands

Note:

- In order to use host bypass mode, the user has to select one of the images as default image by selecting option 5 (Select Default Wireless Firmware).
- 2. In Host interaction mode, if no option is selected after bootup menu for 20 seconds then the bootloader will load selected Wireless default image.
- If the valid firmware is not present, then a message prompts "Valid firmware not present".

Firmware Upgradation

After powering up the module, a welcome message is displayed.

Upgrade NWP firmware Image

- After the welcome message is displayed, select option B "Burn Wireless Firmware (Image No: 0-f)" to upgrade Wireless Image.
- The message "Enter Wireless Image No (0-f)" is displayed.
- Then select the Image no to be upgraded.
- The message "Send RS9116.NBZ.WC.GENR.x.x.x.rps" should appear as shown in the figure below.

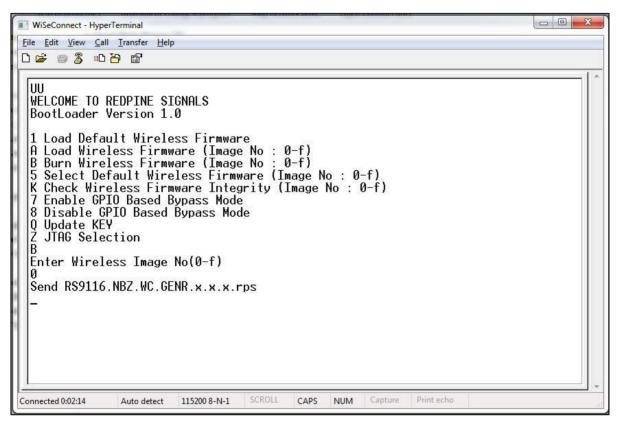


Figure 9: RS9116-WiSeConnect Module Firmware Upgrade File Prompt Message

- In the "File" menu of HyperTerminal, select the "send file" option. A dialog box will appear as shown in the figure below. Browse to the path where "RS9116.NBZ.WC.GENR.X.X.X.rps" is located and select Kermit as the protocol option. After this, click the "Send" button to transfer the file.
- If the valid firmware is not present, then a message prompts "Valid firmware not present".

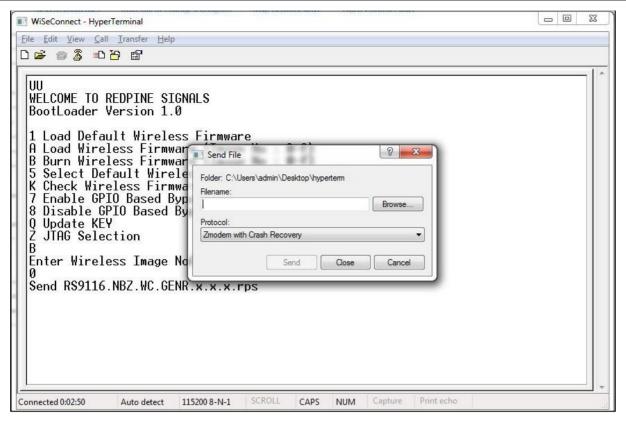


Figure 10: RS9116-WiSeConnect Module Firmware Upgrade File Selection Message

The dialog box message is displayed while file transfer is in progress as shown in the figure below.

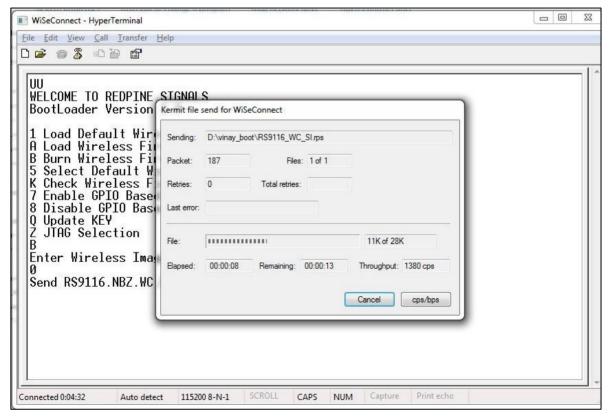


Figure 11: RS9116-WiSeConnect Module Firmware Upgrade File Transfer Message

- After successfully completing the file transfer, module computes the integrity of the image and displays
 "Upgradation Failed, re-burn the image" in the case of failure and "Upgradation Failed and default image invalid, Bypass disabled" in the case of both failure and corruption of the default image.
- In the case of success, module checks if bootloader bypass is enabled and computes the integrity of the default image selected. If the integrity fails, it sends "Upgradation successful, Default image invalid, gpio bypass disabled." If integrity passes or gpio bypass not enabled, it sends "Upgradation Successful" message on terminal as shown in the figure below.

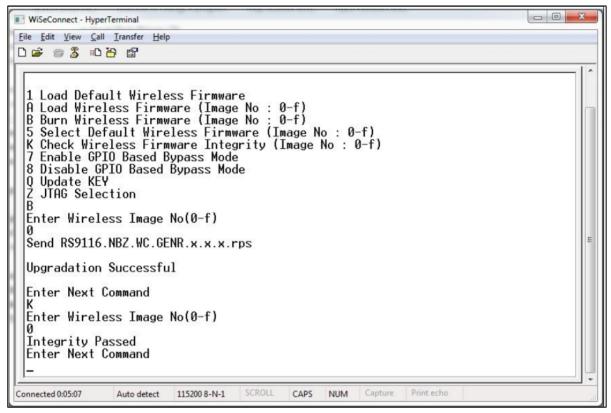


Figure 12: RS9116-WiSeConnect Module Firmware Upgrade Completion Message

- At this point, the upgraded firmware Image is successfully flashed to the module.
- User can again cross check the integrity of the Image by selecting the Option K " Check Wireless Firmware Integrity (Image No : 0-f)" for Wireless Image.
- Follow the steps mentioned in **Loading the Default Wireless Firmware in the Module** to load the firmware from flash, select Option 1 from the above the **Figure**.
- The module is ready to accept commands from the Host.

Host Interaction Mode in SPI / USB

This section explains the exchange between host and module in host interaction mode (while bootloading) to select different boot options through SPI / USB interfaces.

SPI Startup Operations

If the selected host interface is SPI or USB, the Bootloader uses two of the module hardware registers to interact with the host. In case of SPI host, these registers can be read or written using SPI memory read/write operations. In case of USB host vendor specific reads and writes on control end point are used to access these registers. Bootloader indicates its current state through HOST_INTF_REG_OUT and host can give the corresponding commands by writing onto HOST_INTF_REG_IN.

The significance of 4 bytes of the value written into HOST_INTF_REG_IN register is as follows:

Table 1: HOST_INTF_REG_IN Register values

Nibble[1:0]	Message code.
Nibble[2]	Represents the Image number based on command type.
	Represents the validity of the value in HOST_INTF_REG_IN register. Bootloader expects this value to be 0xA (HOST_INTERACT_REG_VALID). Bootloader validates the value written into this register if and only if this value is 0xA
Nibble[7:4]	Represents Mode for JTAG selection

Table 2: Bootloader message exchange registers

HOST_INTF_REG_OUT	0x4105003C
HOST_INTF_REG_IN	0x41050034
PING Buffer	0x18000
PONG Buffer	0x19000

Table 3: Bootloader Message Codes

HOST_INTERACT_REG_IN_VALID		0xA000
HOST_INTERACT_REG_OUT_VALID		0xAB00
LOAD_DEFAULT_NWP_FW	'1'	0x31
LOAD_NWP_FW	'A'	0x41
BURN_NWP_FW	'B'	0x42
SELECT_DEFAULT_NWP_FW	'5'	0x35
ENABLE_GPIO_BASED_BYPASS	'7'	0x37
DISABLE_GPIO_BASED_BYPASS	'8'	0x38
CHECK_NWP_INTEGRITY	'K'	0x4B
KEY_UPDATE	'Q'	0x51
JTAG_SELECTION	'Z'	0x5A
LOAD_DEFAULT_NWP_FW_ACTIVE_LOW		0x71
LOAD_NWP_FW_ACTIVE_LOW		0x72
SELECT_DEFAULT_NWP_FW_ACTIVE_LOW		0x75
EOF_REACHED	'E'	0x45
PING_BUFFER_VALID	'l'	0x49
JUMP_TO_ZERO_PC	'J'	0x4A
INVALID_ADDRESS	'L'	0x4C
PONG_BUFFER_VALID	'O'	0x4F
POLLING_MODE	'P'	0x50
CONFIGURE_AUTO_READ_MODE	'R'	0x52
DISABLE_FWUPGRADE	'T'	0x54

ENABLE_FWUPGRADE	'N'	0x4E
DEBUG_LOG	'G'	0x47

Table 4: Bootloader Response Codes

LOADING_INITIATED	'1'	0x31
VALID_FIRMWARE_NOT_PRESENT	'#'	0x23
SEND_RPS_FILE	'2'	0x32
UPGRADATION_SUCCESFULL	'S'	0x53
PONG_AVAIL	'O'	0x4F
PING_AVAIL	Ή	0x49
CMD_PASS		0xAA
CMD_FAIL		0xCC
FLASH_MEM_CTRL_CRC_FAIL		0xF1
FLASH_MEM_CTRL_BKP_CRC_FAIL		0xF2
INVALID_CMD		0xF3
UPGRADATION_SUCCESFULL_INVALID_DEFAULT_IMAGE		0xF4
INVALID_DEFAULT_IMAGE		0xF5
UPGRADATION_FAILED_INVALID_DEFAULT_IMAGE		0xF6
IMAGE_STORED_IN_DUMP		0xF7
FLASH_NOT_PRESENT		0xFA
IMAGE_INTEGRITY_FAILED		0xFB
BOOT_FAIL		0xFC
BOARD_READY	(BL_VER_HIGH << 4 BL_VER_LOW)	0x10
LAST_CONFIG_NOT_SAVED		0xF1
BOOTUP_OPTIONS_INTEGRITY_FAILED		0xF2
FWUP_BUFFER_VALID		0x5AA5

SPI Startup Messages on Powerup

Upon power-up the HOST_INTF_REG_OUT register will hold value 0xABxx. Here 0xAB (HOST_INTERACT_REG_OUT_VALID) signifies that the content of OUT register is valid. Boot-loader checks for the integrity of the boot up options by computing CRC. If the integrity fails, it checks the integrity from backup. If integrity passes, it copies the backup to the actual location and writes (HOST_INTERACT_REG_OUT_VALID | LAST_CONFIG_NOT_SAVED) in HOST_INTF_REG_OUT register. If integrity of backup options also fails, the boot up options are reset and (HOST_INTERACT_REG_OUT_VALID | BOOTUP_OPTIONS_INTEGRITY_FAILED) is written in HOST_INTF_REG_OUT register. In either of the cases, boot-loader bypass is disabled. If the boot up options integrity passes, HOST_INTF_REG_OUT register contains 0xABxx where xx represents the two-nibble boot-loader version. This message is referred as BOARD_READY indication throughout the document. For instance, for boot-loader version 1.0, value of register will be 0xAB10. Host is expected to poll for one of the three values and should give any succeeding command (based on error codes if present) only after reading the correct value in HOST_INTF_REG_OUT reg.

Loading Default Wireless Firmware in the Module

Host can give options to bootloader to select the firmware load image type that will load the firmware from the flash of the module.

Load Default Wireless Firmware

Upon receiving Boardready, if host wants to load default wireless firmware, it is expected to write value (HOST_INTERACT_REG_IN_VALID | LOAD_DEFAULT_NWP_FW) or (HOST_INTERACT_REG_IN_VALID | LOAD_DEFAULT_NWP_FW_ACTIVE_LOW) in HOST_INTF_REG_IN register. If host command is (HOST_INTERACT_REG_IN_VALID | LOAD_DEFAULT_NWP_FW) it is assumed that host platform is expecting active high interrupts. If command is (HOST_INTERACT_REG_IN_VALID | LOAD_DEFAULT_NWP_FW_ACTIVE_LOW) it is assumed that host is expecting active low interrupts and SPI hardware will be configured accordingly. After sending this command host should wait for interrupt for card ready message from loaded firmware.

Note:

For USB host interface mode interrupt configuration is not required, host needs to send (HOST_INTERACT_REG_IN_VALID | LOAD_DEFAULT_TA_FW) to load default wireless Image

Loading Selected Wireless Firmware in the Module

Host gives options to bootloader to select the firmware load image type that will load the firmware from the flash of the module.

Load Selected Wireless Firmware

Upon receiving board ready, if host wants to load a selected wireless firmware, it is expected to write value (HOST_INTERACT_REG_IN_VALID | LOAD_NWP_FW | (IMAGE_NO << 8)) or (HOST_INTERACT_REG_IN_VALID | LOAD_NWP_FW | (IMAGE_NO << 8)) in HOST_INTF_REG_IN register. If host command is (HOST_INTERACT_REG_IN_VALID | LOAD_NWP_FW | (IMAGE_NO << 8)) it is assumed that host platform is expecting active high interrupts. If command is (HOST_INTERACT_REG_IN_VALID | LOAD_DEFAULT_NWP_FW_ACTIVE_LOW) it is assumed that host is expecting active low interrupts and SPI hardware will be configured accordingly. After sending this command host should wait for interrupt for card ready message from loaded firmware.

Note:

For USB host interface mode interrupt configuration is not required, host should send (HOST_INTERACT_REG_IN_VALID | LOAD_NWP_FW | (IMAGE_NO << 8)) to load selected wireless Image

Upgrading Wireless Firmware in the Module

With this option host can select to upgrade firmware in the flash of the module.

Upgrading Wireless Firmware

Steps for firmware upgradation sequence after receiving board ready are as follows.

- After reading the valid BOARD_READY (i.e. HOST_INTERACT_REG_OUT_VALID | BOOTLOADER VERSION) value in HOST_INTF_REG_OUT, host writes (HOST_INTERACT_REG_IN_VALID | BURN_NWP_FW | (IMAGE_NO << 8)) in HOST_INTF_REG_IN and host starts polling for HOST_INTF_REG_OUT.
- 2. Module polls for HOST_INTF_REG_IN register. When module reads a valid value (i.e. HOST_INTERACT_REG_IN_VALID | BURN_NWP_FW | (IMAGE_NO << 8)) in HOST_INTF_REG_IN, module writes (HOST_INTERACT_REG_OUT_VALID | SEND_RPS_FILE) in HOST_INTF_REG_OUT.
- 3. When host reads valid value (i.e. HOST_INTERACT_REG_OUT_VALID | SEND_RPS_FILE) in HOST_INTF_REG_OUT, host will write first 4Kbytes of firmware image in PING Buffer and writes (HOST_INTERACT_REG_IN_VALID | PING_VALID) in HOST_INTF_REG_IN register. Upon receiving PING_VALID command module starts burning this 4 Kbytes chunk onto the flash. When module is ready to receive data in PONG Buffer it sets value PONG_AVAIL (HOST_INTERACT_REG_OUT_VALID | PONG_AVAIL) in HOST_INTF_REG_OUT. Host is required to wait for this value to be set before writing next 4Kbytes chunk onto the module.
- On reading valid value (i.e. HOST_INTERACT_REG_OUT_VALID | PONG_AVAIL) in HOST_INTF_REG_OUT, host starts memory write on PONG location and start polling for HOST_INTF_REG_OUT to read valid value (i.e. HOST_INTERACT_REG_OUT_VALID | PING_AVAIL). Module reads (HOST_INTERACT_REG_OUT_VALID |

PONG_VALID) 0xAB4F value in HOST_INTF_REG_OUT and begin to write the data from PONG location into the flash

- 5. This write process continues until host has written all the data into the PING-PONG buffers and there is no more data left to write.
- 6. Host writes a (HOST_INTERACT_REG_IN_VALID | EOF_REACHED) into HOST_INTF_REG_IN register and start polling for HOST_INTF_REG_OUT.
- 7. On the other side module polls for HOST_INTF_REG_IN register. When module reads (HOST_INTERACT_REG_IN_VALID | EOF_REACHED) in HOST_INTF_REG_IN, it computes integrity for entire received firmware image. Then it checks if bypass is enabled. If enabled, it checks for the validity of the default image. If integrity is correct and default image is valid/GPIO bypass not enabled, module writes (HOST_INTERACT_REG_OUT_VALID | FWUP_SUCCESSFUL) in HOST_INTF_REG_OUT register. If integrity is correct and default image is invalid (bypass enabled), module writes (HOST_INTERACT_REG_OUT_VALID | UPGRADATION_SUCCESFULL_INVALID_DEFAULT_IMAGE) in HOST_INTF_REG_OUT register and bypass is disabled. If the integrity is failed and default image is valid/GPIO bypass is not enabled, then the module writes (HOST_INTERACT_REG_OUT_VALID | CMD_FAIL) in HOST_INTF_REG_OUT register. If the integrity is failed and default image is invalid (bypass enabled), then the module writes (HOST_INTERACT_REG_OUT_VALID | UPGRADATION_FAILED_INVALID_DEFAULT_IMAGE) in HOST_INTF_REG_OUT register and bypass is disabled.

Figure 13: Wireless Firmware Upgradation Through SPI/USB

GPIO Based Bootloader Bypass Mode for WiSeConnect Product

In GPIO based bootloader bypass mode host interactions with bootloader can be bypassed. There are two steps to enable GPIO based Bootloader bypass mode:

- 1. Host need to select default wireless image to load in bypass mode.
- 2. Enable Bootloader bypass mode.
- Assert LP_WAKEUP to Bypass Bootloader on power up.

To enable Bootloader Bypass mode host first has to give default image that has to be loaded in bypass mode and select the bypass mode(enable). After rebooting the module, it goes to bypass mode and directly loads the default firmware image.

Bypass Mode in UART / USB-CDC

Making Default Wireless Firmware Selection

With this option, the host can select the default firmware image to be loaded.

Selecting a valid Image as the Default Image

- After the welcome message is displayed, user can select option 5 "Select Default Wireless Firmware (Image No: 0-f)".
- The message "Enter Wireless Image No. (0-f)" is displayed.
- Then select the Image number
- It is better to check the Integrity of Image before selecting it as Default Image.
- When default image is selected, module checks for the validity of the image selected and displays "Configuration saved".

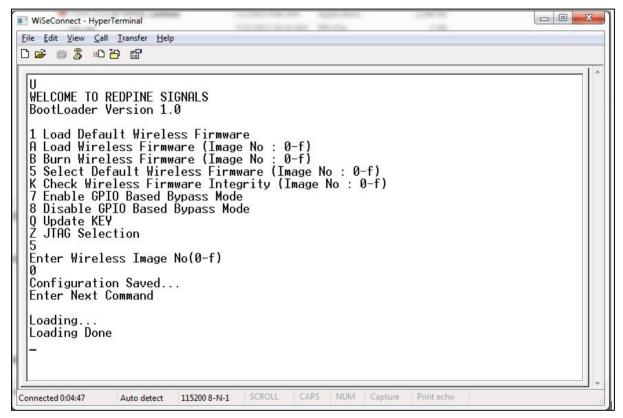


Figure 14: Making Image no - 0 as Default Image

Enable/Disable GPIO Based Bypass Option

This option is for enabling or disabling the GPIO bootloader bypass mode.

Enabling the GPIO Based Bypass Mode

If user select option 7, GPIO based Bootloader bypass gets enabled. When this option is selected, module checks for the validity of the image selected and displays "Configuration saved" if valid and "Default image invalid" if valid default image is not present. Once enabled, from next bootup, Bootloader will latch the value of UULP_GPIO_2. If asserted, it will bypass the whole boot loading process and will load the default firmware image selected.

- After the welcome message is displayed, user can select option 5 "Select Default Wireless Firmware (Image No: 0-f)".
- The message "Enter Wireless Image No. (0-f)" is displayed.
- Then select the Image no.

- It is better to check the Integrity of Image before selecting it as Default Image.
- When default image is selected, module checks for the validity of the image selected and displays "Configuration saved".
- Then select option 7 to "Enable GPIO Based Bypass Mode"
- Module responds to select the host interface in Bypass mode (0 UART, 1 SDIO, 2 SPI, 4 USB, 5 USB-CDC)
- Select the required interface.
- If the default image is valid, then it enables GPIO Bypass mode, otherwise it will not enable the GPIO Bypass mode.

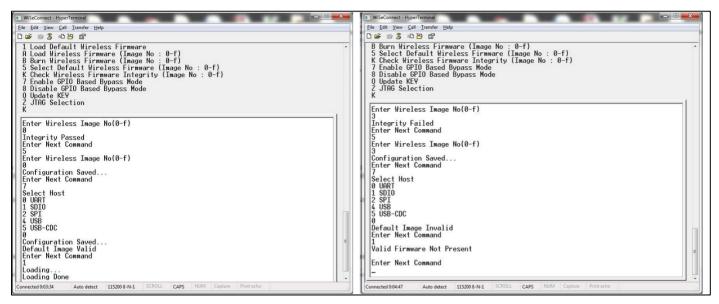


Figure 15: Enabling the GPIO-based Bypass Mode a) Valid Default Firmware b) Invalid Firmware

Disabling the GPIO Based Bypass Mode

If host selects option 8, GPIO based bypass gets disabled.

Note:

LP_WAKEUP needs to be de-asserted on power up to move to host interaction mode, to select bootup options like disable Bypass mode or to change default image.

Check Integrity of the Selected Image

This option enables the user to check whether the given image is valid or not. When this command is given, bootloader asks for the image for which integrity has to be verified as shown in the figure below.

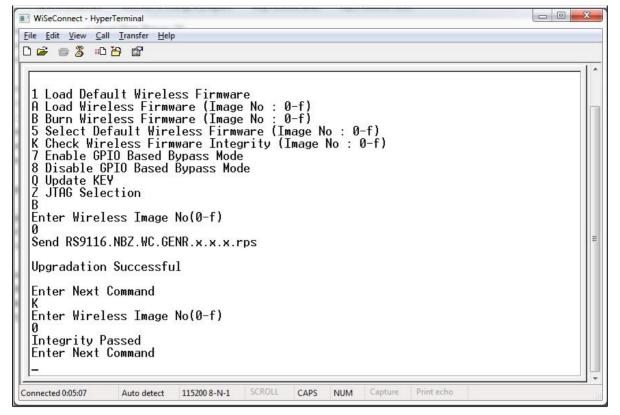


Figure 16: Integrity Check Passed

Bypass Mode in SPI / USB

Selecting the Default Image

- Upon receiving Board ready, if host wants to select default functional image, it is expected to write value (HOST_INTERACT_REG_IN_VALID | SELECT_DEFAULT_NWP_FW | (IMAGE_NO << 8)) in HOST_INTF_REG_IN register.
- Host is expected to receive confirmation (HOST_INTERACT_REG_OUT_VALID | CMD_PASS) in HOST_INTF_REG_OUT register if default image is valid. If default image is invalid, (HOST_INTERACT_REG_OUT_VALID | CMD_FAIL) is written in HOST_INTF_REG_OUT register.

Enable / Disable GPIO Based Bootloader Bypass Mode

- Upon receiving Board ready, if host wants to enable or disable GPIO based bypass mode, it is expected to write value (HOST_INTERACT_REG_IN_VALID | ENABLE_GPIO_BASED_BYPASS) or (HOST_INTERACT_REG_IN_VALID | DISABLE_GPIO_BASED_BYPASS) in HOST_INTF_REG_IN register.
- Host expected to receive (HOST_INTERACT_REG_IN_VALID | ENABLE_GPIO_BASED_BYPASS) or (HOST_INTERACT_REG_IN_VALID | DISABLE_GPIO_BASED_BYPASS) in HOST_INTF_REG_OUT register if command is successful. If default image is invalid, (HOST_INTERACT_REG_OUT_VALID | INVALID_DEFAULT_IMAGE) is written in HOST_INTF_REG_OUT register.
- 4. If GPIO based bypass is enabled, from next bootup onwards, the bootloader will latch the state of UULP_GPIO_2.
- If UULP_GPIO_2 is asserted, the bootloader will not give board ready and it will directly load the default functional image selected.

Note:

UULP_GPIO_2 needs to be de-asserted on power up to move to host interaction mode, to select bootup options like disable Bypass mode or to change the default image

Other Operations

This section contains additional, less frequently used boot-loader options.

Update KEY

This feature is not enabled in current release.

JTAG Selection

Note:

This feature is not enabled in current release.

3 Host Interfaces

RS9116 WiSeConnect Module supports SPI, USB, UART and SDIO for interfacing to host. This section describes UART interface in detail including the supported features, protocols and commands.

Only UART and USB-CDC interfaces are supported in AT mode.

Note:

USB and SDIO interfaces are currently not supported.

3.1 UART Interface

This section describes RS9116-WiSeConnect UART interface, including the commands and processes to operate the module via UART.

UART on the RS9116-WiSeConnect is used as a host interface to configure the module to send data and to receive data.

Features

- Supports hardware (RTS/CTS) flow control.
- Supports following list of baud rates,
 - o 9600 bps
 - 19200 bps
 - o 38400 bps
 - o 57600 bps
 - 115200 bps
 - o 230400 bps
 - o 460800 bps
 - o 921600 bps

Note:

For baud rates greater than 115200, it is mandatory to enable UART hardware flow control.

Hardware Interface

RS9916W uses TTL serial UART at an operating voltage of 3.3V. Host UART device must be configured with the following settings:

- Data bits 8
- Stop bits 1
- Parity None
- Flow control None

Software Protocol

AT+ command mode

This section explains the procedure that the host needs to follow in order to send Wi-Fi commands frames to the module and to receive responses from the module in AT+ command mode.

TX Operation

The Host uses TX operations:

1. To send management commands to the module from the Host.

- 2. To send actual data to the module which is to be transmitted onto the air.
- 3. If the host receives error code indicating packet dropped, the host has to wait for a while and send the next command /data.
- 4. The host should send next data packet only if it receives "OK<number of bytes sent>" response for the previous one.

Rx Operation

The RS9116W responds with either an 'OK' or 'ERROR' string, for Management or Data frames along with a result or error code.

The module sends the response/received data to Host in a format as shown below:

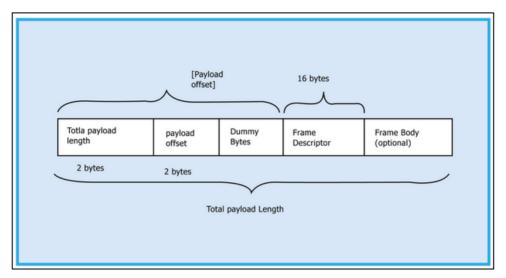


Figure 17: RX Frame Format

Note:

If Payload offset is 'x', 'x-4' dummy bytes will be added before Frame Descriptor.

The host needs follow the steps below to read the frame from the Module:

Read 4 bytes using Frame read.

- 1. Decode Total payload length and payload offset.
- 2. Read remaining payload by sending Frame to read with (total payload length 4 bytes), discard Dummy bytes and then decode Frame descriptor and Frame Body.

4 Classic Command Mode Selection

This section describes AT command mode or Binary mode selection in UART and USB-CDC. It is applicable for RS9116 WiSeConnect.

After boot-loader interaction, module gives "Loading Done" string in ASCII format to host.

After receiving "Loading Done", based on first command received from host, the module selects command mode.

The module reads first 4 bytes, if it matches with "AT+R", select AT command mode, otherwise select Binary mode.

Once mode is selected, it will remain in same mode until it is reset or power cycle.

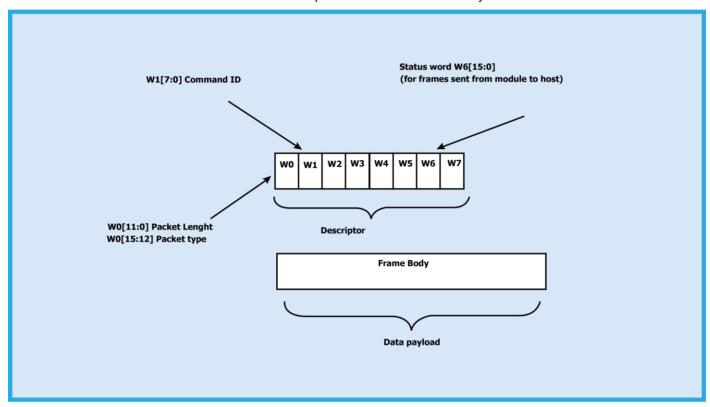
There is an option in bootloader to select AT mode or binary mode.

Note:

"AT+R" is not case sensitive.

5 Classic Command Format

This section explains the general command format. The commands should be sent to the Module in the specified format. It is applicable for RS9116 WiSeConnect. Commands are sent to the module and responses are read from the module using frame write/frame read (as mentioned in the preceding sections). These commands are called as command frames.


The format of the command frames is divided into two parts:

- 1. Frame descriptor
- 2. Frame Body (Frame body is often called as Payload)

Frame Descriptor (16 bytes)

Frame Body (multiples of 4 bytes)

Command frame format is shown below. This description is for a Little-Endian System

Figure 18: Command Frame Format

The following table provides the general description of the frame descriptor.

Table 5: Frame Descriptor

Word	Frame Descriptor
Word0 W0[15:0]	Bits [11:0] – Length of the frame Bits [15:12] – 2(indicates Bluetooth packet).
Word1 W1[15:0]	Bits [15:0] - Packet type
Word2 W2[15:0]	Reserved
Word3 W3[15:0]	Reserved
Word4 W4[15:0]	Reserved
Word5 W5 [15:0]	Reserved

Word	Frame Descriptor
Word6 W6 [15:0]	 (0x0000) when sent from host to module. When sent from module to host (as response frame), it contains the status.
Word7 W7 [15:0]	Reserved

Three types of frames will get exchanged between the module and host.

1. Request/Command frames

o These are sent from Host to Module. Each Request/ Command has an associated response with it.

2. Response frames

 These are sent from Module to Host. These are given in response to the previous Request/Command from the Host. Each command has a single response.

3. Event frames

 These are sent from Module to Host. These are given when there are multiple responses for a particular Request/ Command frame. This is Asynchronous message to be sent to host.

The following are the types of frame requests and responses and the corresponding codes. The commands are different for both Classic and LE modes. The below table lists the Command, Response and Event frames in Classic mode.

In both the modes, the corresponding code is to be filled in W1 [15:0] mentioned in the table above.

Table 6: Command IDs in BT Classic mode

Command	Command ID
Set Local Name	0x0001
Query Local Name	0x0002
Set Local COD	0x0003
Query Local COD	0x0004
Query RSSI	0x0005
Query Link Quality	0x0006
Query Local BD Address	0x0007
Set Profile Mode	0x0008
Set Device Discover Mode	0x0009
Get Device Discover Mode	0x000A
Set Connection Mode	0x000B
Get Connection Mode	0x000C
Set Pair Mode	0x000D
Get Pair Mode	0x000E
Remote Name Request	0x000F
Remote Name Request Cancel	0x0010
Inquiry	0x0011
Inquiry Cancel	0x0012
Bond or Create Connection	0x0013

Command	Command ID
Bond Cancel or Create Connection Cancel	0x0014
Unbond or Disconnect	0x0015
Set Pin Type	0x0016
Get Pin Type	0x0017
User Confirmation	0x0018
Passkey Reply	0x0019
Pincode Reply	0x001A
Get Local Device Role	0x001B
Set Local Device Role	0x001C
Get Service List	0X001D
Search Service	0X001E
SPP connect	0X001F
SPP Disconnect	0X0020
SPP Transfer	0X0021
Initialize BT Module	0x008D
Deinitialize BT Module	0x008E
Antenna Select	0x008F
Linkkey Reply	0x0091
PER Transmit	0x0098
PER Receive	0x0099
PER Stats	0x009A
PER CW mode	0x009B
Sniff Mode	0x009D
Sniff Exit	0x009E
Sniff Subrating	0x009F
Feature Bit map	0x00A6
Set Antenna Tx Power Level	0x00A7
AFH channel Classification	0x00D2
Set SSP mode	0x00A0
Set EIR data	0X00A9
A2DP Connect	0x0022
A2DP Disconnect	0x0023
A2DP Start	0x00CE
A2DP Suspend	0x00CF
A2DP PCM Data	0x00D0

Command	Command ID
A2DP SBC Data	0x00D1
AVRCP Connect	0X0024
AVRCP Disconnect	0X0025
AVRCP Play	0X0026
AVRCP Pause	0X0027
AVRCP Stop	0X0028
AVRCP Next	0X0029
AVRCP Previous	0X002A
HFP Connect	0x002D
HFP Disconnect	0x002E
HFP Phone operator	0x002F
HFP Call accept	0x0030
HFP Call reject	0x0031
HFP Dial number	0x0032
HFP Dial member	0x0033
HFP Redial	0x0034
HFP Voice Recognition Active	0x0035
HFP Voice Recognition Deactive	0x0036
HFP Speak Gain	0x0037
HFP Mic Gain	0x0038
HFP Get Calls	0x0039
HFP Audio	0x003A
PBAP Connect	0x003B
PBAP Disconnect	0x003C
PBAP Contacts	0x003D
Set AFH Channel Classification	0x00D2
AVRCP Get Capabilities	0x00D3
AVRCP Get Attributes List	0x00D4
AVRCP Get Attributes Values List	0x00D5
AVRCP Get Current Attribute Value	0x00D6
AVRCP Set Current Attribute Value	0x00D7
AVRCP Get Element Attributes	0x00D8
AVRCP Get Play Status	0x00D9
AVRCP Get Register Notification	0x00DA
AVRCP Get Version	0x00DB

Command	Command ID
AVRCP Get Attribute Tex	0x00DC
AVRCP Get Attribute Value Text	0x00DD
AVRCP Get Battery Status	0x00DE
AVRCP Get Character Sets	0x00DF
AVRCP Capabilities Response	0x00E0
AVRCP Attributes List Response	0x00E1
AVRCP Attributes Values List Response	0x00E2
AVRCP Get Current Attributes Values List Response	0x00E3
AVRCP Set Current Attributes Values List Response	0x00E4
AVRCP Get Element Attributes Response	0x00E5
AVRCP Get Play Status Response	0x00E6
AVRCP Get Register Notification Response	0x00E7
AVRCP Get Attribute Text Response	0x00E8
AVRCP Get Attribute Value Text Response	0x00E9
AVRCP Get Battery Status Response	0x00EA
AVRCP Get Character Sets Response	0x00EB
AVRCP Notification	0x00EC
AVRCP CMD Reject	0x00ED
Add Device ID	0x00EE
A2DP Get Config	0x00FE
A2DP Set Config	0x00FF

Table 7: Response IDs in BT Classic Mode

Response	Response ID
Set Local Name	0x0001
Query Local Name	0x0002
Set Local COD	0x0003
Query Local COD	0x0004
Query RSSI	0x0005
Query Link Quality	0x0006
Query Local BD Address	0x0007
Set Profile Mode	0x0008
Set Device Discover Mode	0x0009
Get Device Discover Mode	0x000A
Set Connection Mode	0x000B

Response	Response ID
Get Connection Mode	0x000C
Set Pair Mode	0x000D
Get Pair Mode	0x000E
Remote Name Request	0x000F
Remote Name Request Cancel	0x0010
Inquiry	0x0011
Inquiry Cancel	0x0012
Bond or Create Connection	0x0013
Bond Cancel or Create Connection Cancel	0x0014
Unbond or Disconnect	0x0015
Set Pin Type	0x0016
Get Pin Type	0x0017
User Confirmation	0x0018
Passkey Reply	0x0019
Pincode Reply	0x001A
Get Local Device Role	0x001B
Set Local Device Role	0x001C
Get Service List	0X001D
Search Service	0X001E
SPP connect	0X001F
SPP Disconnect	0X0020
SPP Transfer	0X0021
Initialize BT Module	0x008D
Deinitialize BT Module	0x008E
Antenna Select	0x008F
Linkkey Reply	0x0091
PER Transmit	0x0098
PER Receive	0x0099
PER Stats	0x009A
PER CW mode	0x009B
Sniff Mode	0x009D
Sniff Exit	0x009E
Sniff Subrating	0x009F
Feature Bit map	0x00A6
Set Antenna Tx Power Level	0x00A7

Response	Response ID
AFH channel Classification	0x00D2
Set SSP mode	0x00A0
Set EIR data	0X00A9
A2DP Connect	0x0022
A2DP Disconnect	0x0023
A2DP Start	0x00CE
A2DP Suspend	0x00CF
A2DP PCM Data	0x00D0
A2DP SBC Data	0x00D1
AVRCP Connect	0X0024
AVRCP Disconnect	0X0025
AVRCP Play	0X0026
AVRCP Pause	0X0027
AVRCP Stop	0X0028
AVRCP Next	0X0029
AVRCP Previous	0X002A
HFP Connect	0x002D
HFP Disconnect	0x002E
HFP Phone operator	0x002F
HFP Call accept	0x0030
HFP Call reject	0x0031
HFP Dial number	0x0032
HFP Dial member	0x0033
HFP Redial	0x0034
HFP Voice Recognition Active	0x0035
HFP Voice Recognition Deactive	0x0036
HFP Speak Gain	0x0037
HFP Mic Gain	0x0038
HFP Get Calls	0x0039
HFP Audio	0x003A
PBAP Connect	0x003B
PBAP Disconnect	0x003C
PBAP Contacts	0x003D
Set AFH Channel Classification	0x00D2
AVRCP Get Capabilities	0x00D3

Response	Response ID
AVRCP Get Attributes List	0x00D4
AVRCP Get Attributes Values List	0x00D5
AVRCP Get Current Attribute Value	0x00D6
AVRCP Set Current Attribute Value	0x00D7
AVRCP Get Element Attributes	0x00D8
AVRCP Get Play Status	0x00D9
AVRCP Get Register Notification	0x00DA
AVRCP Get Version	0x00DB
AVRCP Get Attribute Text	0x00DC
AVRCP Get Attribute Value Text	0x00DD
AVRCP Get Battery Status	0x00DE
AVRCP Get Character Sets	0x00DF
AVRCP Capabilities Response	0x00E0
AVRCP Attributes List Response	0x00E1
AVRCP Attributes Values List Response	0x00E2
AVRCP Get Current Attributes Values List Response	0x00E3
AVRCP Set Current Attributes Values List Response	0x00E4
AVRCP Get Element Attributes Response	0x00E5
AVRCP Get Play Status Response	0x00E6
AVRCP Get Register Notification Response	0x00E7
AVRCP Get Attribute Text Response	0x00E8
AVRCP Get Attribute Value Text Response	0x00E9
AVRCP Get Battery Status Response	0x00EA
AVRCP Get Character Sets Response	0x00EB
AVRCP Notification	0x00EC
AVRCP CMD Reject	0x00ED
Add Device ID	0x00EE
A2DP Get Config	0x00FE
A2DP Set Config	0x00FF

Table 8: Event IDs in BT Classic Mode

Event	Event ID
Role Change Status	0x1000
Unbond or Disconnect	0x1001
Bond Response	0x1002

Event	Event ID
Inquiry response	0x1003
Remote Device Name	0x1004
Remote Name Request cancelled	0x1005
Disconnected	0x1006
User Confirmation Request	0x1007
User Passkey Display	0x1008
User Pincode Request	0x1009
User Passkey Request	0x100A
Inquiry Complete	0x100B
Authentication Complete	0x100C
User Linkkey Request	0x100D
User Linkkey Save	0x100E
SSP Complete	0x100F
BT Mode Changed	0x1010
BT Sniff Subrating Changed	0x1011
BT User Passkey Notify	0x1012
SPP Receive Data	0x1100
SPP Connected	0x1101
SPP Disconnected	0x1102
A2DP Connected	0x1200
A2DP Disconnected	0x1201
A2DP Configured	0x1202
A2DP Open	0x1203
A2DP Start	0x1204
A2DP Suspend	0x1205
A2DP Abort	0x1206
A2DP Close	0x1207
A2DP Encoded data	0x1208
A2DP PCM data	0x1209
A2DP More data request	0x120A
A2DP Codec Config	0x120B
AVRCP Connected	0x1300
AVRCP Disconnected	0x1301
AVRCP Play	0x1302
AVRCP Pause	0x1303

Event	Event ID
AVRCP Next	0x1304
AVRCP Previous	0x1305
AVRCP Stop	0x1306
AVRCP Notify	0x1310
AVRCP Capabilities Request	0x1311
AVRCP Attributes List Request	0x1312
AVRCP Values List Request	0x1313
AVRCP Current Attribute Value Request	0x1314
AVRCP Set Attribute Value Request	0x1315
AVRCP Attribute Text Request	0x1316
AVRCP Value Text Request	0x1317
AVRCP Character Set Request	0x1318
AVRCP Battery Status Request	0x1319
AVRCP Element Attribute Request	0x131A
AVRCP Player Status Request	0x131B
AVRCP Register Notification	0x131C
HFP Connected	0x1400
HFP Disconnected	0x1401
HFP Ring	0x1402
HFP Call caller id	0x1403
HFP Audio Connected	0x1404
HFP Audio Disconnected	0x1405
HFP Dial complete	0x1406
HFP answer complete	0x1407
HFP Hang up complete	0x1408
HFP Send DTMF Complete	0x1409
HFP Call wait	0x140A
HFP Voice recognition deactivated	0x140B
HFP Voice recognition activated	0x140C
HFP Service not found	0x140D
HFP Call status	0x140E
HFP Signal strength	0x140F
HFP Battery level	0x1410
HFP Phone service	0x1411
HFP Roaming status	0x1412

Event	Event ID
HFP Call setup	0x1413
HFP Call held status	0x1414
PBAP Connected	0x1450
PBAP Disconnected	0x1451
PBAP Data	0x1452

6 BT Classic Commands

This section explains various Bluetooth Classic commands, their structures, parameters and their responses. For API prototypes of these commands, please refer to the API Library Section.

Note:

A command **should not** be issued by the host before receiving the response of a previously issued command from the module.

6.1 Generic Commands

6.1.1 Set Operating Mode

Description:

This is the first command that needs to be sent from the Host after receiving card ready frame from module. This command configures the module in different functional modes.

Note:

Opermode must be the first command to be issued as per the system design. Other BT commands should be only issued after receiving a SUCCESS response for opermode command.

Command Format:

AT Mode:

at+rsi_opermode=

<oper_mode>,<feature_bit_map>,<tcp_ip_feature_bit_map>,<custom_feature_bit_map>,<ext_custom_feature_bit_map>,<bt_feature_bit_map>,<ble_feature_bit_map>,<ble_custom_ext_feature_bit_map>,<config_feature_bit_map>\r\n

Note:

If BIT(31) is set to '1' in custom_feature_bitmap

at+rsi_opermode=<oper_mode>,<feature_bit_map>,<tcp_ip_feature_bit_map>,<custom_feature_bitmap><ext_custom_feature_bit_map>\r\n

if BIT(31) is set to '1' in tcp_ip_feature_bit_map

at+rsi_opermode=<oper_mode>,<feature_bit_map>,<tcp_ip_feature_bit_map>,<custom_feature_bitmap><ext_tcp_ip_feature_bit_map>\r\n

if BIT(31) is set to '1' in both custom_feature and ext_custom_feature bit maps at+rsi opermode=<oper mode>,<feature bit map>,<tcp ip feature

bit_map>,<custom_feature_bitmap><ext_custom_feature_bit_map> <bt_feature_bit_map> \r\n if BIT(31) is set to 1 in bt_feature_bit_map

at+rsi_opermode=<oper_mode>,<feature_bit_map>,<tcp_ip_feature_

bit_map>,<custom_feature_bit_map><ext_custom_feature_bit_map><bt_feature_bit_map><ext_tcp_ip_feature_bit_map>\r\n

If BIT(31) is set to 1 in ble_custom_feature_bit_map

at+rsi_opermode=<oper_mode>,<feature_bit_map>,<tcp_ip_feature_ bit_map>,<custom_feature_bit_map><ext_custom_feature_bit_map><bt_custom_feature_bit_map><ext_tcp_ip_ feature_bit_map><bt_custom_feature_bit_map>,<ble_custom_ext_feature_bit_map>\r\n

If BIT(31) is set to '1' in both tcp ip feature bit map and ext tcp ip feature bit map

at+rsi_opermode=<oper_mode>,<feature_bit_map>,<tcp_ip_feature_bit_map>,<custom_feature_bitmap>
<ext_custom_feature_bit_map><bt_custom_feature_bit_map><ext_tcp_ip_feature_bit_map><bt_custom_feature_bit_map>,<ble_custom_ext_feature_bit_map>,<config_feature_bit_map>,r\n

Command Parameters:

Oper mode:

Sets the mode of operation. oper_mode contains two parts <wifi_oper_mode, coex_mode>. Lower two bytes represent wifi_oper_mode and higher two bytes represent coex_modes. oper_mode = ((wifi_oper_mode) | (coex_mode << 16))

Note:

Please refer to **RS9116W Wi-Fi AT Command Programming Reference Manual.pdf** at https://docs.silabs.com/rs9116 for more details on WLAN and co-existence of other protocols with WLAN.

In BTLE mode, BT mode also needs to be enabled.

Following table represents BT coex modes supported:

Coex_mode	Description
4	Bluetooth
8	Dual Mode (Bluetooth and BLE)

Table 12: Coex Modes of BT Supported

Note:

- If coex mode is enabled in opermode command, then BT / BLE protocol get starts and gives corresponding card ready in parallel with opermode command response (which will be handled by corresponding application).
- BT card ready frame is described in RS9116W BT Classic AT Command Programming Reference Manual.pdf (available at https://docs.silabs.com/rs9116), BLE card ready frame is described in RS9116W BLE AT Command Programming Reference Manual.pdf (available at https://docs.silabs.com/rs9116).
- 3. Feature selection utility is provided in the package. WiSeConnect device supports the selected features combination only if it is feasible as per the RSXXXXX_TCPIP_Feature_Selection_vX.xlsx

custom_feature_bit_map:

This bitmap is used to enable following BT/BLE custom features:

BIT[11]: To Enable Packet Pending Indication(wake on wireless) in UART mode

- 1 Enable
- 0 Disable

BIT[29]: To Enable IAP support in BT mode

- 1 Enable
- 0 Disable

BIT[31]: This bit is used to validate extended custom feature bitmap.

- 1 Extended feature bitmap valid
- 0 Extended feature bitmap is invalid

BIT[0:1],BIT[3:4],BIT[7],BIT[21], BIT[30]: Reserved, should be set to all '0'.

Note:

For UART / USB-CDC in AT mode:

Parameters- feature_bit_map, tcp_ip_feature_bit_map and custom_feature_bit_map are optional in opermode command in UART mode for AT mode. If user does not give these parameters, then default configuration gets selected as explained above based on the operating mode configured.

ext custom feature bit map:

This feature bitmap is an extension of custom feature bitmap and is valid only if BIT[31] of custom feature bitmap is set. This enables the following feature.

BIT[0]: To enable antenna diversity feature.

- 1 Enable antenna diversity feature
- 0 Disable antenna diversity feature

BIT[1]: This bit is used to enable 4096 bit RSA key support

- 1 Enable 4096 bit RSA key support
- 0 Disable 4096 bit RSA key support

Note:

If this bit is enable then connected clients which are in power save may observe packet miss.

BIT[5]: This bit is used to enable Pre authentication Support.

- 1 Enable Pre authentication Support
- 0 Disable Pre authentication Support

BIT[6]: This bit is used to enable 40MHZ Support

- 1 Enable 40MHZ Support
- 0 Disable 40MHZ Support

(BIT[20] | BIT[21]) - This bit is used to configure 384k mode.

Note:

It is mandatory to configure 384k mode for any use-case.

1- enable

0-disable

BIT[31]: This bit is used to validate bt and ble feature bitmap.

- 1 bt & ble feature bitmap valid
- 0 bt & ble feature bitmap is invalid

bt_feature_bit_map:

This bitmap is valid only if BIT[31] of extended custom feature bit map is set.

BIT[0:7] - reserved

BIT[8] - BT_EDR_3MBPS_DISABLE

- 1- Disable BT EDR 3Mbps Feature
- 0- Enable BT EDR 3Mbps Feature

BIT[9] - BT_EDR_2MBPS_DISABLE

- 1- Disable BT EDR 2Mbps Feature
- 0- Enable BT EDR 2Mbps Feature

BIT[10] - BT_5_SLOT_PACKETS_DISABLE

- 1- Disable BT 5 Slot Packet Feature
- 0- Enable BT 5 Slot Packet Feature

BIT[11] - BT 3 SLOT PACKETS DISABLE

- 1- Disable BT 3 Slot Packet Feature
- 0- Enable BT 3 Slot Packet Feature

BIT[12] - Noise Figure Feature

- 1 Enable Noise Figure
- 0 Disable Noise Figure

BIT[13] - SNIFF Feature Disable

- 1- Disable SNIFF Feature
- 0- Enable SNIFF Feature

BIT[14] - reserved

BIT[15] - HFP profile bit enable

- 1- enable the HFP profile
- 0- disable the HFP profile

BIT[16:19] - reserved for future use

BIT[20:22] - number of slaves supported by BT

Maximum no of bt slaves: 2

BIT [23] - A2DP profile bit enable

- 1- enable the A2DP profile
- 0- disable the A2DP profile

BIT [24] - A2DP profile role selection

- 1- A2DP source
- 0- A2DP sink

BIT [25] - A2DP accelerated mode selection

- 1- enable accelerated mode
- 0- disable accelerated mode

BIT [26] - A2DP i2s mode selection

- 1- enable i2s mode
- 0- disable i2s mode

BIT [27:29] - reserved

BIT[30] – RF Type selection

- 1 Internal Rf Type selection
- 0 External Rf Type selection

BIT[31] - Validate ble feature bit map. For classic opermode this can be ignored.

- 1 valid ble feature bit map
- 0 Ignore ble feature bit map

config feature bit map:

This bitmap is valid only if BIT[31] of ext_tcp_ip_feature_bit_map is set.

Config Feature bitmap	Functionality	Bit set to 0	bit Set to 1	Note and Info
config_feature_bit_map[0]	To select wakeup indication to host.	Disable	Enable	
	If it is disabled UULP_GPIO_3 is used as a wakeup indication to host.			
	If it is enabled UULP_GPIO_0 is used as a wakeup indication to host.			

Config Feature bitmap	Functionality	Bit set to 0	bit Set to 1	Note and Info
config_feature_bi_map[1:15]	Reserved			
config_feature_bi_map[16]	Active high or low interrupt mode selection for wake on wireless operation	Disable	Enable	
	If it is disabled active low interrupt is used in wake on wireless operation.			
	If it is enabled active high interrupt is used in wake on wireless operation.			
config_feature_bi_map[17:31]	Reserved			

Note:

32KHz external clock connection and power save pins

As per Silicon Labs datasheet updated in May 2019, 32KHz external clock and the power save pins connections have changed. To keep SW compatibility between initial design (i.e. first EVKs developed by Silicon Labs) and new designs, there are currently 2 options for connecting 32KHz external clock and the power save pins:

Option 1:

External 32KHz clock connection pins: XTAL_32KHZ_P & XTAL_32KHZ_N

Power Save connection pins : HOST_BYP_ULP_WAKEUP & UULP_VBAT_GPIO_3

Option 2:

External 32KHz clock connection pin : UULP_VBAT_GPIO_3

Power Save connection pins : HOST_BYP_ULP_WAKEUP & UULP_VBAT_GPIO_0

Note:

As per Silicon Labs datasheet updated in May'2019, Option 2 must be used for External 32KHz clock and Power save connections in new designs.

Response:

Result Code	Description
ОК	Successful execution of the command
ERROR <error code=""></error>	Failure

Example:

AT Mode:

at+rsi_opermode=327680,0,1,2147483648,2150629376,1073741824\r\n

Response:

OK\r\n

bt loaded\r\n

6.1.2 Set Local Name

Description: This is used to set name to the local device.

AT command format:

at+rsibt_setlocalname=<NameLength>,<Name>\r\n

Parameters:

NameLength – Length of the name of local device. Name (50 bytes) – Name of the local device.

AT command Ex:

at+rsibt_setlocalname=6,silabs\r\n

Response:

OK\r\n

6.1.3 Query Local Name

Description:

This is used to query the name of the local device.

AT command format:

at+rsibt getlocalname?\r\n

Response:

Result Code	Description
OK <name_length>,<local_device_name></local_device_name></name_length>	Command Success.
ERROR <error_code></error_code>	Command Fail.

Response Parameters:

name_length - Length of the name

local_device_name (50 bytes)- Name of the local device

AT command Ex:

at+rsibt_getlocalname?\r\n

Response:

OK 8,silabs\r\n

6.1.4 Set Local COD

Description:

This is used to indicate the capabilities of local device to other devices. It is a parameter received during the device discovery procedure on the BR/EDR physical transport, indicating the type of device. The Class of Device parameter is only used on BR/EDR and BR/EDR/LE devices using BR/EDR physical transport.

AT command format:

at+rsibt_setlocalcod=<local_device_class>\r\n

Parameters:

Local COD - Class of the Device of local device

AT command Ex:

at+rsibt_setlocalcod=7A020C\r\n

Response:

OK\r\n

6.1.5 Query Local COD

Description:

This is used to query Class of Device of the local device.

AT command format:

at+rsibt_getlocalcod?\r\n

Response:

Result Code	Description
OK <local_device_class></local_device_class>	Command Success.
ERROR <error_code></error_code>	Command Fail.

Response Parameters:

LocalCOD - Class of the Device of the local device

AT command Ex:

at+rsibt_getlocalcod?\r\n

Response:

OK 7A020C\r\n

6.1.6 Query RSSI

Description:

This is used to query RSSI of the connected remote BT Device.

AT command format:

at+rsibt_getrssi=<BDAddress>?\r\n

Parameters:

BDAddress (6 bytes) - BD Address of the connected remote device.

Response:

Result Code	Description
OK <rssi value=""></rssi>	Command Success.
ERROR <error_code></error_code>	Command Fail.

Response parameters:

RSSI - RSSI value of the connected remote device.

AT command Ex:

at+rsibt_getrssi=AA-BB-CC-DD-EE-FF?\r\n

Response:

OK 127\r\n

Note:

The rssi value should be within the range of -128 to +127

6.1.7 Query Link Quality

Note:

This command is not currently supported

Description:

This is used to query the link quality between local device and connected remote device.

AT command format:

at+rsibt_getlinkqlty=<BDAddress>?\r\n

Parameters:

BDAddress(6 bytes) - BD Address of the connected remote device

Response:

Result Code	Description
OK <link_quality></link_quality>	Command Success with valid response.
ERROR <error_code></error_code>	Command Fail.

Response parameters:

LinkQuality - Link quality value.

AT command Ex:

at+rsibt_getlinkqlty=AA-BB-CC-DD-EE-FF?\r\n

Response:

OK 123\r\n

6.1.8 Query Local BD Address

Description:

This is used to query BD address of the local device.

AT command format:

at+rsibt_getlocalbdaddr?\r\n

Response:

Result Code	Description
OK <bd_addr></bd_addr>	Command Success with valid response.
ERROR <error_code></error_code>	Command Fail.

Response Parameters:

BDAddress (6 bytes) - BD Address of the local device

AT command Ex:

at+rsibt_getlocalbdaddr?\r\n

Response:

OK AA-BB-CC-DD-EE-FF\r\n

6.1.9 Query BT Stack Version

Description:

This is used to query Current BT Stack Version.

AT command format:

at+rsibt_getbtstackversion?\r\n

Response:

Result Code	Description
OK <stack version=""></stack>	Command Success with valid response.
ERROR <error_code></error_code>	Command Fail.

Response Parameters:

stackVersion (1 byte) - Stack version

AT command Ex:

at+rsibt_getbtstackversion?\r\n

Respons	e:
---------	----

OK 2.0

6.1.10 Initialize BT Module

Description:

This is used to initialize the BT module.

AT command format:

at+rsibt btinit\r\n

AT command Ex:

at+rsibt_btinit\r\n

Response:

 $OK\r\n$

6.1.11 Deinitialize BT Module

Description:

This is used to de-initialize the BT module. To again initialize the module 'Initialize BT module' command can be used.

AT command format:

at+rsibt_btdeinit\r\n

AT command Ex:

at+rsibt_btdeinit\r\n

Response:

 $OK\r\n$

6.1.12 BT Antenna Select

Description:

This is used to select internal or external antenna of the BT module.

AT command format:

at+rsibt_btantennaselect=<antenna_val>\r\n

Parameters:

AntennaVal(1 byte) - To select the internal or external antenna

- 0 Internal Antenna.
- 1 External Antenna.

AT command Ex:

at+rsibt_btantennaselect=1\r\n

Response:

 $OK\r\n$

6.1.13 Set Feature Bitmap

Description:

This is used to enable/disable the features.

AT command format:

at+rsibt_setfeaturebitmap=<featurebitmap>\r\n

Parameters:

featurebitmap (2 bytes)

- 1 Enable BT security
- 0 Disable BT security

ATcommandEx:

at+rsibt setfeaturebitmap =1\r\

Response:

 $OK\r\n$

6.1.14 Set Antenna Tx power level

Description:

This is used to set the Bluetooth antenna transmit power level. This command serves for selecting the maximum power to be used for the device.

AT command format:

at+rsibt setantennatxpowerlevel=<protocol mode>,<power level>\r\n

Parameters:

protocol_mode (1 byte)

1 -BT Classic

Power_level (1 byte)- range of the power levels used in terms of dBm Minimum value – 1
Maximum value - 14

ATcommandEx:

at+rsibt_setantennatxpowerlevel =1,10\r\n

Response:

OK\r\n

6.2 PER Commands

6.2.1 BR-EDR PER Transmit

Description:

This command can be given to start br -edr transmission.

AT Command format:

at+rsibt_bredrtransmit=<enable/disable>,<device_address>,<pkt_len>,<pkt_type>,<BR/EDR_mode>,<rr_channel_num>,<tr_channel_num>,<link_type>,<scrambler_seed>,<hopping_type>,<antenna_sel>,<pll_mode>,<rf_type>,<rf_chain>,<payload_type>,<tr_power_index>,<tr_mode>,<inter_packet_gap>,<num_of_packets>\r\n

Parameters:

enable: 1

dev addr (6 bytes): It is a 48-bit address in hexadecimal format, e.g.,0023A7010203

pkt_type (1 byte): Type of the packet to be transmitted as per the Bluetooth standard.

pkt length (1 byte): Length of the packet in bytes to be transmitted.

br_edr_mode (1 byte): basic rate - 1, enhanced_rate - 2 or 3

rx_channel_index (1 byte): Receive channel index as per the Bluetooth standard. i.e., 0 to 78

tx_channel_index (1 byte): Transmit channel index as per the Bluetooth standard. i.e., 0 to 78

link_type: sco - 0, acl - 1, esco - 2

scrambler_seed (1 byte): Initial seed to be used for whitening. It should be set to '0' in order to disable whitening.

no_of_packets (1 byte): Number of packets to be transmitted. It is valid only when the <tx_mode> is set to Burst mode

payload_type (1 byte): Type of payload to be transmitted. '0' - Payload consists of all zeros

'1' - Payload consists of all 0xFF's

'2' - Payload consists of all 0x55's

'3' - Payload consists of all 0xF0's

'4' - Payload consists of PN9 sequence.

tx_power(1 byte): Transmit power value should be between 0 and 18

tx_mode(1 byte): Burst mode - 0, Continuous mode - 1

hopping type(1 byte): no hopping -0, fixed hopping - 1, random hopping - 2

ant sel(1 byte): on-chip antenna - 2, u.fl - 3

inter_pkt_gap: Number of slots to be skipped between two packets Each slot will be 625usec (At Always will happen at Tx slot).

pll_mode: PLL_MODE0 - 0, PLL_MODE1 - 1, PLL_MODE2 - 2

rf type: External RF – 0, Internal RF – 1

rf_chain: WLAN_HP_CHAIN 0, WLAN_LP_CHAIN 1, BT_HP_CHAIN 2, BT_LP_CHAIN 3

AT command Ex:

Response:

 $OK\r\n$

1. After the transmission starts, the following command can be given to stop the transmission.

at+rsibt_bredrtransmit=0\r\n

- Stop the Transmission first before starting of Transmission.
- dev_addr need not be module's BD address, it can be any 48bit BD address. But it should be same for transmit and receive command.

6.2.2 BR-EDR PER Receive

Description:

This command can be given to start the br -edr transmission.

AT Command format:

 $at+rsibt_bredrreceive=<enable/disable>,<device_address>,<pkt_len>,<pkt_type>,<BR/EDR_mode>,<rx_channel_num>,<tx_channel_num>,<link_type>,<scrambler_seed>,<hopping_type>,<antenna_sel>,<pll_mode>,<rf_type>,<rf_chain>,<loop_back_mode>\r\n$

Parameters:

enable: 1

dev addr(6 byte): It is a 48-bit address in hexadecimal format, e.g.,000012345678

link_type(1 byte): sco - 0, acl - 1, esco - 2

pkt_type(1 byte): Type of the packet to be transmitted, as per the Bluetooth standard.

pkt_length(1 byte): Length of the packet in bytes to be transmitted.

scrambler_seed(1 byte): Initial seed to be used for whitening. It should be set to '0' in order to disable whitening.

br_edr_mode(1 byte): basic rate - 1, enhanced_rate - 2

rx_channel_index(1 byte): Receive channel index as per the Bluetooth standard .i.e., 0 to 78

tx_channel_index(1 byte): Transmit channel index as per the Bluetooth standard. i.e., 0 to 78

hopping type: no hopping -0, fixed hopping - 1, random hopping - 2

ant_sel(1 byte): onchip antenna - 2, u.fl - 3 loop_back_mode: Disable - 0, Enable - 1

pll_mode: PLL_MODE0 - 0, PLL_MODE1 - 1, PLL_MODE2 - 2

rf_type: External RF - 0, Internal RF - 1

rf_chain: WLAN_HP_CHAIN 0, WLAN_LP_CHAIN 1, BT_HP_CHAIN 2, BT_LP_CHAIN 3

AT command Ex:

at+rsibt_bredrreceive=1,11-11-11-11-11-11,339,15,3,10,10,1,0,0,3,0,1,3,0\r\n(enable/start)

Response: OK\r\n

6.2.3 Per Stats

Description:

The following statistics are returned.

Command:

at+rsibt perstats

Parameters:

Crc_pass_count (2 bytes): The number of packets received which are passed CRC check.

Crc_fail_count(2 bytes): The number of packets received which failed CRC check.

RSSI(2 bytes): The RSSI value of the last received packet. .

AT command Ex:

at+rsibt_perstats

Response:

Appendix

Frequencies and channel numbers used for Bluetooth Classic Mode:

Band (GHz)	Bandwidth (MHz)	Channel Number	Centre Freq (MHz)
2.4	1	0	2402
2.4	1	1	2403
2.4	1	2	2404
2.4	1	3	2405
2.4	1	4	2406
2.4	1	5	2407
2.4	1	6	2408
2.4	1	7	2409
2.4	1	8	2410
2.4	1	9	2411
2.4	1	10	2412
2.4	1	11	2413
2.4	1	12	2414
2.4	1	13	2415
2.4	1	14	2416
2.4	1	15	2417
2.4	1	16	2418
2.4	1	17	2419

Band (GHz)	Bandwidth (MHz)	Channel Number	Centre Freq (MHz)
2.4	1	18	2420
2.4	1	19	2421
2.4	1	20	2422
2.4	1	21	2423
2.4	1	22	2424
2.4	1	23	2425
2.4	1	24	2426
2.4	1	25	2427
2.4	1	26	2428
2.4	1	27	2429
2.4	1	28	2430
2.4	1	29	2431
2.4	1	30	2432
2.4	1	31	2433
2.4	1	32	2434
2.4	1	33	2435
2.4	1	34	2436
2.4	1	35	2437
2.4	1	36	2438
2.4	1	37	2439
2.4	1	38	2440
2.4	1	39	2441
2.4	1	40	2442
2.4	1	41	2443
2.4	1	42	2444
2.4	1	43	2445
2.4	1	44	2446
2.4	1	45	2447
2.4	1	46	2448
2.4	1	47	2449
2.4	1	48	2450
2.4	1	49	2451
2.4	1	50	2452
2.4	1	51	2453
2.4	1	52	2454

Band (GHz)	Bandwidth (MHz)	Channel Number	Centre Freq (MHz)
2.4	1	53	2455
2.4	1	54	2456
2.4	1	55	2457
2.4	1	56	2458
2.4	1	57	2459
2.4	1	58	2460
2.4	1	59	2461
2.4	1	60	2462
2.4	1	61	2463
2.4	1	62	2464
2.4	1	63	2465
2.4	1	64	2466
2.4	1	65	2467
2.4	1	66	2468
2.4	1	67	2469
2.4	1	68	2470
2.4	1	69	2471
2.4	1	70	2472
2.4	1	71	2473
2.4	1	72	2474
2.4	1	73	2475
2.4	1	74	2476
2.4	1	75	2477
2.4	1	76	2478
2.4	1	77	2479
2.4	1	78	2480

Packet Summary:

Packet	Туре	br edr mode	Packet length	Link Type
DM1	3	1	0-17	1
DH1	4	1	0-27	1
DH3	11	1	0-183	1
DM3	10	1	0-121	1
DH5	15	1	0-339	1
DM5	14	1	0-224	1

Packet	Туре	br edr mode	Packet length	Link Type
2-DH1	4	2	0-54	1
2-DH3	10	2	0-367	1
2-DH5	14	2	0-679	1
3-DH1	8	3	0-83	1
3-DH3	11	3	0-552	1
3-DH5	15	3	0-1021	1
HV1	5	1	10	0
HV2	6	1	20	0
HV3	7	1	30	0
DV	8	1	10+(0-9)D	0
EV3	7	1	1-30	2
EV4	12	1	1-120 *	2
EV5	13	1	1-180 *	2
2-EV3	6	2	1-60	2
2-EV5	12	2	1-360 *	2
3-EV3	7	3	1-90	2
3-EV5	13	3	1-540 *	2

^{&#}x27;*' In eSCO (link type = 3), having capability of maximum 90 bytes (Packet Length) only.

at+rsibt_rmtnamereqcancel= AA-BB-CC-DD-EE-FF \r\n

6.3 Core Commands

6.3.1 Set Profile Mode

Note:

Currently only SPP, HID profiles are supported.

Description:

This is used to initialize the particular profiles in Bluetooth embedded host stack.

AT command format:

at+rsibt_setprofilemode=<ProfileMode>\r\n

Parameters:

Profile Mode (1 byte) – Set specific bits to enable the profiles.

Bit No	Description
0	SPP Profile
1	A2DP Profile
2	AVRCP Profile
3	HFP Profile

Bit No	Description
4	PBAP Profile
5	IAP Profile
6	HID Profile

Response Parameters:

ProfileMode(1 byte): Value is represented in HEX format for respective profile bits

1 - SPP Profile

40 - HID Profile

AT command Ex:

at+rsibt_setprofilemode=1\r\n

Response:

OK\r\n

Note:

According to profile requirements, need to give bit numbers. For example if required spp profile + A2DP profile then value 3 should be given.

Set Device Discovery Mode

Description:

This is used to set the BT module in any of the three Discovery modes. Time out can be used for only limited discovering.

AT command format:

at+rsibt setdiscvmode=<mode>,<timeout>\r\n

Parameters:

Mode(1 byte) - To enable/disable discovering

0 - disable discovering

1 - enable discovering

2 - limited discovering

TimeOut(4 bytes) – time out value in milli seconds.

Note:

Better to use below 1 hour(i.e.. >3600000ms)

AT command Ex:

at+rsibt_setdiscvmode=2,10000\r\n

Response:

 $OK\r\n$

6.3.2 Get Device Discovery Mode

Description:

This is used to get the discovery mode of the BT module, currently the BT module was set.

AT command format:

at+rsibt_getdiscvmode?\r\n

Response:

Result Code	Description
OK <mode></mode>	Command Success with valid response.
ERROR <error_code></error_code>	Command Fail.

Response Parameters:

DiscoveryMode(1 byte) - enabled/disabled discovering

0 – Disabled device discover

1 - Enabled device discover

AT command Ex:

at+rsibt_getdiscvmode?\r\n

Response:

OK 1\r\n

6.3.3 Set Connectability Mode

Description:

This is used to set the BT module in one of the two Connectability modes.

AT command format:

at+rsibt setconnmode=<ConnMode>\r\n

Parameters:

ConnMode(1 byte) - To enable/disable connectability

0 - disable connection mode

1 - enable connection mode

AT command Ex:

at+rsibt setconnmode=1\r\n

Response:

OK\r\n

6.3.4 Get Connectablility Mode

Description:

This is used to get the connectable mode, currently the BT module was set.

AT command format:

at+rsibt_getconnmode?\r\n

Response:

Result Code	Description
OK <mode></mode>	Command Success with valid response.
ERROR <error_code></error_code>	Command Fail.

Response Parameters:

ConnMode(1 byte) - enabled/disabled connection mode

0 - Disabled connection mode

1 - Enabled connection mode

AT command Ex:

at+rsibt_getconnmode?\r\n

Response:

OK 1\r\n

6.3.5 Remote Name Request

Description:

This is used to know the name of the remote BT device, using its BD address. The response to this command containing the remote BT device name will be sent to the host through "RMTDEVNAME" event.

AT command format:

at+rsibt_rmtnamereq=<BDAddress>\r\n

Parameters:

BDAddress(6 bytes) - remote device BD Address

AT command Ex:

at+rsibt rmtnamereg= AA-BB-CC-DD-EE-FF\r\n

Response:

 $OK\r\n$

6.3.6 Remote Name Request Cancel

Description:

This will cancel the request served by "Remote Name Request" command. The cancellation is confirmed through "Remote Name Request Cancelled" event.

AT command format:

at+rsibt_rmtnamereqcancel=<BDAddress>\r\n

Parameters:

BDAddress(6 bytes) - remote device BD Address

AT command Ex:

Response:

OK\r\n

6.3.7 Inquiry

Description:

This performs an inquiry scan to find any BT devices in the vicinity. The response is sent using "INQRESP" event.

AT command format:

at+rsibt inquiry=<InquiryType>,<Duration>,<MaxNbrdev>\r\n

Parameters:

InquiryType (1 byte)-

- 0 -Standard Inquiry
- 1 Inquiry with RSSI
- 2 Extended Inquiry

Duration (4 bytes) - Extended Time in milliseconds (up to 10000ms)

MaxNbrdev(1 byte) – maximum number of devices to scan (from 1 to 10)

AT command Ex:

at+rsibt_inquiry=1,10000,10\r\n

Response:

 $OK\r\n$

6.3.8 Inquiry Cancel

Description:

This will cancel the inquiry scan, which was already in the process, served by "Inquiry" command.

AT command format:

at+rsibt_inquirycancel\r\n

AT command Ex:

at+rsibt_inquirycancel\r\n

Response:

 $OK\r\n$

6.3.9 Extended Inquiry Response Data

Description:

This command is used to set the Extended Inquiry Response data.

AT Command format:

at+rsibt_seteir=<DataLen>,<Data>\r\n

Parameters:

Length(1 byte) – data length. Max EIR data length is 200 Bytes. Data (200 bytes)– Actual data

Note:

Data should be in hex format

AT command Ex:

at+rsibt_seteir=8,2,1,0,4,9,72,72,72\r\n

Response:

OK\r\n

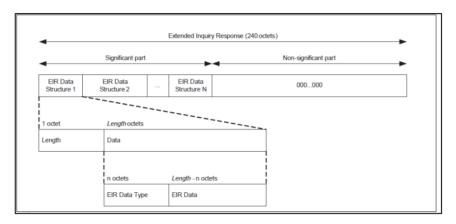


Figure 19: Extended Inquiry Response

6.3.10 Bond or Create Connection

Description:

This will create bonding (connection) between the BT module and the remote BT device based on BD address along with security.

AT command format:

at+rsibt_bond=<BDAddress>\r\n

Parameters:

BDAddress(6 bytes) – remote device BD Address.

AT command Ex:

at+rsibt_bond= AA-BB-CC-DD-EE-FF\r\n

Response:

OK\r\n

6.3.11 Bond Cancel or Create Connection Cancel

Description:

This will disconnect the connection between the BT module and the remote BT device only while the bonding is in progress.

۸	т	~~	mn	201	.	for	ma	٤.
4		CO	mn	ıar	M .	ror	ma	Г.

at+rsibt bondcancel=<BDAddress>\r\n

Parameters:

BDAddress(6 bytes) - remote device BD Address

AT command Ex:

at+rsibt bondcancel = AA-BB-CC-DD-EE-FF\r\n

Response:

 $OK\r\n$

6.3.12 UnBond Or Disconnect

Description:

This command is used to un-bond the device which was already bonded based on BD address of the remote BT device.

AT command format:

at+rsibt_unbond=<BDAddress>\r\n

Parameters:

BDAddress(6 bytes) – remote device BD Address

AT command Ex

at+rsibt_unbond= AA-BB-CC-DD-EE-FF\r\n

Response:

OK\r\n

6.3.13 Set Pin Type

Note:

This command is not currently supported

Description:

This is used to set the PIN code or pass key of the local BT module.

AT command format:

at+rsibt_setpintype=<PINType>\r\n

Parameters:

PINType(1 byte)

0 - variable pin

1 – fixed pin

AT command Ex:

at+rsibt_setpintype=1\r\n

Response:

 $OK\r\n$

6.3.14 Get Pin Type

Note:

This command is not currently supported.

Description:

This is used to get the PIN code or pass key of the local BT module.

AT command format:

at+rsibt_getpintype?\r\n

Response:

Result Code	Description
OK <pintype></pintype>	Command Success.
ERROR <error_code></error_code>	Command Fail.

Response Parameters:

PINType(1 byte) -

0 - variable pin

1 - fixed pin

AT command Ex:

at+rsibt_getpintype?\r\n

Response:

OK 1\r\n

6.3.15 User Confirmation

Description:

This gives the confirmation for the values sent by remote BT devices at the time of bonding.

AT command format:

at+rsibt_usrconfirmation=<BDAddress>,<Confirmation>\r\n

Parameters:

BDAddress(6 bytes): BD address of the remote BT device which sends connection request.

confirmation (1 byte):

0- NO. If both remote and local values are not same.

1- YES. If both remote and local values are same.

AT command Ex:

at+rsibt usrconfirmation= AA-BB-CC-DD-EE-FF,1\r\n

Response:

OK\r\n

6.3.16 Pass Key Request Reply

Description:

The user passkey entry is used to respond on a user passkey entry request (UPER).

AT command format:

at+rsibt_usrpasskey=<BDAddress>,<ReplyType>,<Passkey>\r\n

Parameters:

BDAddress(6 bytes) - Remote BD Address.

ReplyType (1 byte)-

0 - negative reply

1 – positive reply

Passkey(4 bytes) – Entered Passkey number in decimal (range from 0 to 999999).

AT command Ex:

at+rsibt_usrpasskey = AA-BB-CC-DD-EE-FF,1,123456\r\n

Response:

OK\r\n

6.3.17 Pincode Request Reply

Description:

The user pincode entry is used to respond on a user pin code entry request (UPER). To make connection with remote device then need to respond with positive reply.else send negative reply.

AT command format:

at+rsibt_usrpincode=<BDAddress>,<ReplyType>,<Pincode>\r\n

Parameters:

BDAddress(6 bytes) - Remote BD Address.

ReplyType(1 byte) -

0 - negative reply

1 – positive reply

Reserved - Padding

Pincode(16 bytes) - Entered Pincode number(must be in string format max string length is 16 bytes).

Response:

Result Code	Description
OK <role></role>	Command Success with valid response.
ERROR <error_code></error_code>	Command Fail

AT command Ex:

at+rsibt_usrpincode= AA-BB-CC-DD-EE-FF,1,1234\r\n

Response:

 $OK\r\n$

6.3.18 Get Local Device Role

Description:

This gets the role of the local BT module when connected with a particular remote BT device, based on BD address of the remote BT device.

AT command format:

at+rsibt getmasterslaverole=<BDAddress>?\r\n

Parameters:

BDAddress (6 bytes)- Remote BD Address

Response:

Result Code	Description
OK <role></role>	Command Success with valid response.
ERROR <error_code></error_code>	Command Fail.

Response Parameters:

Role(1 byte) -

0 - Master role

1 - slave role

AT command Ex:

at+rsibt_getmasterslaverole= AA-BB-CC-DD-EE-FF?\r\n

Response:

OK 1\r\n

6.3.19 Set Local Device Role Or Switch The Role

Description:

This is used to change the current role of the local BT module with respect to the remote BT device.

AT command format:

at+rsibt_setmasterslaverole=<BDAddress>,<Role>\r\n

Parameters:

BDAddress (6 bytes)— Remote BD Address Role(1 byte) - 0 — Master role 1 — Slave role

AT command Ex:

at+rsibt _setmasterslaverole=AA-BB-CC-DD-EE-FF,1\r\n

Response:

 $OK\r\n$

6.3.20 Get Service List

Description:

This is used to search for the services supported by the remote BT device.

AT command format:

at+rsibt_getsrvs=<BDAddress>\r\n

Parameters:

BDAddress(1 byte) - Remote BD Address

Response:

AT Mode:

Result Code	Description
OK <bd_addr>,<nbr_srvs_found>,<srv_uuid_1>,<srv_uuid_2>,</srv_uuid_2></srv_uuid_1></nbr_srvs_found></bd_addr>	Command Success with valid response.
ERROR <error_code></error_code>	Command Fail.

Parameters:

NumberOfServices (1 byte)— Number of services in the list ServiceUUIDs (4 bytes)— list of service UUID's

Note:

It will display only 32-bit UUID's

AT command Ex:

at+rsibt_getsrvs= AA-BB-CC-DD-EE-FF \r\n

Response:

OK\r\n

6.3.21 Search Service

Description:

This is used to find whether a particular service is supported by the remote BT device.

AT command format:

at+rsibt_searchsrv=<BDAddress>,<ServiceUUID>\r\n

Parameters:

BDAddress (6 bytes)— Remote BD Address ServiceUUID — 16-bit or 32-bit UUID.

Response:

AT Mode:

Result Code	Description
OK <search_result></search_result>	Command Success with valid response.
ERROR <error_code></error_code>	Command Fail.

Response parameters:

Search status(1 byte): 1-Yes, 0-No

AT command Ex:

at+rsibt_searchsrv= AA-BB-CC-DD-EE-FF,1105\r\n

Response:

OK 1\r\n

6.3.22 Linkkey Reply

Description:

The link key reply is used to respond on a link key request event. If previous link key of connecting device available then need to respond with positive reply, else send negative reply.

AT command format:

at+rsibt_usrlinkkey=<BDAddress>,<ReplyType>,<LinkKey>\r\n

Parameters:

BDAddress (6 bytes) - Remote BD Address.

ReplyType(1 byte) -

0 - negitive reply

1 - positive reply

LinkKey(16 bytes) – Link key saved for the remote BD address in host.

AT command Ex:

at+rsibt_usrlinkkey=AA-BB-CC-DD-EE-FF,1,3C,A5,50,25,DC,D0,B0,AB,B7,C3,4F,4D,9,79,2C,5C\r\n

Response:

 $OK\r\n$

6.3.23 Set SSP Mode

Description:

Set SSP mode is used to enable Simple Secure Pair mode and also used to select the IO Capability for SSP mode.

AT command format:

at+rsibt_setsspmode=<PairMode>,<IOCapability>\r\n

Parameters:

PairMode(1 byte)-

0 - Disable

1 - Enable

IOCapability(1 byte) -

0x00 - DisplayOnly

0x01 - DisplayYesNo

0x02 - KeyboardOnly

0x03 - NoInputNoOutput

AT command Ex:

at+rsibt_setsspmode=1,1\r\n

Response:

OK\r\n

6.3.24 Sniff Mode

Description:

Enables the Host to support a low-power policy and allows the devices to enter Inquiry Scan, Page Scan, and a number of other possible actions.

The local device will return the actual sniff interval in the Interval parameter of the Mode Change event, if the command is successful.

AT command format:

at+rsibt sniffmode=<BDAddress>,<SniffMaxIntr>,<SniffMinIntr>,<SniffAttempt>,<sniffTimeout>\r\n

Parameters:

bd addr(6 bytes)- Remote BD Address.

SniffMaxIntr(2 bytes) & SniffMinIntrv (2 bytes)- The Sniff_Max_Interval and Sniff_Min_Interval command parameters are used to specify the requested acceptable maximum and minimum periods in the Sniff Mode.

SniffAttempt(2 bytes)- Master shall poll the slave at least once in the sniff attempt transmit slots starting at each sniff anchor point.

SniffTimeout(2 bytes)- Timeout after which device enter sniff subrating mode.

AT command Ex:

at+rsibt_sniffmode= AA-BB-CC-DD-EE-FF,192,160,4,2\r\n

Response:

 $OK\r\n$

6.3.25 Sniff Exit

Description:

To end the Sniff mode.

AT command format:

at+rsibt sniffexit=<BDAddress>\r\n

Parameters:

BDAddress(6 bytes)- Remote BD Address.

AT command Ex:

at+rsibt sniffexit= AA-BB-CC-DD-EE-FF \r\n

Response:

OK\r\n

6.3.26 Sniff Subrating

Note:

Currently, the sniff subrating command is not supported.

Description:

When the sniff mode timeout has expired a device shall enter sniff subrating mode. Sniff subrating mode allows a device to use a reduced number of sniff anchor points.

AT command format:

at+rsibt_sniffsubrating=< BDAddress >,< MaxLatency>,<MinRemoteTimeout >,< MinLocalTimeout >\r\n

Parameters:

BDAddress(6 bytes)- Remote BD Address.

maximum_latency(2 bytes)- Maximum allowed sniff subrate of the remote device.

minimum_remote_timeout(2 bytes)- Minimum base sniff subrate timeout that the remote device may use minimum local timeout(2 bytes)- Minimum base sniff subrate timeout that the local device may use.

AT command Ex:

at+rsibt_sniffsubrating= AA-BB-CC-DD-EE-FF , 192,1000,1000\r\n

Response:

OK\r\n

6.3.27 Add Device ID

Description:

Add device Identification in SDP protocol.

AT command format:

at+rsibt_adddeviceid=<SpecificationID>,<VendorID>,<ProductID>,<Version>,<PrimaryRecord>,<VendorIDSource>\r\ n

Parameters:

SpecificationID(2 bytes) - the version number of the Bluetooth Device ID Profile specification supported by the device.

VendorID (2 bytes)- uniquely identify vendor of the device.

ProductID(2 bytes) - to distinguish between different products made by the vendor

Version(2 bytes) - A numeric expression identifying the device release number in Binary-Coded Decimal

PrimaryRecord(INT BOOL) - Set to TRUE in the case single Device ID Service Record exists in the device. If multiple Device ID Service Records exist, and no primary record has been defined, set to FALSE.

VendorIDSource(2 bytes) - This attribute designates which organization assigned the VendorID attribute, 0x201.

AT command Ex:

at+rsibt_adddeviceid=512,513,514,515,1,2 \r\n

Response:

 $OK\r\n$

6.4 SPP commands

Note:

SPP profile will not connect without pair process or authentication.

6.4.1 SPP Connect

Description:

This is used to establish SPP connection with the remote BT device specified by the BD address.

AT command format:

at+rsibt_sppconn=<BDAddress>\r\n

Parameters:

BDAddress(6 bytes) - Remote BD address.

AT command Ex:

at+rsibt_sppconn= AA-BB-CC-DD-EE-FF\r\n

Response:

 $OK\r\n$

6.4.2 SPP Disconnect

Description:

This is used to disconnect the SPP connection with the remote BT device.

AT command format:

at+rsibt_sppdisconn=<BDAddress>\r\n

Parameters:

BDAddress(6 bytes) - Remote BD address

AT command Ex:

at+rsibt_sppdisconn= AA-BB-CC-DD-EE-FF \r\n

Response:

OK\r\n

6.4.3 SPP Transfer

Description:

This is used to send data to the remote BT device using SPP profile. This command contains a data length field which tells the BT module about the length of data in bytes user wants to send from the application.

AT command format:

at+rsibt_spptx=<DataLength>,<Data>\r\n

Parameters:

DataLength(1 byte) – SPP data length (range of Data length is 1 to 200 Bytes). Data(200 bytes) – SPP data.

AT command Ex:

at+rsibt_spptx=5,iiiii\r\n

Response:

 $OK\r\n$

7 BT Classic Error Codes

Generic Error Codes

Table 9: Generic Error Codes

Error Code	Description
0x4C01	BT_A2DP_ERR_PKT_ALLOC_FAILED
0x4C02	BT_A2DP_ERR_DMA_BUSY
0x4C03	BT_A2DP_ERR_INVALIED_M4_BUF
0x4C04	BT_A2DP_ERR_PKT_ADDED_QUEUE_FULL
0x4C05	BT_A2DP_ERR_QUEUE_PKT_NULL
0x4E01	Unknown HCI command
0x4E02	Unknown Connection Identifier
0x4E03	Hardware failure
0x4E04	Page timeout
0x4E05	Authentication failure
0x4E06	Pin missing
0x4E07	Memory capacity exceeded
0x4E08	Connection timeout
0x4E09	Connection limit exceeded
0x4E0A	SCO limit exceeded
0x4E0B	ACL Connection already exists
0x4E0C	Command disallowed
0x4E0D	Connection rejected due to limited resources
0x4E0E	Connection rejected due to security reasons
0x4E0F	Connection rejected for BD address
0x4E10	Connection accept timeout
0x4E11	Unsupported feature or parameter
0x4E12	Invalid HCI command parameter
0x4E13	Remote user terminated connection
0x4E14	Remote device terminated connection due to low resources
0x4E15	Remote device terminated connection due to power off
0x4E16	Local device terminated connection
0x4E17	Repeated attempts
0x4E18	Pairing not allowed
0x4E19	Unknown LMP PDU
0x4E1A	Unsupported remote feature
0x4E1B	SCO offset rejected

0x4E1C SCO interval rejected 0x4E1D SCO Air mode rejected 0x4E1E Invalid LMP parameters 0x4E1F Unspecified 0x4E20 Unsupported LMP Parameter 0x4E21 Role change not allowed 0x4E22 LMP response timeout 0x4E23 LMP transaction collision 0x4E24 LMP PDU not allowed 0x4E25 Encryption mode not acceptable 0x4E26 Link key cannot change 0x4E27 Requested QOS not supported 0x4E28 Instant passed 0x4E29 Pairing with unit key not supported 0x4E2A Different transaction collision 0x4E2B Reserved 1 0x4E2C QOS parameter not acceptable 0x4E2D QOS rejected 0x4E2E Channel classification not supported	
0x4E1E Invalid LMP parameters 0x4E1F Unspecified 0x4E20 Unsupported LMP Parameter 0x4E21 Role change not allowed 0x4E22 LMP response timeout 0x4E23 LMP transaction collision 0x4E24 LMP PDU not allowed 0x4E25 Encryption mode not acceptable 0x4E26 Link key cannot change 0x4E27 Requested QOS not supported 0x4E28 Instant passed 0x4E29 Pairing with unit key not supported 0x4E2A Different transaction collision 0x4E2B Reserved 1 0x4E2C QOS parameter not acceptable 0x4E2D QOS rejected 0x4E2E Channel classification not supported	
0x4E1F Unspecified 0x4E20 Unsupported LMP Parameter 0x4E21 Role change not allowed 0x4E22 LMP response timeout 0x4E23 LMP transaction collision 0x4E24 LMP PDU not allowed 0x4E25 Encryption mode not acceptable 0x4E26 Link key cannot change 0x4E27 Requested QOS not supported 0x4E28 Instant passed 0x4E29 Pairing with unit key not supported 0x4E2A Different transaction collision 0x4E2B Reserved 1 0x4E2C QOS parameter not acceptable 0x4E2D QOS rejected 0x4E2E Channel classification not supported	
0x4E20 Unsupported LMP Parameter 0x4E21 Role change not allowed 0x4E22 LMP response timeout 0x4E23 LMP transaction collision 0x4E24 LMP PDU not allowed 0x4E25 Encryption mode not acceptable 0x4E26 Link key cannot change 0x4E27 Requested QOS not supported 0x4E28 Instant passed 0x4E29 Pairing with unit key not supported 0x4E2A Different transaction collision 0x4E2B Reserved 1 0x4E2C QOS parameter not acceptable 0x4E2D QOS rejected 0x4E2E Channel classification not supported	
0x4E21 Role change not allowed 0x4E22 LMP response timeout 0x4E23 LMP transaction collision 0x4E24 LMP PDU not allowed 0x4E25 Encryption mode not acceptable 0x4E26 Link key cannot change 0x4E27 Requested QOS not supported 0x4E28 Instant passed 0x4E29 Pairing with unit key not supported 0x4E2A Different transaction collision 0x4E2B Reserved 1 0x4E2C QOS parameter not acceptable 0x4E2D QOS rejected 0x4E2E Channel classification not supported	
0x4E22 LMP response timeout 0x4E23 LMP transaction collision 0x4E24 LMP PDU not allowed 0x4E25 Encryption mode not acceptable 0x4E26 Link key cannot change 0x4E27 Requested QOS not supported 0x4E28 Instant passed 0x4E29 Pairing with unit key not supported 0x4E2A Different transaction collision 0x4E2B Reserved 1 0x4E2C QOS parameter not acceptable 0x4E2D QOS rejected 0x4E2E Channel classification not supported	
0x4E23 LMP transaction collision 0x4E24 LMP PDU not allowed 0x4E25 Encryption mode not acceptable 0x4E26 Link key cannot change 0x4E27 Requested QOS not supported 0x4E28 Instant passed 0x4E29 Pairing with unit key not supported 0x4E2A Different transaction collision 0x4E2B Reserved 1 0x4E2C QOS parameter not acceptable 0x4E2D QOS rejected 0x4E2E Channel classification not supported	
0x4E24 LMP PDU not allowed 0x4E25 Encryption mode not acceptable 0x4E26 Link key cannot change 0x4E27 Requested QOS not supported 0x4E28 Instant passed 0x4E29 Pairing with unit key not supported 0x4E2A Different transaction collision 0x4E2B Reserved 1 0x4E2C QOS parameter not acceptable 0x4E2D QOS rejected 0x4E2E Channel classification not supported	
0x4E25 Encryption mode not acceptable 0x4E26 Link key cannot change 0x4E27 Requested QOS not supported 0x4E28 Instant passed 0x4E29 Pairing with unit key not supported 0x4E2A Different transaction collision 0x4E2B Reserved 1 0x4E2C QOS parameter not acceptable 0x4E2D QOS rejected 0x4E2E Channel classification not supported	
0x4E26 Link key cannot change 0x4E27 Requested QOS not supported 0x4E28 Instant passed 0x4E29 Pairing with unit key not supported 0x4E2A Different transaction collision 0x4E2B Reserved 1 0x4E2C QOS parameter not acceptable 0x4E2D QOS rejected 0x4E2E Channel classification not supported	
0x4E27 Requested QOS not supported 0x4E28 Instant passed 0x4E29 Pairing with unit key not supported 0x4E2A Different transaction collision 0x4E2B Reserved 1 0x4E2C QOS parameter not acceptable 0x4E2D QOS rejected 0x4E2E Channel classification not supported	
0x4E28 Instant passed 0x4E29 Pairing with unit key not supported 0x4E2A Different transaction collision 0x4E2B Reserved 1 0x4E2C QOS parameter not acceptable 0x4E2D QOS rejected 0x4E2E Channel classification not supported	
Ox4E29 Pairing with unit key not supported Ox4E2A Different transaction collision Ox4E2B Reserved 1 Ox4E2C QOS parameter not acceptable Ox4E2D QOS rejected Ox4E2E Channel classification not supported	
0x4E2A Different transaction collision 0x4E2B Reserved 1 0x4E2C QOS parameter not acceptable 0x4E2D QOS rejected 0x4E2E Channel classification not supported	
0x4E2B Reserved 1 0x4E2C QOS parameter not acceptable 0x4E2D QOS rejected 0x4E2E Channel classification not supported	
0x4E2C QOS parameter not acceptable 0x4E2D QOS rejected 0x4E2E Channel classification not supported	
0x4E2D QOS rejected 0x4E2E Channel classification not supported	
0x4E2E Channel classification not supported	
0x4E2F Insufficient security	
0x4E30 Parameter out of mandatory range	
0x4E31 Reserved 2	
0x4E32 Role switch pending	
0x4E33 Reserved 3	
0x4E34 Reserved slot violation	
0x4E35 Role switch failed	
0x4E36 Extended Inquiry Response too large	
0x4E37 Extended SSP not supported	
0X4E38 Host busy pairing	
0x4E39 Wrong BD Address	
0x4e3C ADVERTISING TIMEOUT	
0x4E3E Connection Failed to be Established	
0x4FF8 BT Invalid Command	

Core Error Codes

Table 10: Core Error Codes

Error Code	Description
0x4040	IO Fail
0x4041	Unknown
0x4042	HW Busy
0x4043	Max Sock
0x4044	Short Buf
0x4045	Max Name Size
0x4046	Invalid Args
0x4047	Sock open fail
0x4048	Timeout
0x4049	Socket state invalid
0x404A	Bad bd address
0x404B	Acl packet error
0x404C	Pool alloc fail
0x404D	Tx fail
0x404E	Connection refused
0x404F	Confirmation result
0x4050	Remote user disconnected
0x4051	Remote device not responding
0x4052	Invalid command
0x4053	Unsupported feature param value
0x4054	Thread create fail
0x4055	Sem wait fail
0x4056	Pool full
0x4057	Hw buffer overflow
0x4058	Tx buffer empty
0x4059	HCI connection fail
0x405A	Operation incomplete
0x405B	Operation cancel
0x405C	BSP error
0x4060	Sco connection fail
0x4061	No HCI connection
0x4062	Socket disconnected
0x4063	Socket timeout

Error Code	Description	
0x4064	HCI connection encrypt fail	
0x4065	Max acl packet buffer length	
0x4066	Max nbr acl packets	
0x4067	Invalid state	
0x4069	Remote name fail	
0x406A	Invalid response	
0x4071	Invalid psm	
0x4072	Psm in use	
0x4073	Invalid hci connection handle	
0x4074	Invalid cid	
0x4075	Invalid pkt	
0x4080	Scn is in use	
0x4081	Max acl connections	
0x4082	Sock already exists	
0x4100	Invalid pdu	
0x4101	Invalid pdu data element	
0x4102	Sdp service not found	
0x4103	Sdp attribute not found	
0x4104	Sdp max service attribute	
0x4200	Max RF communication channels	
0x4201	RF communication disconnected	
0x4202	RF communication channel not found	
0x4203	RF communication invalid packet	
0x4204	RF communication remote credits zero	
0x4205	RF communication invalid state	
0x4206	RF communication fcoff	
0x4207	RF communication no service connection	
0x4300	HCI connection already exists	
0x4301	Max hci connection	
0x4302	SCO invalid state	
0x0102	Unknown	
0x0103	Firmware Timeout	
0x0104	Memory alloc fail	
0x0106	lo fail	
0x0108	Unsupported	

Error Code	Description
0x0109	Short buf
0x010A	Buf overflow
0x010B	Too large buf
0x010C	lo abort
0x010D	File open fail
0x1010	Os task invalid prio
0x1011	Os task prio exists
0x1012	Os task not stopped
0x1020	Os sem max value
0x1021	Os sem not available
0x1022	Os sem reset
0x1030	Os mutex not owner
0x1031	Os mutex not locked
0x1032	Os mutex lock failed
0x1033	Os mutex try lock failed
0x1040	Os msg queue full
0x1041	Os message queue empty
0x1050	Pipe empty
0x1051	Pipe full
0x1052	Invalid len
0x1053	Pipe read in use
0x1054	Pipe write in use
0x1060	Os timer expired
0x1061	Os timer state running
0x1070	Os can not wait
0x1080	Os mem pool empty
0x1081	Os mem pool size short
0x4500	SPP not connected
0x4501	SPP not initialized
0x4FF9	Inquiry cancel command is given when device is not in Inquiry State
0x4604	SPP Tx FAIL

Queue Error Codes

Table 11: Queue Error Codes

Error Code	Description
0x1090	OS Event queue full
0x1091	OS Event not available
0x1092	OS Event not created
0x1093	OS Event prio not created
0x1094	OS Event no event created

IAP Error Codes

Table 12: IAP Error Codes

Error Code	Description
0x8000	ERR_IAP1_SUCCESS
0x8001	ERR_IAP1_UNKNOWN_DATABASE
0x8002	ERR_IAP1_COMMAND_FAILED
0x8003	ERR_IAP1_DEVICE_OUTOF_RESOURCE
0x8004	ERR_IAP1_BAD_PARAM
0x8005	ERR_IAP1_UNKNOWN_ID
0x8006	ERR_IAP1_COMMAND_PENDING
0x8007	ERR_IAP1_NOT_AUTHENTICATED
0x8008	ERR_IAP1_BAD_AUTHENTICATION_VERSION
0x8009	ERR_IAP1_ACCESSORY_PWR_REQ_FAILED
0x800A	ERR_IAP1_CERTIFICATE_INVALID
0x800B	ERR_IAP1_CERTIFICATE_PERMISSION_FAILED
0x800C	ERR_IAP1_FILE_IN_USE
0x800D	ERR_IAP1_INVALID_FILE_HANDLE
0x800E	ERR_IAP1_DIRECTORY_NOT_EMPTY
0x800F	ERR_IAP1_OPERATION_TIMED_OUT
0x8010	ERR_IAP1_COMMAND_UNAVAILABLE
0x8011	ERR_IAP1_ACC_DETECT_NOT_GROUNDED
0x8012	ERR_IAP1_SELECTION_NOT_GENIUS
0x8013	ERR_IAP1_MULTISECTION_DATA_RECV_SUCCESS
0x8014	ERR_IAP1_LINGO_BUSY
0x8015	ERR_IAP1_MAX_ACCESSORY_CONN_REACHED
0x8016	ERR_IAP1_HID_DESC_INDEX_INUSE
0x8017	ERR_IAP1_DROPPED_DATA

Error Code	Description
0x8018	ERR_IAP1_UNSUPPORTED_IPODOUT_VIDEO_SETTINGS
0x8100	ERR_IAP1_IDPS_SUCCESS
0x8101	ERR_IAP1_IDPS_TKN_FIELDS_REJECTED
0x8102	ERR_IAP1_IDPS_TKN_FIELDS_MISSING
0x8103	ERR_IAP1_IDPS_TKN_FIELDS_INCORRECT_RESEND
0x8104	ERR_IAP1_IDPS_ACCESSORY_MAY_RETRY
0x8105	ERR_IAP1_IDPS_TIMEOUT
0x8106	ERR_IAP1_IDPS_NOT_SUPPORTED
0x8107	ERR_IAP1_IDPS_INVALID_TKN_FIELDS
0x8300	ERR_IAP_CP_SUCCESS
0x8301	ERR_IAP_CP_INVALID_READ_REGISTER
0x8302	ERR_IAP_CP_INVALID_WRITE_REGISTER
0x8303	ERR_IAP_CP_INVALID_SIGNATURE_LEN
0x8304	ERR_IAP_CP_INVALID_CHALLENGE_LEN
0x8305	ERR_IAP_CP_INVALID_CERTIFICATE_LEN
0x8306	ERR_IAP_CP_SIGNATURE_GENERATION
0x8307	ERR_IAP_CP_CHALLENGE_GENERATION
0x8308	ERR_IAP_CP_SIGNATURE_VERIFICATION
0x8309	ERR_IAP_CP_CERITIFICATE_VERIFICATION
0x830A	ERR_IAP_CP_INVALID_PROCESS_CTRL
0x830B	ERR_IAP_CP_PROCESS_CTRL_OUTOF_SEQUENCE
0x83F0	ERR_IAP_CP_I2C_WRITE_FAILED

8 BT Power Save Operation

Description:

This feature explains the configuration of **Power Save** modes of the module. These modes can be issued at any time after Opermode command. By default, Power Save is in disable state.

There are five different modes of Power Save.

- Power Save mode 0
- 2. Power Save mode 2
- 3. Power Save mode 3
- Power Save mode 8
- 5. Power Save mode 9

Power Save Operations

The behavior of the module differs according to the power save mode configured.

The following terminology can be used in below section in order to describe the functionality.

Protocol	Non-Connected State	Connected State
BT Classic	This mode is significant when module is	This mode is significant when
	in Idle (standby) state.	module is in Connected
		mode, connected sniff mode, Discoverable mode
		(ISCAN) and Connectable
		mode (PSCAN)

In BT classic, Power Save mode 2 and 3 can be used during PAGE SCAN (Connectable mode) /INQUIRY SCAN(Discoverable mode) /Connected state. Operational behavior is as below depending on the state.

- Inquiry Scan State: In this state, the module is awake during Inquiry scan window duration and sleeps till the next Inquiry scan interval
- Page Scan State: In this state, the module is awake during page scan window duration and sleeps till the next page scan interval
- Connected state: In this state, the module wakes up randomly based on the data transfer. Sleep duration is random in this state.
- **Connected Sniff state:** In this state, the module wakes up for every sniff anchor point and wake up until the sniff timeout. Sleep duration depends on the sniff anchor point interval in this state.

Power Save Mode 0

In this mode the module is in active state and power save is disabled. It can be configured at any time while power save is enable with Power Save mode 2 and 3 or Power Save mode 8 and 9.

Power Save Mode 2 (GPIO based mode)

Once the module is configured to power save mode 2, it can be woken up either by the host or periodically during its sleep-wake up cycle based upon the connected state intervals.

Power mode 2 is GPIO based. In ULP mode, feature_bit_map[4]has to be set in opermode command. In this mode, whenever host wants to send data to module, it gives wakeup indication by setting UULP GPIO #2. After wakeup, if the module is ready for data transfer, it sends wakeup indication to host by setting UULP GPIO #3. Host is required to wait until module gives wakeup indication before sending any data to the module.

After the completion of data transfer, host can give sleep permission to module by resetting UULP GPIO #2. After recognizing sleep permission from host, module gives confirmation to host by resetting UULP GPIO #3 and again gets back to its sleep-wake up cycle.

Module can send received packets or responses to host at any instant of time. No handshake is required on Rx path.

Power Save Mode 3 (Message-based Mode)

Power Mode 3 is message-based power save, both radio and SOC of the module are in power save mode.

Module wakes up periodically upon every deep sleep duration and gives wakeup message ("WKP") to host. Module cannot be woken up asynchronously. Every time module intends to go to sleep it sends a sleep request message ("SLP") to the host and expects host to send the ack ("ACK") message. Host either sends ack ("ACK") or any other pending message. But once ack ("ACK") is sent, Host should not send any other message unless next wakeup message from module is received.

Module shall not go into complete power-save state if ack is not received from host for given sleep message. Module can send received packets or responses to host at any instant of time. No handshake is required on Rx path.

AT mode	
"WKP"	
"SLP"	

Message from Module in Power save Mode

AT mode

"ACK"

Message from host in Power save Mode

Note:

Power save disable command has to be given before changing the state from standby to the remaining states and wise-versa.

Suppose if Power Save is enabled in standby state, in order to move to Scanning state, first Power Save disable command needs to be issued before giving Scan command.

When the module is configured in a co-ex mode and WLAN is in INIT_DONE state, power save mode 2 & 3 are valid after association in the WLAN. Whereas in BT & BLE alone modes, it will enter into power save mode (2 & 3) in all states except in standby state.

Power Save Mode 8

This command has to be issued after the opermode command. Module should be in non-connected state before giving this command. Please refer to the above table for the state description.

In Power Mode 8 both RF and SoC are in complete power save mode. This mode is significant when module is not connected with any AP. Power mode 8 is GPIO based. In ULP mode, feature_bit_map[4]has to be set in opermode command.

In case of LP (when ulp_mode_enable is '0') host can wakeup the module from power save by making ULP_GPIO_5 high.

In case of ULP (when ulp_mode_enable is '1' or '2') host can wakeup the module from power save by making UULP_GPIO_2 high.

When ulp_mode_enable is set to '0' or '1', once the module gets wakeup it continues to be in wakeup state until it gets power mode 8 commands from host.

When ulp_mode_enable is set to '2', after waking up from sleep module sends following message to host when RAM retention is not enabled. After receiving this message host needs to start giving commands from beginning (opermode) as module's state is not retained.

AT mode

"WKP FRM SLEEP"

Message from Module in ULP Mode 2

Power Save Mode 9

In Power Mode 9 both Radio and SoC are in complete power save mode. This command has to be issued after the opermode command. Module should be in non-connected state before giving this command. Once power mode 9 command is given, the module goes to sleep immediately and wakes up after sleep duration configured by host. If host does not set any default time, then the module wakes up in 1 sec by default. Upon wakeup module sends a wakeup message to the host and expects host to give ACK before it goes into next sleep cycle. Host either sends ACK or any other messages but once ACK is sent no other packet should be sent before receiving next wakeup message.

When ulp_mode_enable is set to '2', after waking up from sleep, the module sends following message to host when RAM retention is not enabled. After receiving this message, host needs to start giving commands from beginning (opermode) as module's state is not retained.

AT mode

"WKP FRM SLEEP"

Message from Module in ULP Mode

9 BT AT CMD Configuration Changes/Enhancements

S.No	Configuration	Existing Configuration	New/Modified Configuration	Comments
1	384k mode is mandatory from 2.X.X release for any BT use-case	256K mode was supported	256K mode is no longer supported. Only 384K mode is supported from 2.X.X	Set BIT[20] and BIT[21] in 'ext_custom_feature_bit_map' parameter in 'at+rsi_opermode' command.

10 Revision History

Revision #	Version #	Date	Changes
1	1.0	November 2017	Advance version
2	1.1	Feb 2018	Formatting changes
3	1.2	April 2018	Generalized for Wiseconnect and Wisemcu
4	1.3	June 2018	 Old thread of figures was replaced with new ones, Response codes are updated Alignment issues are resolved
5	1.4	July 2018	 Reviewed and updated Commands and event formats Added command, command response and event id's Structural changes are done
6	1.5	September 2018	 Added ext_custom_feat_bitmap field and modified feature bitmap description in opermode command Added a2dp burst mode command and more data req event related information Added BT A2DP error commands Added Device ID command Segregation of features for different products
7	1.6	March 2019	Deleted the Zigbee section
8	1.7	May 2019	Added BT HID Device related commands
9	1.8	July 2019	Added BT HID Device related AT commands
10	1.9	September 2019	 Updated BT feature bitmap for 3mbps, 2mpbs and Sniff mode configurations Updated BT Feature bitmap for Sniff feature and Noise figure feature configurations
11	1.10	December 2019	Added BLE CW mode support
12	1.11	December 2019	Added AT command to change the BLE MTU size
13	1.12	Feb 2020	Added a Note in EXT_TCP_IP_FEATURE_BITMAP in oper mode Added configure_feature_bit_map in set operating mode
14	2.0	Sep 2020	 Added AT mode based "HID conn process with SSP mode enabled". Removed 'Related Resources' section. Moved 'SPI Interface', 'UART Interface', 'USB Interface' sections to 'Host Interfaces'. Renamed document name from 'Embedded BT Classic Software Programming Reference Manual (PRM)' to 'RS9116W BT Classic AT Command Programming Reference Manual'. Removed all Binary Commands. Updated 384k mode. Added note in BT Opermode command. Added note in RSSI signal strength. Removed SDIO, USB, SPI interfaces from Host Interfaces section.

Revision #	Version #	Date	Changes
			10. Added 'Changes/Enhancements in BT AT Commands, Configurations and Mechanisms' section.
			11. Added length for each AT CMD (parameters and responses).

11 Appendix A: Sample Flows

1. Configure BT device in Master mode

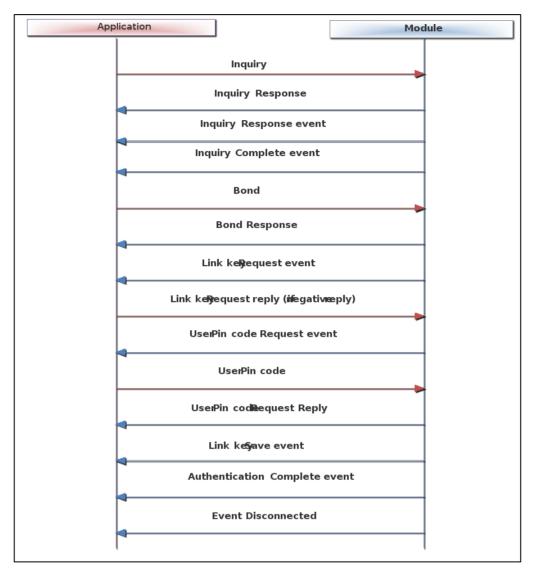


Figure 20: Sample Flow in BT Master Mode while Link Key Reply is Negative

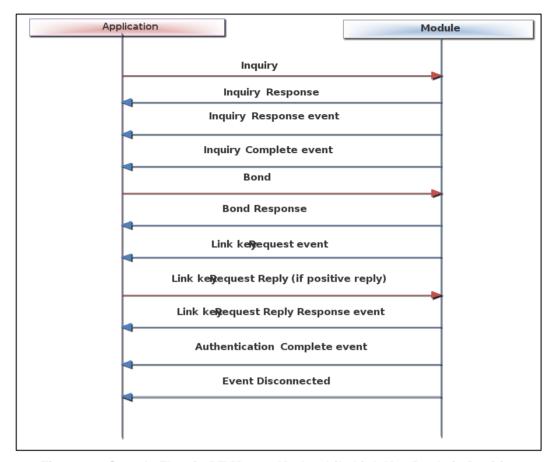


Figure 21: Sample Flow in BT Master Mode while Link Key Reply is Positive

2. Configure BT device in Slave mode

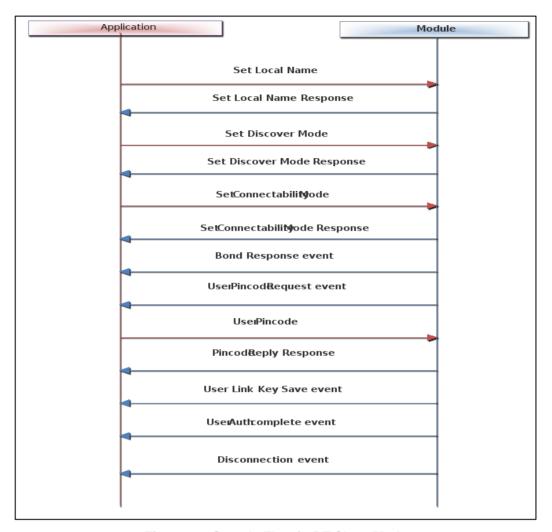


Figure 22: Sample Flow in BT Slave Mode

3. Configure BT device in Master Mode and do SPP Tx

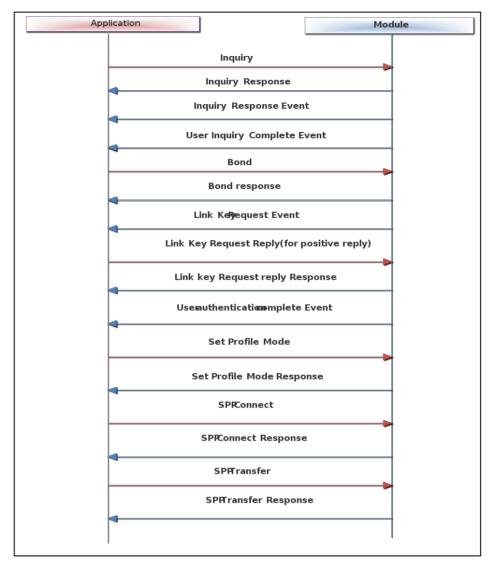


Figure 23: Sample Flow in BT Master Mode and Do SPP Tx

4. Configure BT Device in Slave Mode and Do SPP Tx

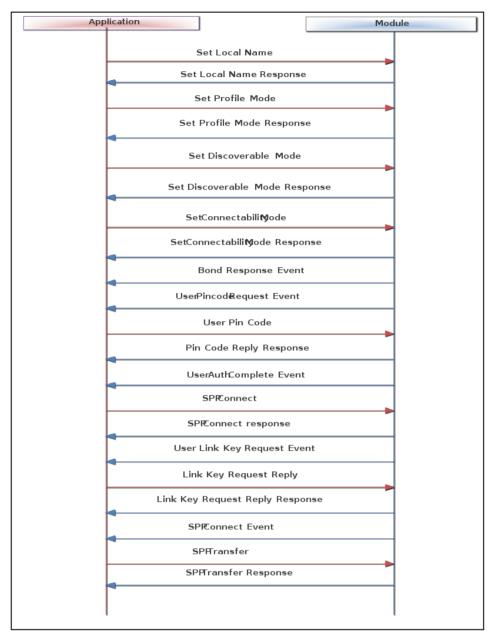


Figure 24: Sample Flow in BT Slave Mode and Do SPP Tx

5. AT Command Sequence to Perform SPP Data Transfer in BT Master Mode

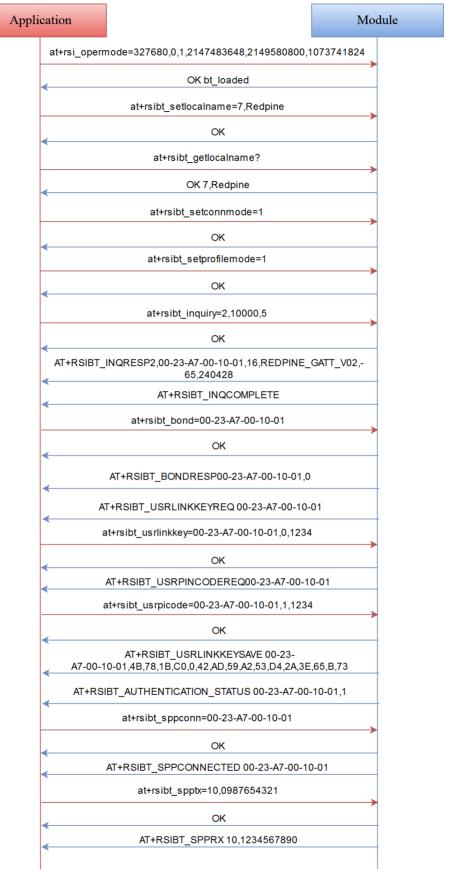


Figure 25: AT Command Flow in BT Master Mode

6. AT Command Sequence to Perform SPP Data Transfer in BT Slave Mode



Figure 26: AT Command Flow in BT Slave Mode

7. Configure Device in BT HID Device Mode to Perform HID Data Transfer



Figure 27: Sample Flow Configuring Device Mode and Perform HID Data Transfer

8. AT Command Sequence to Perform HID Data Transfer in BT HID Device Mode (without Secure Pairing (SSP))

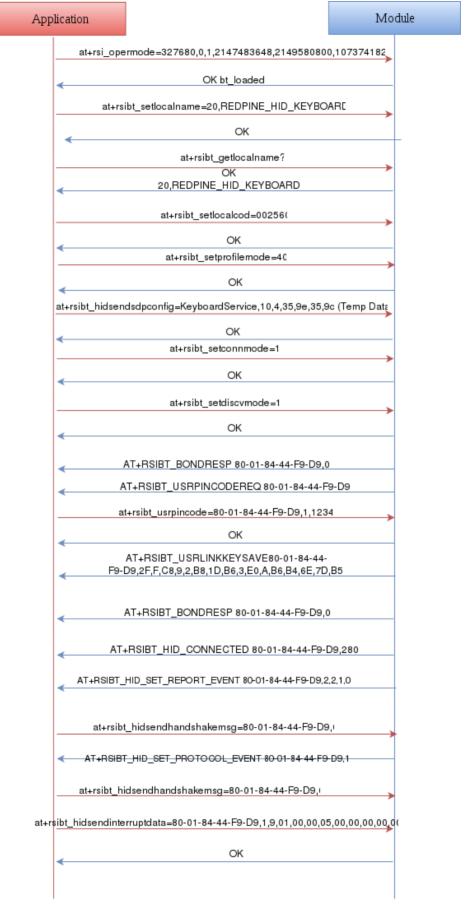


Figure 28: AT Command Flow in BT HID Device Mode (SSP Mode not Enabled)

 AT Command Sequence to Perform HID Data Transfer in BT HID Device Mode (enabled Secure Pairing (SSP))

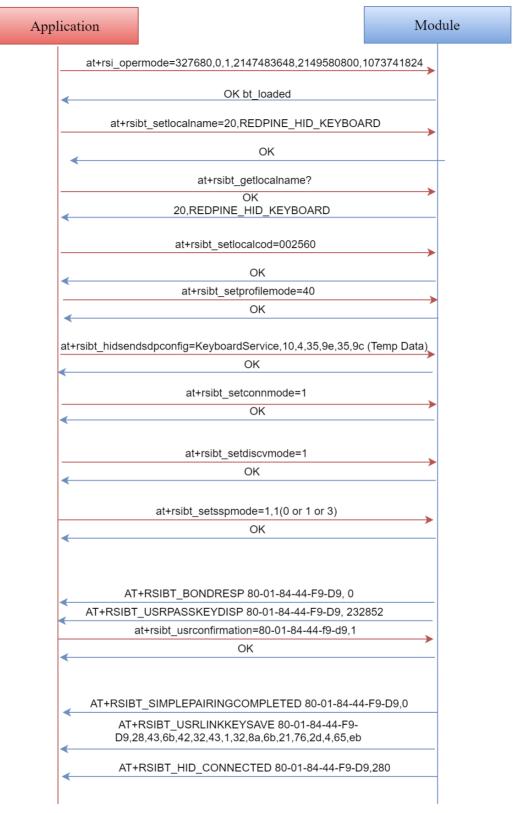
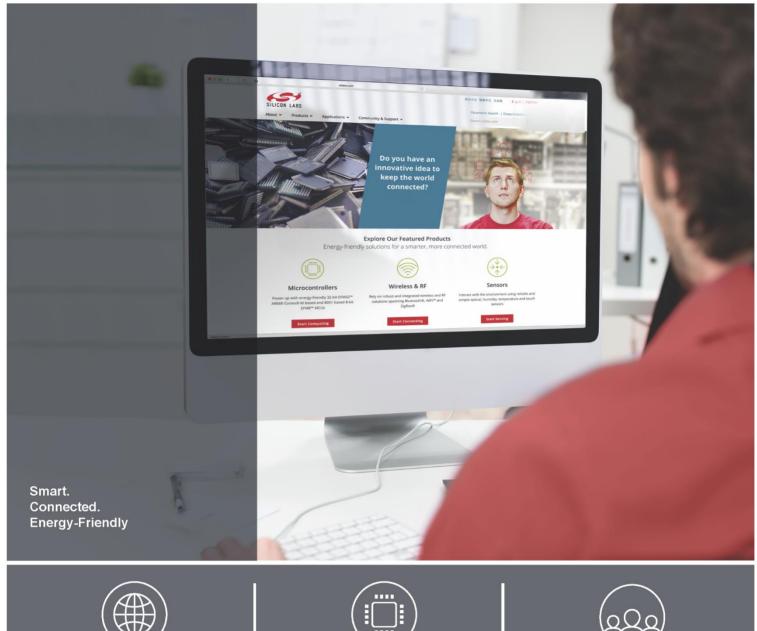



Figure 29: AT Command Flow in BT HID Device Mode (SSP Mode Enabled)

Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products must not be used within any Life Support System without the specific written consent of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Laboratories products are generally not intended for military applications. Silicon Laboratories products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

Trademark Information

Silicon Laboratories Inc., Silicon Laboratories, Silicon Labs, SiLabs and the Silicon Labs logo, CMEMS®, EFM, EFM32, EFR, Energy Micro, Energy Micro logo and combinations thereof, "the world's most energy friendly microcontrollers", Ember®, EZLink®, EZMac®, EZRadio®, EZRadio®, DSPLL®, ISOmodem ®, Precision32®, ProSLIC®, SiPHY®, USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.

Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701

http://www.silabs.com