

CABLE REPLACEMENT OVER BLE

APPLICATION NOTE FOR BT121

Friday, 18 June 2021

Document Revision: 1.2

Silicon Labs

VERSION HISTORY

Date Edited Comment

0.90 First draft

1.0 First release

1.1
Renamed "Smart Ready" to "Dual Mode" and "Classic" to "BR/EDR"
according to the official Bluetooth SIG nomenclature.

1.2
Replaced inappropriate terms in accordance with the latest Bluetooth SIG
recommendations.

Silicon Labs

TABLE OF CONTENTS

 Introduction ..4

1.1 Uses for Cable Replacement ...4

1.2 Cable Replacement profile ...4

 Prerequisites ..8

2.1 Installing the Bluetooth Dual Mode SDK ..8

2.2 Setting up the Server device ..9

2.3 Setting up the Client Device .. 10

 Walkthrough of the Cable Replacement Applications .. 10

3.1 Project configuration file .. 10

3.2 Hardware configuration file ... 12

3.3 GATT database configuration ... 13

3.4 BGScript™ code.. 17

3.5 Compiling the applications .. 21

3.6 Installing the firmware ... 22

3.7 BGTool .. 22

3.8 Testing the applications .. 23

 Silicon Labs 4

 Introduction

This application note discusses how to use the Low Energy (LE) part of the firmware in the BT121 modules in
order to make Bluetooth LE devices which can act as serial cable replacement. This means that data normally
carried over a physical serial cable can be instead transmitted over the air using Bluetooth radio technology,
making the communication between devices wireless.

The reference hardware platform used in the application note is the DKBT Bluetooth Dual Mode Development
Kit (in short DKBT). You can also use the BT121 Bluetooth Dual Mode module, but for development purposes
the DKBT hardware provides easier access to various components.

The reference applications discussed in this application note are developed with the Bluegiga BGScriptTM

scripting language, which means that the applications can run fully independently on the BT121 Bluetooth Dual
Mode module without the need for an extra host MCU.

This application note relies on information found in the BT121 Data Sheet, DKBT User Guide, and Bluetooth
Dual Mode API Reference. Please consult those for further details.

This application note assumes you have read and understood the Bluetooth Dual Mode
Software Getting Started Guide.

1.1 Uses for Cable Replacement

One way to use wireless cable replacement is to place a BT121 Bluetooth Dual Mode module at both ends of a
link between two serial devices, simply replacing the wired serial link. This is normally achieved with the
Bluetooth BR/EDR’s Serial Port Profile (SPP) but in this application note it will be discussed how this can also
be accomplished over a Bluetooth Low Energy link.

Another possibility is to connect a serial data sink/source to one BT121 Bluetooth Dual Mode module and
implement the other end of the link with another Bluetooth device, without moving the traffic back to a serial
cable link at the other end. For instance, a legacy serial device could use the BT121 to communicate over
Bluetooth Low Energy with a smartphone application that understands the protocol used by the legacy device.

1.2 Cable Replacement profile

A Bluetooth Low Energy proprietary profile is implemented in the BT121 Bluetooth stack on top of Bluetooth
Generic Attribute Profile (GATT). This Cable Replacement profile defines the communication protocol for
transferring the data over a Bluetooth link using Attribute Protocol (ATT) methods.

The Cable Replacement profile must be implemented in both ends of the Bluetooth link.

The profile contains two roles:

• Server: The server device acts as ATT server and provides the Cable Replacement service for data
transfer.

• Client: The client device initiates the Bluetooth links to the server device, and uses the service provided
by the Server.

In a typical use case the BT121 takes the Server role, being connected to a serial data source over its UART
port and transparently forwarding data between the port and the Client device. However, the client role is also
implemented in the BT121 stack, so it can act as both sides of a Cable Replacement connection.

 Silicon Labs 5

1.2.1 Service

The Cable Replacement profile does not define the service UUID to be used; it can be freely assigned to a
suitable value by the Server implementation.

The profile does not as such restrict the number of Cable Replacement services on a Server device. However,
the BT121 has one UART and in most cases having a single service makes most sense. The only reason for
having two services would be to allocate one service for reliable data transfer and the other for unreliable (see
below for details).

The service may contain any number of characteristics, but it must contain exactly one characteristic for
transferring data, as described below.

1.2.2 Data characteristic

The data is transferred between the Client and the Server using ATT protocol methods on an ATT characteristic
designated for data transfer by the Server. The characteristic shall be contained in the service designated by
the Server for the Cable Replacement profile.

Note that the Cable Replacement profile does not define the characteristic UUID to be used; it can be freely
assigned to a suitable value by the Server implementation.

Depending on Server configuration, the following alternatives for data transfer are possible:

• Write Request/Response (client to server), Value Indication/Confirmation (server to client): these
methods are acknowledged by the recipient’s response message, which makes data transfer using
these operations reliable; if data is lost, it is detected on the ATT level instead of being silently ignored.
The acknowledgements also provide an implicit flow control for the data.

• Write Command (client to server), Value Notification (server to client): these methods are not
acknowledged by the recipient, meaning that data can be silently lost. If these methods are used and
reliable data transfer or data flow control is needed, it needs to be implemented on top of the cable
replacement profile by the application.

It is the server’s responsibility to configure the characteristic appropriately for the application; the GATT
properties for the characteristic shall have either Write and Indicate, or Write Without Response and Notify,
property bits set, but not both pairs nor one of a pair without other. Also, the Read property is not allowed.

1.2.3 Profile operation

The client and the server must follow certain procedures in order to transfer data.

A data transfer session is divided into three distinct phases: connection establishment, actual data transfer, and
connection teardown. These are described in detail below.

1.2.3.1 Connection establishment

The typical connection establishment procedure, where the Cable Replacement GATT Client device acts as a
LE Central and actively forms a LE connection, while the GATT Server device acts as the LE advertising
Peripheral, is described below. Note however that the LE roles can be reversed if needed by the application.

Before a connection is established, the Server device has to be connectable; it may also be discoverable, and
it may advertise the Cable Replacement service UUID.

As a prerequisite, since the Cable Replacement service UUID can be freely assigned, the Client shall know the
UUID used by the server to be connected to beforehand. It shall also know the UUID of the Data characteristic.

Unless an LE connection already exists between the devices the Client shall initiate the connection. Connection
parameters may be set as appropriate.

If necessary for the application, the Client device may encrypt the connection before connection establishment
is finalized. Note that the Server device may refuse to serve data requests on an unencrypted connection.

 Silicon Labs 6

The amount of data sent in each ATT method is limited by the maximum ATT MTU. ATT protocol headers
reduce the space available for payload by further 3 bytes. Thus, it is recommended to negotiate MTU larger
than the default of 23 bytes for improved throughput before connection establishment is finalized.

The Client may discover the Data characteristic handle from the Server, if necessary, using the normal GATT
procedures.

The Client shall then write the Client Characteristic Configuration value for the Data characteristic so that it
contains either the Notification bit or the Indication bit, depending on the Server configuration. After this is done,
the connection is considered established and data may be transferred.

An example message sequence chart below describes the connection establishment. Note that in the example
there is only one Cable Replacement service present in the service, and it contains only the Data characteristic
and its associated metadata. The chart refers to four different handles: H1 is the Cable Replacement service
handle, while Hd, Hv, and Hc are the Data characteristic declaration, value, and configuration handles,
respectively. The Data characteristic handles are also used in the following charts.

Figure 1: Example Connection Establishment Message Sequence

Client Server

Exchange MTU Request

Exchange MTU Response

Service Discovery

Find By Type Value Request (Start=0x0001, End=0xFFFF,
Type="Primary Service",

 Value="Cable Replacement UUID")

Find By Type Value Response (Found Handle=H1,
Group End Handle=0xFFFF)

Find By Type Value Request (Start=0x0001, End=0xFFFF,
Type="Primary Service",

 Value="Cable Replacement UUID")

Characteristic Discovery

Read By Type Request (Start=H1, End=0xFFFF,
 Type="Characteristic Declaration")

Read By Type Response (Declaration Handle=Hd,
Characteristic Properties=0xNN, Value Handle=Hv,

Value UUID="Cable Replacement Characteristic UUID")

Read By Type Request (Start=Hd+1, End=0xFFFF,
 Type="Characteristic Declaration")

Error Response(Op=Read By Type, Handle=Hd+1,
Error="Attribute Not Found")

Indication Setup

Find Information Request (Start=Hv+1, End=0xFFFF)

Find Information Response (Handle=Hc,
UUID="Client Characteristic Configuration")

Write Request (Handle=Hc, Value=0x0002)

Write Response()

 Silicon Labs 7

1.2.3.2 Data transfer

As described above, the actual data transfer is done using ATT protocol methods on the Data characteristic.
The Client will write to the characteristic on the Server, while the server will indicate/notify the Client.

Note that reading the Data characteristic is not permitted.

Both the server and the client may refuse to acknowledge data requests on an unencrypted or unauthenticated
connection; connection encryption should be set up before data transfer begins.

Data may flow to both directions simultaneously. If acknowledged writes and indications are used, ATT protocol
has a limit of one outstanding method at a time for each direction. This means that when acknowledged methods
are used, the acknowledgements provide implicit flow control; until the outstanding method is acknowledged, a
new one may not be invoked.

Note that the ATT protocol limitation applies to the connection between the devices as a whole, including
methods related to other GATT based profiles. Care must be taken if multiple profiles are active at the same
time.

If unacknowledged methods are used, data loss may occur if, e.g., all of the recipient’s receive buffers are in
use. Thus, in this case it is strongly recommended that some method of flow control and transfer reliability is
implemented by the application.

The example message sequence below shows acknowledged methods for data transfers to both directions
overlapping.

Figure 2: Example Data Transfer Message Sequence

1.2.3.3 Connection teardown

To end the Cable Replacement session, the Client device shall write the Client Characteristic Configuration
value for the Data characteristic so that the bit set at connection establishment is cleared. After this is done, the
connection is considered torn down.

The client device may close the LE connection after Cable Replacement connection teardown if required.

The following example message sequence chart shows the connection teardown sequence, which consists only
of clearing the indication/notification bit in the Data characteristic client configuration.

Client Server

Write Request (Handle=Hv, Value=...)

Value Indication (Handle=Hv, Value=...)

Write Response ()

Value Confirmation ()

 Silicon Labs 8

Figure 3: Example Connection Teardown Message Sequence

 Prerequisites

Before you can test the Cable Replacement demo application or start developing your own applications the
following prerequisites must be met.

1. You have installed Bluetooth Dual Mode SDK
2. You have DKBT Bluetooth Dual Mode Development kit connected to a serial port data source. This

device will act as the Cable Replacement Server.
3. You have a Bluetooth LE capable device which can run user applications, for instance a PC, a

smartphone, or another DKBT. This device will act as the Client.

The following subsections walk you through the above steps.

2.1 Installing the Bluetooth Dual Mode SDK

Install the Bluetooth Dual Mode SDK by following the on screen instructions in the installer. The SDK installer
is available from the Bluegiga web site at https://www.silabs.com/wireless/bluetooth/bluegiga-classic-legacy-
modules/device.bt121-a under the “Software & Tools” section.

Figure 4: the SDK installer

Client Server

Indication Clearing

Write Request (Handle=Hc, Value=0x0000)

Write Response()

https://www.silabs.com/wireless/bluetooth/bluegiga-classic-legacy-modules/device.bt121-a
https://www.silabs.com/wireless/bluetooth/bluegiga-classic-legacy-modules/device.bt121-a

 Silicon Labs 9

2.2 Setting up the Server device

Below is an overview of the DKBT hardware, showing how the BT121 carrier board connects to the development
kit main board which has breakout pins, LCD display, USB UART converter and various other hardware
components. You can also use a BT121 Bluetooth Dual Mode module by itself, but the development kit provides
easy connectivity that helps in getting started, and in this document, we assume it is used.

Figure 5: DKBT hardware

2.2.1 Serial Port Connection

The connection between a DKBT Development kit with the BT121 carrier board and a device which uses serial
port for communication is very straightforward. UART interface pins (UART_RX, UART_TX, UART_RTS and
UART_CTS) are available directly on the DKBT main board. Please consult the BT121 Datasheet and DKBT
User Guide for more details.

Serial port speed and flow control will be set in project configuration, described in Chapter 3.1. Using RTS/CTS
hardware flow control is strongly recommended. Serial port parameters default to 8N1, but can be set at runtime
using BGScript.

After making the connection the Server device is ready to be programmed with the Cable Replacement example
server application, as described later in Chapter 3. The example server application will route data from the Cable
Replacement connection to the serial connection and vice versa when a Client device is connected to the
service.

 Silicon Labs 10

2.2.2 USB Connection

Alternatively, if you do not have a serial device at hand, you can use the USB to UART converter available on
the DKBT main board. Connect the kit to a PC using a standard USB cable; the converter will appear as a serial
port on the PC. You can use any serial terminal emulator application to set up serial port parameters and
transmit data between the BT121 UART and the PC.

2.3 Setting up the Client Device

This document will assume you will use another DKBT in the Client role. You may also use a BT121 Bluetooth
Dual Mode module or implement the Cable Replacement profile on a 3rd party device (such as a smartphone)
but doing so is out of scope for this document.

Connect the Client DKBT to a PC using a USB cable and set up a terminal emulation application as described
previously in Chapter 2.2.2.

After making the connection the Client device is ready to be programmed with the Cable Replacement client
example application, described in Chapter 3. The example client application will route data from the Cable
Replacement connection to the serial connection and vice versa, like the example server application does; the
only difference is that the client is the active party in forming the connection.

 Walkthrough of the Cable Replacement Applications

This section walks you through the Cable Replacement demo applications that are present in the Bluetooth
Dual Mode SDK example folder. The purpose of the section is to give you an overview of the Bluetooth Dual
Mode SDK and how you can start building your own applications.

There are two example applications, one for the Server role and one for the Client role. While there are
differences in the application BGScript, as the Client device is the one which actively opens the connection to
the Server, the overall architecture is the same in both and the project configuration files are close to identical.

3.1 Project configuration file

Building a Bluetooth Dual Mode project starts always by making a project file, a simple XML file which defines
the resources used in the project. The Cable Replacement server project file contents are shown on next page
in Figure 6. The Cable Replacement client project file is identical, except for the BGScript and output file
definitions.

Note that the USB to UART converter is enabled with a switch on the DKBT main board.

 Silicon Labs 11

Figure 6: Project file

An explanation of the project file content is shown in Table 21 below:

<project device="bt121">
This tag starts the project definition and the project file must end in </project>
tag. The device is used to define for which Bluetooth module the project is
used for.

<gatt in="gatt.xml" />

The <gatt> tag is used to define the XML file containing the GATT service
and characteristic database used for both Bluetooth LE and GATT over BR
profile.

NOTE: This example uses a minimal GATT database.

<hardware in="hardware.xml" />
The <hardware> tag defines the file containing the hardware configuration

for interfaces like UART, SPI or I2C.

<scripting>

 <script in="server.bgs" />

</scripting>

Inside the <scripting> tags all the included BGScript code files are defined.
Individual script files need to be defined with the <script> tags.

<image out="BT121_le_cable_replacement_server.bin" />
The <image> tag defines the name of the BGBuild compiler output file. The
generated .bin file contains the Bluetooth LE stack, the GATT database, the
hardware configuration and the BGScript code.

Table 1: Project file explained

The full syntax of the project configuration file and more examples can be found from the
Bluetooth Dual Mode Module Configuration Guide.

 Silicon Labs 12

3.2 Hardware configuration file

The next logical step is to define the hardware configuration of the Bluetooth module: to define which hardware
interfaces are enabled and what are their default settings and/or configurations. Cable Replacement server
hardware configuration file content is shown below in Figure 7. The Cable Replacement client hardware
configuration file is identical.

Figure 7: Hardware configuration

An explanation of the hardware file content is shown in Table 2 below:

<sleep enabled="false" /> This tag defines whether the MCU sleep modes (low power modes) are disabled.

<uart baud="115200" flowcontrol="true"

bgapi="false" />

The <uart> tag is used to define the UART interface settings and whether it is enabled.

In the example project the UART is used for Cable Replacement data exchange. BGAPI
serial protocol is disabled as the project uses a BGScript application to implement the
application logic.

<spi channel="1" alternative="2"

clock_idle_polarity="high" clock_edge="1"

endianness="msb" divisor="256" />

The <spi> tag defines whether the SPI interface is enabled or not, as well as the used
SPI interface (of the two available) and its settings.

In the example project SPI interface is used to communicate with the display on the DKBT
development kit.

<port index="0" output="0x4000" />

<port index="1" output="0x4000"
input=”0x2000” interrupts_rising=”0x2000” />

The <port> tag is used to define the I/O port default configuration and states. On the
BT121 module port index 0 refers to pins named PA and port index 1 to pins named PB.

In the example project pin 15 is configured as output for both ports 1 and 2 and they are
used to control the state of the display on the DKBT development kit.

Table 2: Hardware configuration file explained

The full syntax of the hardware configuration file and more examples can be found in the
Bluetooth Dual Mode Module Configuration Guide.

 Silicon Labs 13

3.3 GATT database configuration

The next step is to configure the GATT database entries used by the device. This is again done by editing the
GATT database XML file you have defined in the project file.

The Server GATT database is described in detail below. It is a simple one, containing entries for Generic Access,
Device Information, and Cable Replacement profiles.

The Client GATT database is even simpler, containing only entries for Generic Access and Device Information
profiles.

3.3.1 Bluetooth Generic Access Profile service entry

Generic Access Profile (GAP) service and its mandatory characteristics, Device Name and Appearance, are
configured in the GATT database XML file as shown below. For more information on Generic Access Profile,
refer to the Bluetooth SIG Core Specification document.

Figure 8: GATT database entry for GAP service

 Silicon Labs 14

The table below explains the GAP service entry in detail.

<service uuid=”1800”>

 <description>Generic Access Service</description>

 …

</service>

This defines the UUID of the service. For GAP the UUID is
assigned by Bluetooth SIG, must be as shown here and must not
be changed.

The service definition contains inside it characteristic definitions
which are described below.

<characteristic uuid=”2A00”>

 <properties read=”true” const=”true”/>

 <value>LE Cable Replacement Server</value>

</characteristic>

The Device Name characteristic is mandatory. Its UUID is
assigned by Bluetooth SIG, must be as shown here and must not
be changed. Value may be freely defined.

The characteristic properties define how the characteristic can be
accessed, and should not be changed for this characteristic.

<characteristic uuid=”2A01”>

 <properties read=”true” const=”true”/>

 <value type=”hex”>0</value>

</characteristic>

The Appearance characteristic is mandatory. Its UUID is assigned
by Bluetooth SIG, must be as shown here and must not be
changed. Value may be freely chosen from the values defined by
Bluetooth SIG; refer to the Bluetooth Assigned Numbers
document.

The characteristic properties define how the characteristic can be
accessed, and should not be changed for this characteristic

Table 3: GAP service entry explained

For typical use, do not modify GAP service entry except for the Device Name and Appearance
values.

3.3.2 Bluetooth Device Information service entry

Device Information (DI) service and its example characteristics, Manufacturer Name, Model Number, and
System ID, are configured in the GATT database as shown below. For more information on Device Information
service, refer to the Bluetooth SIG Device Information Service Specification document.

Figure 9: GATT database entry for DI service

 Silicon Labs 15

The table below explains the DI service entry in detail.

<service uuid=”180A”>

 <description>Device Information Service</description>

 …

</service>

This defines the UUID of the service. For DIS the UUID is assigned
by Bluetooth SIG, must be as shown here and must not be
changed.

The service definition contains inside it characteristic definitions
which are described below.

<characteristic uuid=”2A29”>

 <properties read=”true” const=”true”/>

 <value>Silicon Labs</value>

</characteristic>

The Manufacturer Name characteristic UUID is assigned by
Bluetooth SIG, must be as shown here and must not be changed.
Value may be freely defined.

The characteristic properties define how the characteristic can be
accessed, and should not be changed for this characteristic.

<characteristic uuid=”2A24”>

 <properties read=”true” const=”true”/>

 <value>BT121</value>

</characteristic>

The Model Number characteristic UUID is assigned by Bluetooth
SIG, must be as shown here and must not be changed. Value
may be freely defined.

The characteristic properties define how the characteristic can be
accessed, and should not be changed for this characteristic

<characteristic uuid=”2A23”>

 <properties read=”true” const=”true”/>

 <value type=”hex”>000780FFFE000047</value>

</characteristic>

The System ID characteristic UUID is assigned by Bluetooth SIG,
must be as shown here and must not be changed. Value may be
freely defined but must consist of vendor OUI identifier and a
device specific identifier as defined by the DI service specification.

The characteristic properties define how the characteristic can be
accessed, and should not be changed for this characteristic

Table 4: DI service entry explained

 Silicon Labs 16

3.3.3 Cable Replacement service entry

Cable Replacement service entry is also configured in the GATT database. The service may contain any number
of characteristics but for clarity it is recommended that it contains only one, the characteristic used for data
transfer.

Note that this service entry is needed only for the device acting as the GATT server.

Figure 10: GATT database entry for Cable Replacement service

 Silicon Labs 17

The table below explains the Cable Replacement service entry in detail.

<service uuid="f6ec37db-bda1-46ec-a43a-6d86de88561d"
advertise="true">

 <description>LE Cable Replacement Service</description>

 …

</service>

This defines the UUID of the service. Any 128 bit UUID may be
chosen, as long as the client using the service is aware of it. The
UUID shown here is for example only.

The service definition contains inside it a data transfer
characteristic definition which is described below.

<characteristic uuid="af20fbac251849989af7af42540731b3"
id="xle_data">

 <description>Data characteristic</description>

 <properties write="true" encrypted_write=”true” indicate="true"
encrypted_notify=”true” />

 <value type="user" />

</characteristic>

The UUID for the characteristic used for data transfer can be any
128 bit UUID, as long as the client using the service is aware of it.
The UUID shown here is for example only.

Characteristic id attribute defines a symbolic name which can be
used in BGScript for the characteristic.

The characteristic properties define how the characteristic can be
accessed. As described in Chapter 1.2.2, choice can be made
between acknowledged and unacknowledged ATT methods. It is
done as follows:

• write=”true” indicate=”true”: acknowledged write
requests and value indications are used for data transfer

• write_no_response=”true” notify=”true”: write
commands and value notifications which are not
acknowledged are used for data transfer

Both of the above specify plaintext data transfer. To protect the
data from eavesdropping, add to the above one of the following:

• encrypted_write=”true” encrypted_notify=”true”:
requires encryption for data communication

• authenticated_write=”true”
authenticated_notify=”true”: requires both encryption
and authentication (i.e., authenticated link key) for data
communication

The characteristic value must be as shown here and must not be
changed.

Table 5: Cable Replacement service entry explained

3.4 BGScript™ code

This section explains the most relevant sections of the BGScript™ code used in the cable replacement client
and server applications and explains how the applications work.

3.4.1 Event handlers

BGScript applications are event-driven: calls to event handler procedures are triggered by various events such
as scheduled timer expiry, hardware events, or when some communication with other devices takes place. Thus
the application code is structured to respond to the events which are expected to happen during the application’s
runtime, and in the following the description of the application behavior concentrates on explaining the various
event handlers.

Besides the event handlers, there are some helper procedures, but these are only used in the context of the
event handlers, never individually.

 Silicon Labs 18

3.4.2 Endpoints

Another central concept in the applications is the endpoint. An endpoint is an abstraction of a data source/sink,
and in the example applications we use three of them:

• UART endpoint, which represents the BT121 serial interface

• Cable Replacement endpoint, which represents the Cable Replacement data channel

• Drop endpoint, which simply discards all data sent to it

While a script can write data directly to an endpoint, the example applications couple endpoints together by
setting the UART endpoint to stream data to the Cable Replacement, and vice versa, when the Cable
Replacement connection establishment is done. This frees the application from handling the data itself: it is
done by the stack automatically.

3.4.3 Server application

In the following we walk through the events handled in the server application roughly in the order they are
executed.

The application code can be found in the BGScript file server.bgs, in the same directory where the other project
files are; for brevity it is not reproduced here.

3.4.3.1 System boot

The system_boot event is generated when power is applied to the Bluetooth module and it’s the starting point
for the code execution.

In the example Cable Replacement server application the system boot event handler initializes certain variables
and configures the display hardware using the display_hardware_init() procedure.

No Bluetooth commands can be used in the boot event as the radio has not been initialized.

3.4.3.2 System Initialized

Once the Bluetooth radio has been initialized the system_initialized event is generated indicating that the radio
is ready to be used. The Bluetooth address of the radio is given as an input parameter to the event handler.

In this event handler the code:

• Configures Security Manager:

a. Sets the device I/O capabilities for the Secure Simple Pairing (SSP) to NoInputNoOutput so
that the Just Works pairing mechanism will be selected, avoiding the user to have to enter or
compare a passkey, and

b. indicates that man-in-the-middle protection is not required; this and the above configuration are
entered by call sm_configure(0,3)

c. Additionally allows bonding attempts by call sm_set_bondable_mode(1)

This is sufficient for demonstrating encrypted data transfer; note that in a more demanding setup the
code would need to configure SM in a stricter fashion.

• Configures Bluetooth communication parameters:

a. Bluetooth LE default connection parameters are set by calling le_gap_set_conn_parameters()
so that the shortest allowed connection interval is used. This increases throughput in a noisy
environment as a broken connection event will not cause a long break in communication, at the
expense of increased power usage.

 Silicon Labs 19

b. ATT MTU is set to the maximum allowed by calling gatt_set_max_mtu(), to increase throughput
as ATT headers incur less overhead proportionally, and more data can be sent in one ATT
method/acknowledgement roundtrip. In order to use LE data packets optimally, the MTU should
be a multiple of 27 bytes (the size of an LE data packet) minus 4 bytes needed for L2CAP layer
headers. For instance, setting MTU to 50 would ensure that two full LE data packets would be
sent per ATT request (as long as there is enough data).

• Prepares the DKBT display for writing by calling the display_set_data_mode() procedure, and shows
the device’s own address on it by writing to the display buffer and calling the display_update()
procedure.

• Configures endpoints:

a. Configures the UART to drop incoming data (until a Cable Replacement connection is formed)
by calling endpoint_set_streaming_destination() with the destination set to 31, which is the ID
of a special endpoint which drops any data sent to it

b. Calls the le_serial_wait_for_connection() procedure where a Cable Replacement server side
endpoint waiting for incoming connections is set up with a le_serial_listen() call, and

• The device is made connectable and advertisement of the Cable Replacement service over Bluetooth
is started in le_advertise() procedure by calling le_gap_set_mode().

After the above setup completes the Server is ready to handle incoming Cable Replacement connections.

3.4.3.3 LE connection opened

When a Client device opens a Bluetooth LE ACL connection, the le_connection_opened event is triggered. It
is given various connection related parameters as input, but in this example the code merely shows the Client’s
Bluetooth address on the DKBT display.

3.4.3.4 Cable Replacement connection opened

Once the Client device has performed the connection establishment as described in Chapter 1.2.3.1, the
le_serial_opened event is triggered. At this point, the cable replacement endpoint which was created during
system initialization changes state from listening to connected and becomes ready for data transfer.

This is reflected in the code by coupling of the UART and Cable Replacement endpoints, so that each feeds
data to the other. This is done by calling endpoint_set_streaming_destination() twice, once for UART to Cable
Replacement streaming and once for the reverse direction. Also, the hardware display is updated to show the
connection status.

After the endpoint coupling the data can be transparently relayed from the UART interface to the Bluetooth
connection and vice versa; this is done by the Bluetooth Dual Mode stack and the BGScript application does
not need to be involved in any way.

3.4.3.5 Cable Replacement endpoint closing

Once the client disconnects the generic endpoint_closing event is triggered for the Cable Replacement
endpoint. At this point the following happens:

• The hardware display is updated to reflect the new state,

• The Cable Replacement endpoint is cleaned up by calling endpoint_close(),

• The UART endpoint is configured to again drop data, and finally

• The le_serial_wait_for_connection() is called again, so that a new Cable Replacement server side
endpoint is created and set to listen for the next incoming connection.

 Silicon Labs 20

Note that you cannot recycle the old Cable Replacement endpoint for the next connection: it should be cleaned
up (although stack does do that automatically, but after a delay) and a new one must be created in order to
handle the next connection.

3.4.3.6 LE Connection closing

If the client device closes also the LE ACL connection, le_connection_closed event will be generated. In this
case, the remote client address is cleared from the hardware display and, more importantly, device is again
made connectable and Bluetooth advertisement of the Cable Replacement service is restarted by setting the
device’s LE GAP mode with a call to le_advertise() procedure.

3.4.4 Client Application

In the following we walk through the events handled in the client application roughly in the order they are
executed.

The application code can be found in the BGScript file client.bgs, in the same directory where the other project
files are; for brevity it is not reproduced here.

3.4.4.1 System boot

The system_boot event handler is very similar to the server application’s corresponding event handler.

3.4.4.2 System Initialized

In this event handler the code:

• Configures Security Manage in the same way as the server application does

• Configures Bluetooth communication parameters in the same way as the server application does

• Prepares the DKBT display for writing, and shows the device’s own address on it

• Configures the UART to drop incoming data (until a Cable Replacement connection is formed); note
that the Cable Replacement endpoint is not yet created

• Calls the le_scan() procedure to start scanning for advertising devices within range

After the above setup completes the Client will be looking for available servers by scanning.

3.4.4.3 LE scanning results

Once the stack has discovered a device which advertises itself, it provides the scanning results to the application
in the le_gap_scan_response event. In this event handler the code looks for the Cable Replacement service
UUID, and if it is found, stops scanning by calling le_gap_end_procedure() and attempts to open a LE
connection to the device with a le_gap_open() call.

Note that the scan response handler checks only the first service in the Service Class List advertisement data;
this is sufficient for the demo, but a full application would need to check the complete list.

3.4.4.4 LE connection opened

When the LE ACL connection is formed, the le_connection_opened event is triggered. In this example the
code shows the Client’s Bluetooth address on the DKBT display and then tries to set up connection encryption
by calling sm_increase_security(). If the devices have not been previously bonded, this will result in a bonding
attempt; in this example, since neither device requires man-in-the-middle protection and have set their I/O
capabilities to NoInputNoOutput, the bonding should be done automatically.

 Silicon Labs 21

3.4.4.5 Bonding failure

In the case bonding fails for some reason, the event handler for sm_bonding_failed is called. There, the DKBT
display is updated to show an error code and the LE connection is closed. However, this should not happen
with the example applications.

3.4.4.6 LE connection parameters notification

In the case bonding succeeds a le_connection_parameters event indicating current connection parameters
will be sent by the stack, with the security parameter set to a non-zero value. This will notify the client application
that the connection is now secure, and it will create its Cable Replacement endpoint in the event handler by
calling le_serial_open().

Initially the endpoint is not yet connected – that will happen after the connection establishment procedure has
been done – so the endpoint is not yet coupled with the UART endpoint at this stage.

3.4.4.7 Cable Replacement connection opened

Once the Client device has performed the connection establishment as described in Chapter 1.2.3.1, the
le_serial_opened event is triggered as with the server. This works in the client the same way as it does in the
server, and couples the Cable Replacement and the UART endpoints together.

After the endpoint coupling the data can be relayed between the serial connection and the Bluetooth connection
by the Bluetooth stack; the BGScript application does not need to be involved in any way.

3.4.4.8 Cable Replacement endpoint closing

In this example the client does not actively close the Cable Replacement endpoint, but it may happen, e.g., due
to link loss. If this happens the generic endpoint_closing event is triggered for the Cable Replacement
endpoint. At this point the following happens:

• The hardware display is updated to reflect the new state,

• The Cable Replacement endpoint is cleaned up,

• The UART endpoint is configured to again drop data

3.4.4.9 LE Connection closing

If the LE ACL connection is lost, le_connection_closed event will be generated. In this case, the server address
is cleared from the hardware display and, more importantly, device restarts scanning by calling le_scan() again.

3.5 Compiling the applications

The server example application can be compiled with the BGBuild compiler as follows:

• Open a command prompt (cmd.exe)

• Change the working directory to <SDK installation directory>\example\le_cable_replacement_server

• Run bgbuild.exe with the project XML file as an argument: ..\..\bin\bgbuild.exe project.xml

The client example application can be compiled in the same manner in the directory containing the client
application project (<SDK installation directory>\example\le_cable_replacement_client).

 Silicon Labs 22

Figure 11: Compiling the server example

3.6 Installing the firmware

The firmware binary can be installed to the DKBT development kit with the BGUpdate tool. It will require the
COM port you have connected the DKBT to and the firmware image as arguments. Do this once for each device,
programming one with the firmware containing the server application and the other with the firmware containing
the client application.

Figure 12: Firmware update with BGUpdate

3.7 BGTool

Alternatively, you can use the graphical BGTool for building and installing the firmware. Note however that as
the applications assign the BT121 UART for serial data, BGAPI is disabled in the hardware configuration and
you cannot use BGTool to give BGAPI commands to the devices after programming them.

 Silicon Labs 23

3.8 Testing the applications

Once both devices have been programmed, they should connect automatically and show the connection status
on their respective displays.

If you have already connected the Server device to an actual serial data source and there is, e.g., a PC
application for communicating with that data source, you can connect the Client device to a PC and configure
the application to use the serial port the Client device is connected to.

Alternatively, you can for instance connect both devices to a PC using the USB serial converters present on the
DKBT main boards and use a terminal emulation application such as TeraTerm on both devices’ serial ports to
verify data sent from one appears on the other.

IoT Portfolio
www.silabs.com/products

Quality
www.silabs.com/quality

Support & Community
www.silabs.com/community

Smart. Connected.
Energy-Friendly.

Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
USA

www.silabs.com

Disclaimer
Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software imple-
menters using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each
specific device, and “Typical” parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon
Labs reserves the right to make changes without further notice to the product information, specifications, and descriptions herein, and does not give warranties as to the
accuracy or completeness of the included information. Without prior notification, Silicon Labs may update product firmware during the manufacturing process for security or
reliability reasons. Such changes will not alter the specifications or the performance of the product. Silicon Labs shall have no liability for the consequences of use of the infor-
mation supplied in this document. This document does not imply or expressly grant any license to design or fabricate any integrated circuits. The products are not designed or
authorized to be used within any FDA Class III devices, applications for which FDA premarket approval is required or Life Support Systems without the specific written consent
of Silicon Labs. A “Life Support System” is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in
significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used
in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. Silicon Labs disclaims
all express and implied warranties and shall not be responsible or liable for any injuries or damages related to use of a Silicon Labs product in such unauthorized applications.
Note: This content may contain offensive terminology that is now obsolete. Silicon Labs is replacing these terms with inclusive language wherever possible. For more
information, visit www.silabs.com/about-us/inclusive-lexicon-project

Trademark Information
Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®,
EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, “the world’s most energy friendly microcontrollers”, Ember®, EZLink®, EZRadio®, EZRadioPRO®, Gecko®,
Gecko OS, Gecko OS Studio, ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® , Zentri, the Zentri logo and Zentri DMS,
Z-Wave®, and others are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Hold-
ings. Keil is a registered trademark of ARM Limited. Wi-Fi is a registered trademark of the Wi-Fi Alliance. All other products or brand names mentioned herein are trademarks
of their respective holders.

https://www.silabs.com/products
https://www.silabs.com/community
https://www.silabs.com/about-us/corporate-responsibility/commitment-to-quality
https://www.silabs.com/about-us/inclusive-lexicon-project

