SILICON LABS

ANZ208

SENSORLESS BRUSHLESS DC MOTOR REFERENCE DESIGN

1. Introduction

This reference design provides a hardware and
software solution for Sensorless Brushless dc motors.
This document includes complete schematics, printed
circuit board layout, and firmware. The Sensorless
Brushless dc motor reference design may be used as a
starting point for motor control system designers using
Silicon Laboratories MCUs, significantly reducing the
design time and time to market.

Brushless dc motors consist of a permanent magnet
rotor with a three-phase stator winding. Brushless dc
motors evolved from conventional dc motors where the
function of the brushes is replaced by electronics.
Brushless dc motors offer longer life and less
maintenance than conventional brushed dc motors.

Most Brushless dc motor designs historically use Hall
effect sensors to measure the position of the rotor. Hall
effect sensors provide absolute position information
required to commutate the motor. Using Hall effect
sensors provides simple, robust commutation and
performance roughly comparable to brushed dc motors.
One of the major barriers limiting the market penetration
of Brushless dc motors has been the cost of using Hall
effect sensors. The Hall effect sensors themselves are
not particularly expensive. However, the Hall effect
assembly adds significant expense to the cost of
manufacturing the motor. Hall effect sensors also
typically require 5 additional wires, adding to the
installation costs.

A “Sensorless” Brushless dc motor does not have Hall
effect sensors. Sensorless Brushless dc motors employ
more sophisticated electronics using some alternative
scheme to control the commutation of the motor. The
most common scheme involves measuring the back
EMF of the motor and using this information to control
the commutation of the motor.

Most computer hard disc drives use a sensorless
brushless dc motor. However, these small motor drives
use a linear regulator to control the voltage applied to
the motor. This works well for small motors, but is too
inefficient to use for motors greater than a few watts.
Larger motors require PWM control for efficient
operation. Using PWM control makes the task of
measuring the back EMF of the motor more difficult, due
to noise coupled from the active windings.

Sensorless Brushless dc motors are well suited for fans
and rotary pumps from a few watts up to about 1 kW.
Fans and pumps’ loads are predictable and fairly well
behaved. Most Sensorless Brushless dc motors do not
provide the same level of dynamic speed control
available from Hall effect controlled BLDC motors or dc
motors. While it is theoretically possible to achieve high-
performance from a sensorless BLDC motor using
sophisticated vector control, most practical sensorless
BLDC implementations address the much simpler fan
and pump applications. This reference design is
targeted for simple fan applications.

Sensorless BLDC motor drives often compete against
ac induction motors for certain applications. A system
designer must consider the power level, efficiency
requirements, and starting requirements when choosing
between BLDC motors and ac induction motors. BLDC
motors are most often used for small motors ranging
from 1 watt to 1 kW. AC induction motors are readily
available from 250 W to 10 kW or more. BLDC motors
offer potentially higher efficiency than ac induction
motors. This is due to the fact that ac motors have high
rotor losses while BLDC motors do not waste energy in
magnetizing the rotor. AC induction motors are much
easier to start than sensorless BLDC motors. The
complexity of starting a fully loaded BLDC motor often

makes the ac induction motor a better choice,
particularly for piston pumps and compressors.
Rev. 0.2 9/06 Copyright © 2006 by Silicon Laboratories AN208

ANZ208

2. Theory of Operation

Brushless dc motors have a dual personality. To fully
understand Sensorless Brushless dc motor control it is
necessary to understand both dc motor characteristics
and Stepper motor characteristics. When commutated
using Hall effect sensors, the torque speed
characteristics of the Brushless dc motor are virtually
identical to a conventional dc motor. The ideal no load
speed is a linear function of the applied voltage. The
torque and motor current are at a maximum at zero
speed and decrease to zero at the maximum speed.
The torque-speed characteristics of a dc motor are
shown in Figure 1. Under ideal conditions, the
characteristics of a sensorless BLDC motor are similar.

Torque

Speed
Figure 1. DC Motor Characteristics

The characteristics of a stepper motor are quite
different. The motor current in a stepper motor is not
proportional to the load torque. The motor winding
resistance typically limits the current in a stepper motor.
The motor winding resistance of a stepper motor is
normally an order of magnitude higher than a BLDC
motor. An ideal model for a stepper motor is shown in
Figure 2.

Back
EMF

Figure 2. Stepper Motor Model

The motor is driven with a constant voltage. When the
motor is at a standstill, the back EMF is zero and the
current is at its maximum value. As the motor speed
increases the back EMF will increase, reducing the
voltage across the motor resistance, and the motor

current will decrease. The available torque for a stepper
motor is proportional to the current forced through the
motor windings. The available torque is at its maximum
value when the motor is at a standstill. The available
torque decreases as the motor speed increases. If the
load torque ever exceeds the available torque the motor
will stall.

Motor Current

stall / Variable Voltage

stal
OnSta
Nt oy
age

Speed
Figure 3. Stepper Motor Characteristics

The performance of the stepper motor may be improved
using a variable voltage drive. By increasing the voltage
applied to the stepper motor in proportion to the velocity,
the available torque will remain constant and the fan
can be driven to a higher velocity before stalling as
shown in Figure 3.

A BLDC motor can also be considered as an unusual
stepper motor. A 4-pole 12 V BLDC motor is functionally
equivalent to a 12-step per revolution stepper motor
with a voltage rating of about 1V. A typical Stepper
motor has a much higher step count, higher voltage,
and higher resistance. A typical hybrid permanent-
magnet stepper motor has a step angle of 1.8°, or 200
steps per revolution. A 12 V stepper motor might have a
resistance of 30 Q, compared to less than 1 Q for a
similar size BLDC motor. The stepper motor is
optimized for precise angular positioning and constant
voltage drive. The BLDC motor is optimized for Hall
effect commutation and variable voltage drive.

2.1. PWM Scheme

Most Hall effect BLDC motors use a three-phase bridge
to drive the motor windings. A Three-Phase bridge is
shown in Figure 4.

2 Rev. 0.2

SILICON LABS

ANZ208

A B C
To.p—l To.p—l To.p—l

Phase Phase Phase
A B C
A OJ B OJ C QJ
Bottom Bottom Bottom

Figure 4. Three-Phase Bridge

The most common drive method is to use block
commutation and apply a PWM signal to only the
bottom transistors as shown in Table 1. Depending on
the position of the motor and the Hall effect code, the
appropriate step pattern is applied to the motor. As the
motor rotates, the step pattern will increment through
the table entries. Using this method, at any point in time
there is only one top transistor in the continuous ON
state and only one bottom transistor being driven by the
PWM signal.

Table 1. Low-Side PWM Commutation

Top Bottom Open

A B C A B C | Phase
0 ON PWM C
1 ON | PWM B
2 ON PWM A
3| ON PWM C
4| ON PWM B
5 ON PWM A

Considering the motor phases, one phase is driven
high, one phase is being pulse-width modulated, and
one phase is open. The open phase is noted in the
table. However, there is a problem using the open-
phase to sense the back EMF when pulse-width
modulating only the bottom transistors.

A (PWM)

(open)

O < w >

By (ON)

Figure 5. Low-Side PWM Back EMF

Consider the BLDC motor winding shown in Figure 5. In
this case the motor is at the first state of the
commutation table. A pulse-width modulated signal is
applied to phase A, phase B is driven high, and
phase C is open. The back EMF that we are interested
in is actually the voltage from phase C to the center
connection labeled point Y. The problem is that the
center of the Y connection is not a constant dc voltage.
Assuming that the resistance and inductance of
windings A and windings B are the same, the voltage at
point Y will be halfway between phase A and phase B.
The voltage at point Y will be approximately half the
supply voltage when phase A is driven low. When
phase A is high, the center point Y will be approximately
equal to the upper supply voltage. The voltage on the
open phase C is now the voltage at center-point Y plus
the back EMF of the motor. The voltage at phase C is
also clamped to the upper rail by the MOSFET body
diodes in the inverter bridge. The result is a pulse width
modulated waveform where the minimum voltage level
is equal to the back EMF of the motor. While it is
possible to filter out the PWM signal or sample the
voltage during the PWM on-time, working with this
waveform is problematic.

A better approach is to use a symmetric PWM scheme.
A symmetric PWM scheme is any PWM scheme where
the active top and bottom transistors are turned on and
off together. The simplest method is to apply identical
PWM signals to the top and bottom transistors
according to Table 2. This commutation table is similar
to the low side PWM commutation table except that the
high side transistors are pulse-width modulated instead
of just being turned on.

Rev. 0.2 3

SILICON LABS

ANZ208

Table 2. Symmetric PWM Commutation

Top Bottom Open

A B C A B C | Phase
0 PWM PWM C
1 PWM | PWM B
2 PWM PWM A
3 |PWM PWM C
4 | PWM PWM B
5 PWM PWM A

During the first state of Table 2, an identical PWM signal
is applied to both the A bottom transistor and the B top
transistor. The result is that Phase A will go low when
Phase B goes high and visa versa. If the A and B
windings are balanced, the center point Y will remain
mid-rail even though phase A and phase B are being
pulse-width modulated. The voltage on phase C is now
roughly equal to the back EMF voltage. There may be
some residual PWM noise due to the second order
effects of unbalanced windings and capacitive coupling.
However, the unwanted PWM signal is reduced by at
least an order of magnitude, as shown in Figure 6.

A (PWM)
A
Y C B
(open) v
Bg (PWM) c

Figure 6. Symmetric PWM Back EMF

3. Back EMF Waveforms

Most sensorless BLDC control systems use the back
EMF zero crossing time as a control variable for a
phase locked loop. Instead of using the zero-crossing
time, this reference design measures the back EMF
voltage at middle of the commutation period using the
ADC and uses the voltage measurement to control the
commutation. This method provides higher resolution
and always provides a robust feedback signal even as

the motor approaches a stall condition. When using the
zero-crossing time as a feedback signal, special
measures must be taken when a zero crossing does not
fall within the measurement window.

The back EMF voltage for three different cases is shown
in Table 3. If the voltage and speed are just right the
voltage ramp will be centered within the commutation
period and the midpoint voltage will measure half of the
supply rail. If the voltage is too low or the speed is too
fast the voltage ramp will be shifted up and to the right.
If the voltage is too high or the speed is too slow, the
voltage ramp will be shifted down and to the left. The
feedback loop should work to keep the mid-point
voltage at mid-rail.

Table 3. Back EMF Control

Waveform Speed Voltage
Too Fast Too Low
Just Right Just Right
Too Slow Too High
——

3.1. Safe Operating Range

When driving a Sensorless BLDC motor from a MCU
there are two output variables, the motor Voltage V and
the motor speed . Figure 7 shows the output voltage
verses speed characteristics for a sensorless BLDC
motor. Three lines are labeled in Figure 7. The middle
line is the ideal “no load” line with V equal to o times the
motor constant Kg. This line represents the optimum
voltage for a perfect motor with no friction.

4 Rev. 0.2

SILICON LABS

ANZ208

A

Figure 7. Output Voltage and Speed

The maximum current is normally limited by the
capability of the power transistors. The maximum boost
voltage is then the maximum inverter current times the
winding resistance. The upper line in Figure 7 is the
ideal voltage plus the maximum boost voltage. This line
defines the maximum bounds for safe operation. The
lower line is the ideal voltage minus the maximum boost
voltage. This line defines the minimum bounds for safe
operation. While not intuitive, it is quite possible to get
an over-current condition by driving the motor with a
voltage that is too low for a particular speed.

Danger!
V too high

Vi

Danger!
V too low

w

Figure 8. Safe Operating Area

The Safe Operating Area for the Sensorless BLDC
motor is shown in Figure 8. Above the maximum line the
voltage is dangerously too high. Below the minimum line
the voltage is dangerously too low. The area between
the ideal line and the max line is labeled the positive
torque region. In normal steady state operation, the
output variables will operate in the positive torque
region.

The area below the ideal line is labeled the negative
torque region. While most simple fan and pump
applications do not require negative torque, operation in

the negative area is permitted. If the motor speed
command is decreased, the control system will output
values in the negative torque region until the operating
point is re-stabilized. While it is possible to prohibit
operation in the negative torque region, this may
adversely affect the stability of the control system.

The safe operating area is important because it is very
easy to exceed the limit using conventional control
technigues. If we ignore the safe operating area and
use a simple PI controller to regulate the output voltage,
the control loop will output excessive voltage and the
power transistors may be damaged.

If we drive the motor with a voltage corresponding to the
maximum line, we are forcing maximum current into the
motor at all times. This will provide the maximum
available torque at all times and it is unlikely that the
motor will stall. However, the no load efficiency will be
very low and cogging torque may be a problem.
Cogging torque is the variation in torque caused by a
pulsating electromotive force. Stepper motors are
designed to operate on the max line with low cogging
torque. Most BLDC motors are not designed for this
kind of operation. Excessive cogging torque can cause
vibration, noise, and stability problems.

This reference design uses a novel control technique
entitted “Constant Voltage Control with Speed
Dependent Limiting”. The goal of this control
methodology is to provide a simple and robust control
algorithm using a single control loop while keeping the
output speed and voltage within the Safe Operating
Area.

The control technique is illustrated in Figure 9. The
input speed control potentiometer controls the target
operating point indicated by the dot on the ideal line. If
the error signal is zero, the output voltage and speed
are set according to the speed potentiometer. As the
speed control is varied, the target operating point will
vary along the ideal line.

The bold line indicates variation in the output voltage
and speed due to the error signal. A small positive error
signal from the feedback control system will result in a
decrease in speed while the voltage remains constant.
The voltage will remain constant until the speed reaches
the limit set by the maximum line. If the error signal is
large enough to exceed the limit, both voltage and
speed are reduced according to the maximum limit.

In a similar fashion, a small negative error signal will
result in an increase in speed. If the negative error is
increased beyond the bounds set by the minimum line,
the voltage will be increased.

The resulting control loop is very stable. The motor is
driven with a constant voltage, as long as the load

Rev. 0.2 5

SILICON LABS

ANZ208

torque and acceleration are within the bounds set by the
minimum and max limits. In this region the motor
behaves like a dc motor with a constant voltage drive. A
small increase in load torque will result in a small
decrease in speed.

For large positive errors signals, the motor voltage is
reduced to keep the current below the maximum limits.
In this region the motor behaves as a constant current
or constant torque drive.

Vmax

Vi

®max

Figure 9. Constant-Voltage with Limiting
3.2. Starting

One major problem with using the back EMF to control
the commutation of a sensorless BLDC motor is that the
back EMF is not present or is too small to be useful until
the motor is rotating at some minimum speed. The
common solution is to drive the BLDC motor like a
stepper motor to align the motor and accelerate the
motor up to some nominal speed. This requires that the
control system have multiple modes of operation. While
it is generally undesirable to have a control system with
multiple modes of operation, it is unavoidable in this
case. A common pitfall of systems with multiple modes
of operation is instability during the transition from one
control mode to another. Special considerations are
required in the running stage to ensure system stability
during the transitions.

The motor state diagram is shown in Figure 10. The
system is initially in the STOP state. Pressing the Start
button will advance to the ALIGN state. The motor will
then advance automatically to the START and RUN
states. An over-current error will reset the motor to the
STOP state.

Figure 10. SBLDC State Diagram

3.3. Alignment

The alignment state consists of two stages—the
Alignment Ramp and the Alignment Delay. During the
Alignment Ramp, one of the motor windings is excited
by PWMing the top of one phase and the bottom of
another phase. The PWM duty cycle is initially at zero
percent and is ramped up to 50% plus the starting boost
voltage. The voltage is increased using a linear ramp
with a fixed delay time between voltage increments. The
current in the motor winding will depend on the motor
inductance and winding resistance. For duty cycles
below 50% the current will be discontinuous. The
current will increase while the transistors are on and
decrease to zero after the transistors turn off as shown
in Figure 11.

<50%

50%

>50%

e ———

Figure 11. Motor Current vs. Duty Cycle

The peak and average dc current for duty cycles equal
to or less than 50% can be calculated using Equation 1.
The PWM duty cycle will always be above 50% while
running.

6 Rev. 0.2

SILICON LABS

ANZ208

\—/><d

l = Ipeak = L

avg
Equation 1. Peak and Average Current

For duty cycles above 50% the current will be
continuous. Usually a higher current is desired for
alignment. Above 50%, a small change in duty cycle will
result in a much large change in average dc current.
The starting boost voltage is typically a very small
number.

The second part of the alignment phase consists of a
simple delay. The voltage is held constant for a period of
time. The alignment delay time should be long enough
to allow the motor to align to the excited pole position. A
one second ramp time and a two second delay time
works well for the test motor with no fan. When using a
large fan, a time of several seconds may be required.
Finding the optimal delay time requires some
experimentation.

The alignment stage ensures that the motor starts from
a known position. Without the alignment stage the motor
might miss the first several critical commutations in the
starting acceleration ramp. If the motor does not align
during this stage a motor stall is more likely in the
starting phase.

During the alignment stage the system is in a relatively
benign state. The dc current is predictable and well
regulated. The power dissipated in the motor can be
calculated from the motor winding resistance. A current
measurement is only needed to protect against wiring
errors.

Most BLDC motors are optimized for high-speed
operation and have very limited torque in the alignment
phase. This is not too much of a problem for small fans,
but it does preclude the use of sensorless control in
some other applications. The torque is limited by the
inverter current and motor design. Over-sizing the
inverter or using a lower speed motor can increase the
starting torque.

3.4. Starting

During the starting phase the BLDC motor is driven like
a stepper motor. The motor is commutated at first very
slowly and then velocity is increased linearly using a
linear velocity ramp table. The voltage is also increased
in proportion to the velocity with additional boost voltage
to keep the current at a constant value. The motor
winding resistance normally limits the boost voltage.

The acceleration ramp table ramps the motor speed
over a 30:1 range from 25 to 750 rpm. The maximum

value of 750 rpm was chosen to be one tenth of the
maximum speed of the motor. The closed loop
sensorless control will then operate over a 10:1 range
from 750 to 7500 rpm. The back EMF at 750 rpm will be
one tenth of the rated voltage.

The key to getting the motor up to 750 rpm is to use a
large enough acceleration ramp table with a sufficiently
large ratio of minimum to maximum. A ratio of 30:1 can
be achieved using a table with only 192 bytes of data.
This also permits the efficient use of an 8-bit table index.
Experimental results using a smaller 16-byte table with
an 8:1 range proved unsatisfactory. If the table is too
small, the initial velocity will be too fast or the final
velocity will be too slow.

The voltage of the motor is also ramped during the
acceleration phase. If the voltage were held constant at
the alignment value, the current would decrease during
the motor acceleration. Initially the current is only limited
by the motor resistance. As the motor starts turning, the
back EMF of the motor will subtract from the voltage
across the motor resistance. This results in a decrease
in motor current and a corresponding decrease in the
amount of available torque.

Assuming the motor will accelerate in step with the
commutation period, the back EMF will be proportional
to the motor velocity and inversely proportional to the
motor period. The motor voltage ramp may be
calculated by dividing a constant by the value in the
ramp table. By increasing the voltage during the
acceleration phase the motor current can be held at a
constant value. This ensures maximum available torque
during the acceleration phase.

If the motor stalls at any point, the back EMF will be
zero, and the assumption of motor velocity is no longer
valid. The resulting motor voltage will be too high and
the current may be much higher than expected. This is
problematic for small motors and can be disastrous for
large motors.

The solution is to monitor the dc motor current during
acceleration and to shut down if the motor current gets
too high. The back EMF is not sufficiently large to detect
if the motor is moving. A current limit is not needed
during the starting phase if the motor voltage is limited
to the maximum inverter current times the motor
resistance, though this will severely limit the starting
torque on all but the smallest motors.

3.5. Running

The minimum Running speed and voltage are dictated
by the starting parameters. In this example, the
minimum speed is 750 rpm. The minimum voltage is
10% plus the boost voltage. At the lower operating

Rev. 0.2 7

SILICON LABS

ANZ208

point, the motor is being over-driven by a voltage that is
intentionally higher than necessary for stable closed
loop operation. Since the motor is being driven like a
stepper motor, the cogging torque and motor vibration
will be higher in the starting phase.

3.6. Back EMF Measurements

The back EMF is measured at three points, as shown in
Figure 12. The midpoint voltage is the primary control
variable for closed loop control. The two voltage
measurements at one quarter and three fourths are
used for stall detection. The current measurement is
used for over current detection. The time slots are
discussed in further detail in the software description.

TimeSlot 0

l\

TimeSlot 1 | TimeSlot 2 | TimeSlot 3

Back EMF

runO()_>
—
>
>

Sample Current
runl()

Sample EMF
run2()
Sample EMF

Calculate Error
run3()

Sample Pot
Sample EMF
Check for Stall

Figure 12. Back EMF Sampling

Stall detection is achieved by measuring the voltage at
guarter points over two cycles. The difference between
the minimum and maximum of these four points is an
indication of the back EMF of the motor. If the back EMF
is greater than a certain value, we can deduce with
reasonable certainty that the motor is indeed running. If
the back EMF is too small to give a useful
measurement, we cannot know for certain if the motor is
stalled or running. Thus, the stall detection operates
only in the running phase. The example implementation
illuminates an LED when a stall condition is detected.

4. Hardware Description

The schematic diagram for the Sensorless BLDC Motor
reference design is in Appendix A. The circuit consists
of the CO851F310 Microcontroller, three-phase power
MOSFET bridge, three dual gate drivers, sense voltage
resistive dividers, current amplifier, speed control
potentiometer, two function switches, USB-UART
bridge, and voltage regulator.

Port P1 is configured as push-pull outputs and is
connected to the three dual gate drivers. The P1 port
pins are sequenced, alternating between bottom and

top starting with phase A in the least significant bit.
P1.0-1.5 corresponds to A bottom, A top, B bottom,
B top, C bottom, and C top respectively. This sequence
facilitates commutation using a simple pattern with the
Crossbar pin skip register.

Each of the three output phases are connected to a
simple resistive divider. The resistive divider will divide
the phase output voltage by six. This ratio permits
accurate ADC measurements up to 19.8 volts. The 5V
tolerant port pins offer protection against phase
voltages up to 30 Volts. The motor supply is 12V
nominal when loaded with the motor turning at full-
speed. The unloaded voltage may climb as high as 18 V
for the recommended wall mounted transformer.

A capacitor across the lower resistor of each divider
forms simple single-pole low-pass RC filter. Each filter is
tuned approximately one decade below the PWM
frequency. Three test points are provided for the scaled
voltages labeled VA, VB, and VC.

A forth resistive divider is used to sense the voltage of
the motor supply. This resistive divider has a ratio of one
to twelve. A test point is provided on the scaled motor
supply voltage labeled VM. A phase voltage of 12 volts
will produce voltage of 2 V on the respective ADC input,
while a supply voltage of 12 V will produce a sense
voltage of 1.0 V on the VM ADC input. A differential
ADC voltage measurement will be used relative to the
VM ADC input. The resulting ADC reading will be a
signed 16-bit value with 0x0000 corresponding to mid-
rail.

The sensorless BLDC motor reference design board
includes a current sense resistor R25 and current
amplifier U7A. The sense resistor is a 20 mQ surface
mount resistor in an 1812 package. The sense resistor
was chosen for a maximum RMS current of 5 amps with
a power dissipation of 500 mW. The resulting sense
voltage of only 100 mV requires amplification to achieve
more than 5 bits of resolution from the 10-bit ADC.

The current amplifier is a variation of the classic
differential amplifier circuit. In the classic circuit
configuration, the second resistors on the non-inverting
input would be connected to ground. In this variation,
resistor R17 is connected to a 400 mV voltage
reference. The 0.4V reference compensates for the
variation in the input offset voltage of the op amp and
also keeps the output within the recommended output
voltage range. The gain of 26 was chosen to fully utilize
the output voltage span of the amplifier allowing for
variation in the input offset voltage.

The op amp chosen for this circuit is the LMV358. This
is a low-voltage version of the industry standard LM358
dual CMOS op amp. The second op amp in the dual

8 Rev. 0.2

SILICON LABS

ANZ208

package is used for the 400 mV reference U7B. A single
zero-current calibration is used to eliminate the variation
in the input offset voltage. This circuit design permits
accurate differential measurements using an
inexpensive CMOS op amp.

To aid development, the sensorless BLDC reference
board includes a USB interface. The CP2101 USB-
UART bridge IC is used in place of an RS232
transceiver chip. The CP2101 provides USB
connectivity using virtual COM port drivers on the host
PC. The C8051F310 UART communicates with the
CP2101 using conventional asynchronous serial data.
Code can be developed on the C8051F310 using the
printf() and scanf() stdio library functions.

5. Software Description

The c code for the sensorless BLDC motor reference
design is organized into four files:

slbdc.h

slbdc.c

TO_ISR.c

T2_ISR.c

The header file slbdc.h contains all of the
preprocessor macros, motor parameters, and typedefs.
The hardware may be used with any 12 V BLDC motor,
provided that the motor parameters are changed to the
appropriate values. The user-specified motor parameter
macros are MAXRPM, POLES, VMOTOR, IMOTOR, and
MILLIOHMS. These parameters are described fully in the
header file. All other motor dependent constants are
calculated from these values. The user need only edit
the header file and recompile the code.

The slbdc.c file contains the main() function and all
functions called by main(). The main() function
implements initialization and the user interface. All of
the time-critical tasks are handled by the interrupt
service routines.

ISR Variables that are initialized or accessed by main()
are declared in the ISR files and thus declared extern
in slbdc.c.

The SBLDC user interface can be used either stand-
alone or with a USB host PC running HyperTerminal.

Two push button switches labeled Start and Stop control
the motor operation. Pressing the Start button will cause
main() to call StartMotor(). The motor will then
operate according to the state diagram. Pushing the
Stop button will cause the motor to stop until restarted.

The HyperTerminal interface provides status information
and allows the motor developer to modify the value of
the PI controller constants on the fly. Once the start
button is pressed the HyperTerminal window will display

the motor state as it changes.

Aligning...

Starting...

Running. ..

Once the motor is running the user can display the
motor status by typing an “s” on the computer keyboard.
The PI controller constants can be changed using
simple string commands. The proportional term KP may
be changed by typing the character “p”, followed by a
decimal number string. Likewise, the integral term Ki
may be modified by typing the character “i” followed by
the new value. The ability to change the PI controller
constants is very useful for development purposes. This
simple user interface could easily be extended to
include more parameters.

All of the motor control timing is generated using timer
TO. Timer TO is configured as a 16-bit timer module.
Each time TO overflows the interrupt service routine
TO_ISR() will be called. The TO interrupt is also
configured as high priority so that it may interrupt other
low priority tasks. The TO_ISR() function itself calls
many other functions. All of the TO_ISR() related
functions are located in the TO_ISR.c file.

The StartMotor() function is called from main() to
initialize TO and schedule the first interrupt. The
StartMotor () function is also located in the TO_ISR.c
file and declared extern from mainQ).

The TO_ISRQ) function itself is fairly simple. The body of
the TO_ISRQ) function is a switch statement using the
state variable Status that implements the state
diagram. Depending on the value of Status, TO_ISRQ)
will call the appropriate function stop(), align(),
start(), or run(). The last thing the TO_ISR() does
before returning is to update the TO counter registers for
the next period NextT. This is common to all states and
therefore included in the TO_1SR() function.

The stop() function is very simple. It disables both
PWWMs, disables TO interrupts, and stops the timer. The
motor will coast down safely with all transistors
disabled. Either pushing the stop button or an over-
current error can set the Status to STOP.

The align() schedules periodic interrupts every 10 ms.
It uses two static counters “v” and “d” for the “voltage
ramp” and “delay” respectively. Each time the align()
function is called it will increment the “v” counter and
output the new voltage until the limit is reached. Once
the “v” counter reaches its maximum value, subsequent
calls to align() will increment the “d” counter. Once the
delay counter d has reached the prescribed delay time,
the Status state variable is incremented to START and
the start function variables are initialized. The next time
TO_ISR() is executed it will call the start() function

Rev. 0.2 9

SILICON LABS

ANZ208

and not the align() function.

The start function uses a modulo 8 time slot manager.
The motor is commutated only on time slot zero. This
allows longer period values during the start period
without changing the timer clock.

Only time slot zero and time slot seven are used. The
start0() function is called on time slot zero. The
start0() function calculates the next period NextT
required to generate the desired linear-velocity profile.

The start0() function will be executed 192 times, once
for each entry in the acceleration table. The table value
is used to calculate the next period and output voltage.
Each time the table index Acclndex is incremented.

The start7() function is called on the last time slot of
the start function. The start7() function tests the
value of the Acclndex to determine if the Start phase is
complete. If the start phase has completed the state
variable Status is set to RUN.

The run() function uses a modulo 4 time slot manager.
The motor is commutated only on time slot zero. Each
time the timeslot index is incremented and masked to 2
bits (modulo 4). Each of the four time slots has a
corresponding function named run0(), runi(Q),
run2(), and run3(). The time slot manager facilitates
the scheduling of different tasks for the different time
slots.

Each of the four time slot run functions read the value of
the ADC, store the value in the appropriate location, and
configure the ADC for the next time slot.

The back EMF is sampled on time slots 1, 2, & 3. The
ADC is configured to initiate conversion on TO overflow.
This ensures that the first sample will occur precisely at
the correct time with respect to the commutation. The
ADC is reconfigured for the next sample at the end of
each timeslot. Thus, the back EMF samples are
scheduled at the end of time slots 0,1, & 2.

To improve resolution and reduce the effects of PWM
noise, the back EMF is sampled 8 times. The initial
sample is synchronized to TO and the remaining 7 data
points are sampled at the maximum sampling rate of the
ADC.

The motor current and potentiometer are sampled
during time slot zero, since the back EMF is not
sampled during this time slot.

The calculations are distributed among the three time
slots to balance the length of each function. The
average midpoint and error voltage are calculated in
time slot 2. The calculations related to stall detection are
performed in time slot 3.

Timer T2 is configured as a 16-bit auto-reload timer
generating a periodic interrupt every 1ms. The

T2 _ISRQ) is used for the PI controller and ramp
controller.

The TO interrupt period varies over a 300 to 1 range.
Conventional control theory is based on a discrete time
system with a constant sampling rate. The Pl controller
should be executed at a constant rate. An acceleration
controller that limits the rate of change for the speed
control potentiometer also requires a constant sampling
rate. The T2_ISR() includes code to limit the
acceleration and calls the PI controller function. The PI
controller is optimized the C8051. The performance of
the PI controller can be further improved by fixing the
coefficients as macro constants, instead of variables,
once the appropriate values are determined.

6. Summary

Brushless dc motors provide better reliability and longer
life than dc motors. Sensorless control of Brushless dc
motors eliminates the Hall effect sensors and reduces
the system cost.

The high performance 25 MIPs C8051 core and high
sample rate 10-bit ADC of the Silicon Laboratories
C8051F310 MCU makes it ideally suited for Sensorless
Brushless dc motor control.

The Sensorless Brushless dc motor reference design
provides a complete system solution for Sensorless
Brushless dc motor Fan and Pump applications.

10 Rev. 0.2

SILICON LABS

AN208

"OU| salojeloge] uodl|is

iz he

©
M D
proom [z |
|
.|H|'
AM—I
—
pml |I
—
'\N\/—||'
pS
g, B8
W\

’ L
N VN 9cd niy JLrol . Suyol. . .
200 02 302 02 0L
(_\ ANA-SEN 0eo cd 610 [44%] 8o (¥4S] 4o 0cd
0L
11 —
@ O nu AV Hm QuLOJCJVCuZ_Ir
Mw> ON an YA WA oo R
AT+ ol o TN e
w2 ces
wm v'ld ormwmm_ 1'ed
=] €1d azo
] ¢id 31020
52| Lid aan
9| oen_dddddd dDva
000000%0
NouhRwNhLO

oK
S
;
2
.
o
—\W
; L
g
Al
=3
—\W\,
e —
A —

x
<
-
g
B
z
o
s}
-

8y ea AN 4a

®
o
<<
[s2]
g
B
7
So
e
x
N
o
<<
N
(¢}
B
A
o
[22]
r2

O | _
4 1 VWA — 1
| 00l _ o _ N0'L] oL
v vl ey 00
8ZYyOLP 8ZY¥OL[C 8ZvvOL[adh adA adh

sn ¥ €n
AT+ NTV+ AZY+

AT+ AT+ AT+

OANO AaNdSss/
daNS dNdSss

O—e—

11

Rev. 0.2

€| |¢

<

n

1sy/

]

APPENDIX A—SCHEMATIC

=

L
€

nLo[MLO[NLO[nLO[NOT ES
80| 20| 99| SO ¥O ano
ada ada ada il NS
% ee° 860 oo>mﬁ_
adn A+ asn

I0JO| DAy SSe|iosusg

SILICON LABS

ANZ208

APPENDIX B—BILL OF MATERIALS

Table 4. Sensorless Brushless DC Motor Reference Design Bill of Materials

Qty Designators Description Value Package |[PN Mfr
1 Ul Voltage Regulator 3.3V SOT223 | LM2937IMP- | National
3.3
1 u2 USB-to-UART Bridge MLP20 CP2101 Silicon
Laboratories
U3, U4, U5 Gate Driver IC SO8 TC4428COA | Maxim
U6 Small Form Factor QFN32 C8051F310 Silicon
MCU Laboratories
1 u7 Low-Voltage Op-Amp SO8 LMV358M National
3 Q1,Q2, Q3 30V Complementary SO8 IRF7309 International
MOSFET Rectifier
1 D1 Triple TVS Diode SOT-143 | SPO503BAHT | Littlefuse
2 D2, D3 LED
1 C1 Electrolytic Capacitor | 470 pF 10x16mm Panasonic
1 c2 Chip Capacitor (25V) | 1.0 uF 1206 PCC-1893CT
14 C3, C5, C6, C7, C8, Chip Capacitor 0.1 pF 805
C10, C12, C13, C14,
C16, C22, C23, C24,
C25
4 C4, C9, C11, C17 Chip Capacitor (10V) | 1.0 uF 805
3 C18, C19, C20 Chip Capacitor AT pF 805
2 C15,C21 Chip Capacitor 2.7 nF 805
5 R1, R11, R12, R13, Chip Resistor 10 kQ2 805
R28
8 R2, R3, R4, R14, R19, | Chip Resistor 1.0 kQ 805
R20, R26, R29
6 R5, R6, R7, R8, R9, Chip Resistor 100 805
R10
1 R15 Chip Resistor 11.0kQY | 805
1 R16 Chip Resistor 1.13kQ) | 805
2 R17, R27 Chip Resistor 25.5kQ) | 805
1 R18 Thumb wheel Pot 10 kQ
3 R21, R22, R23 Chip Resistor 2.0 kQ 805
1 R24 Chip Resistor 8.20kQY | 805
1 R25 Low-Ohmage Resistor | 0.02 Q2 1812 P20NBCT-ND
12 Rev. 0.2

SILICON LABS

ANZ208

Table 4. Sensorless Brushless DC Motor Reference Design Bill of Materials (Continued)

Qty Designators Description Value Package |PN Mfr
3 SW1, SW2, SW3 6 mm push button
switch
1 J1 USB connector
1 J2 3x5 mm terminal block
1 J3 2x5x100 shrouded
header
1 P1 2.1 mm power con-
nector

SILICON LABS

Rev. 0.2

13

ANZ208

APPENDIX C—PCB LAYERS

Top Silk
U3 a1
O iz g T o 2O
Sensorless Cl1 10 J1 v v
C9 1 D1 —_— 0 —_—
BLDC Motor (ig | R11RE MOTOR
Drive RL 0O 423 ng a2 [
stop Ri4 N A A -
00t > usB Ceog [
N (= 4 (= 4 [— —
& |5 -2 C24 mﬁns
f () SILICON LABORATORIES us___ Rie 93 [
sTART __Cl ML o .
} D2 D3 us N | A
= o ° —— o___ B
* . o~ 0 Rri3f? c
b L 628 0
DEBUG VI Vo S s C15 R17
x Y . oo R26
Ja 2DD (]] u [Ty}
UM UC UB VA x o o
Eg ooooooooaoo é]sCZIRZ?su +Cl
v e 2 5 M ON 2 a 2
c22 oeaogdde23ad rev B -
1] 0 p2s SPEED
/‘\ = =3
In S 3
cl'g SH3 R18 o |:|8 g -
O & B)
. / oo :

Figure 13. PCB Silkscreen Layer

14

Rev. 0.2

SILICON LABS

ANZ208

Figure 14. PCB Top Copper Layer

SILICON LABS

15

ANZ208

Bottom

Figure 15. PCB Bottom Copper Layer

16 Rev. 0.2

SILICON LABS

ANZ208

SM Top

s~ —l— o

Figure 16. PCB Top Solder Mask Layer

17

Rev. 0.2

SILICON LABS

ANZ208

SM Bottom
o . e O
o
.0 ° -
. o0 e ©
o0
© o ‘e
E H oo * ¢
[| ° [) '
[]
¢ o .ol * °
®] L
HE B o o
(]
. o0 ° *
He ® 6 0 O °
[X] °®
o0
o0 °
o0
o o d
H o
® =mo o0

Figure 17. PCB Bottom Solder Mask

18 Rev. 0.2

SILICON LABS

AN208

APPENDIX D—SENSORLESS BLDC MoTOR CODE

slbdc.h

// Sensorless BLDC Motor Reference Design

/[
// Copyright 2006 Silicon Laboratories Inc.

//

// AUTH: KAB

// DATE: 14 SEP 2006

//

// This program provides Sensorless BLDC motor control using the

// “F310. This software is written specifically for the SBLDC

// reference design hardware. Please see the full application

// note for further information.

//

// Target: C8051F30x

//

// Tool chain: KEIL “c” full-version required

//

// Rev History:

//

// 30 AUG 2006 - Initial release (Pitmann N2311A011 Motor)

//

// 14 SEP 2006 - Changed Motor Supplier (Anaheim Automation BLY171S-24V-4000)
// Added switch for different motor types.

// Modified Motor Parameters in this header file only.

// Other source files unchanged.

//

/-
// MACROS

/-
// User modified Motor Parameters

//

// These parameters are related to thespecific motor used for the reference

// design. These parameters will need to be changed if using a different motor.
//

// define motor type - Pittman, Anaheim Automation, or custom motor

//

//

#define ANAHEIM_BLY171S_24V_4000
//#define PITTMAN_N2311A011

// Motor parameters for Aneheim Automation BLYS171S 24V_4000 Motor
#ifdef ANAHEIM_BLY171S_24V_4000

#define MILLIOHMS 1800 // motor resistance in milliohms
#define VMOTOR 12 // motor voltage in volts

#define IMOTOR 500 // maximum motor current in millamps
#define NUM_POLES 8 // motor poles

#define RATED_RPM 4000 // rated no load rpm at max voltage
#define MAX_RPM 2000 // max desired speed

#deFfine KPINIT 20 // Kp initial value

#endif

// Motor parameters for Pittman Motor N2311A011 Motor
#ifdef PITTMAN_N2311A011

Rev. 0.2
SILICON LABS

19

ANZ208

#define MILLIOHMS 260 // motor resistance in milliohms
#define VMOTOR 12 // motor voltage in volts

#define IMOTOR 5 // maximum motor current in amps
#define NUM_POLES 4 // motor poles

#define RATED_RPM 7500 // rated no load rpm at max voltage
#define MAX_RPM 5000 // max desired speed

#define KPINIT 40 // Kp initial value

#endif

S~
// constants

#define SYSCLK 24500000L // bus clock (long int)

#define ILIMIT 1000 // current limit

#define VSTALL 2 // minimum stall criteria

#define TALIGN 255 // align time in 10ms increments
#define ON O // push-button logic ON

#define OFF 1 // push-button logic OFF

#define STOP O // Motor State variable values

#define ALIGN 1
#define START 2
#define RUN 3

// preprocessor calculated values

#define TABLE_MIN 8

#define TABLE MAX 240

#define RAMP_MOD 8

#define RUN_MOD 4

#define TO_DIV 48

#define VLIMIT ((128L * MILLIOHMS * IMOTOR)/VMOTOR /1000000)

#define TO_CLK (SYSCLK/TO_DIV)

#define TSCALE ((2*10*60/6)*T0_CLK/RATED_RPM/NUM_POLES/RAMP_MOD/TABLE_MIN)

#define VMIN (128/10) // (128 /10)
#define VSTART (128 * TABLE_MIN / 10)
#define TENMS (SYSCLK / TO_DIV / 100) // timer count for 10ms delay

#define TRUN_TIMES 127 (((127L*2*60/6)*TO_CLK)/RATED_RPM/NUM_POLES/RUN_MOD)
#define RPM_SCALE (RATED_RPM/127)

#define T2_RELOAD (65536-SYSCLK/1000)

#define T2_RELOAD_L (T2 _RELOAD & OXOOFF)

#define T2_RELOAD_H (T2_RELOAD/256)

#define OMEGA LIMIT (127*MAX_RPM/RATED_RPM)

// preprocessor error checking
// These macros check for range errors on user modifiable parameters
#if ((TSCALE)>(255))
#error “TSCALE requires 16 bit math”
#endif
#if ((TSCALE*TABLE_MAX)>65535)
#error “TSCALE too large”
#endif

[
typedef union // unsigned union for accessing SFRs
{
struct
{
unsigned char hi;
20 Rev. 0.2)

SILICON LABS

ANZ208

unsigned char lo;
} b;
unsigned int w;
Judblbyte;

typedef union
{

struct
{
unsigned char hi;
unsigned char lo;
} b;
signed int w;
}sdblbyte;

// signed union used for signed ADC

SILICON LABS

Rev. 0.2

21

ANZ208

slbdc.c
[
// Sensorless BLDC Motor Reference Design

YA et e
// Copyright 2006 Silicon Laboratories Inc.

//

// AUTH: KAB

// DATE: 30 AUG 2006

//

// This program provides Sensorless BLDC motor control using the

// “F310. This software is written specifically for the SBLDC

// reference design hardware. Please see the full application

// note for further information.

//

// Target: C8051F30x

//

// Tool chain: KEIL “c” full-version required

//
[
/7 Includes
[
#include <c8051f310.h> // SFR declarations

#include <stdio.h> // printfQ

#include <slbdc.h> // macro constants
[
// Function PROTOTYPES
[
void SYSCLK_Init (void);

VO

id PORT_Init (void);

void PCAO_Init (void);

void ADC_Init(void);

void UARTO_Init (void);

extern void StartMotor(void); // located in TO_ISR.c

extern void TO_Init(void); // located in TO_ISR.c

extern void T2_Init(void); // located in T2_ISR.c
[
// External Public Variables
[
// TO_ISR Variables accessed by GUI

extern unsigned char Status; // Motor State Variable

extern unsigned int Imotor; // Motor current

extern unsigned int Vpot; // Speed Pot Voltage

extern signed int Vemf; // back EMF magnitude

extern signed int Verror; // error voltage from midpoint

extern bit Stall; // Stall detection flag

extern bit OverCurrent; // Over current flag

// T2_ISR Variables accessed by GUI

extern signed int Kp; // Proportional Constant

extern signed int Ki; // Integral Constant

extern signed int Vpi; // output from Pl controller

extern unsigned int Vout; // Output Voltage

extern unsigned Int SpeedRPM; // Motor speed in RPM
[
// Global Local Variables
[
sbit Start = PONO;

sb

it Stop = POMN1;

22

Rev. 0.2

SILICON LABS

ANZ208

void main (void)

{
char theChar;
PCAOMD &= ~0x40; // Disable Watchdog Timer
SYSCLK_Init Q;
PORT_Init(); // initialize system clock
PCAO_Init();
TO_Init Q;
T2_Init Q;
UARTO_Init Q; // initialize UART
ADC_Init();
EA = 1; // enable global
printf(*\r\nreset.._.\r\n”);
while(l)
{
printf(“push start button...\r\n”);
while(Start==0FF); // wait for start
while(Start==0N); // wait for release
StartMotor(); // start motor
printf(*“aligning.._\r\n”);
while(Status!=START); //wait for run
printf(“starting.._\r\n”);
while(Status!=RUN); //wait for run
printf(“running. . _\r\n”);
while(Status==RUN)
it (R10) // check for input (non-blocking)
{
theChar = getkey();
while (theChar<“a” || theChar>>z”)
theChar = getkey(); // ignore non-alpha
switch(theChar) // parse theChar
{
case “p’: // set Kp
printfF(“Kp?\r\n”);
scanf(“%d”,&Kp);
printfFC\r\nKp=%d\r\n”,Kp);
break;
case “i’: // set Ki
printf(“Ki?\r\n”);
scanf(“%d”,&Ki);
printfFC\r\nKi=%d\r\n”,Ki);
break;
case “s’: // display Status

printf(“Speed=%u\r\n”’,SpeedRPM) ;
printf(“Vout=%u\r\n”,Vout);
printf(“Verror=%d\r\n”,Verror);
printf(“Imotor=%u\r\n”’, Imotor);
printf(“Vemf=%d\r\n”,Vemf);
printf(“Vpi=%d\r\n”,Vpi);
printf(“Vpot=%u\r\n”,Vpot);
printf(“Kp=%d\r\n”,Kp);
printf(“Ki=%d\r\n”,Ki);
printf(*\r\n”’);

interrupts

Rev. 0.2

SILICON LABS

23

ANZ208

void SYSCLK_Init (void)

{

(5]

break;
default:

printf(“Error\r\n”);
} //end switch
} //end if
if(Stall)

printf(“StallI\r\n”);

i F(Stop==0N)

-~

}

e

Status = STOP;
printf(“Stopping Motor!\r\n’);

while(Stop==

f(OverCurrent)

ON);

//

printf(*“OverCurrent!\r\n);

// check stall flag

// check Stop button

// wait for release

check over current flag

OSCICN = 0x83; // configure for 24.5 MHz
¥
[
// UARTO_Init
[
void PORT_Init (void)
{

// PO.0 = Run, Skipped, Open-Drain Output/Input

// PO.1 = Reverse Skipped, Open-Drain Output/Input

// PO.2 = LED1 Skipped, Push-Pull Output

// PO.3 = LED1 Skipped, Push-Pull Output

// PO.4 = Txd UART, Push-Pull Output

// PO.5 = Rxd UART, Open-Drain Output/Input

// PO.6 = NC Skipped, Open-Drain Output/Input

// PO.7 = NC Skipped, Open-Drain Output/Input

// P1.0 = Abottom PCA, Push-Pull Output

// P1.1 = Atop PCA, Push-Pull Output

// P1.2 = Bbottom PCA, Push-Pull Output

// P1.3 = Btop PCA, Push-Pull Output

// P1.4 = Cbotton PCA, Push-Pull Output

// P1.5 = Ctop PCA, Push-Pull Output

// P1.6 = NC Skipped, Open-Drain Output/Input

// P1.7 = NC Skipped, Open-Drain Output/Input

// Port 2

// P2.0 = VI Skipped, Analog Input

// P2.1 = VO Skipped, Analog Input

// P2.2 = VA Skipped, Analog Input

// P2.3 = VB Skipped, Analog Input

// P2.4 = \VC Skipped, Analog Input
24 Rev. 0.2)

SILICON LABS

ANZ208

// P2.5 = WM Skipped, Analog Input

// P2.6 = Pot Skipped, Analog Input

// P2.7 = NC Skipped, Analog Input

XBRO = 0x01; // Enable UART on Crossbar

XBR1 = 0x02; // Enable CEXO0,CEX1 on Crossbar

POMDOUT = 0x1C; // P0.2, PO.3, & PO.4 are outputs

PIMDOUT = 077; // enable motor outputs (octal)

P2MDIN = 0x00; // all P2 pins are Analog inputs

POSKIP = ~0x30; // Skip all, except UART

P1SKIP = 071; // initial PSKIP pattern (octal)

P2SKIP = OxOF; // Skip all P2 Pins

XBR1 |= 0x40; // enable crossbar

P1 = Oxff; // P1 all high
¥
[~
// PCAO_Init
[~
void PCAO_Init (void)
{

PCAOMD = 0x02; // PCA uses sysclk/4, no CF int

PCAOCPLO = 0x00; // clear mode, pin high

PCAOCPL1 = 0x00; // clear mode, pin high

PCAOL = 0x00; // reset the timer

PCAOH = 0x00; // reset the timer

PCAOCPHO = 0x00; // init to 0%

PCAOCPH1 = 0x00; // init to 0%

CR = 1; // START PCAO timer
¥
[/
// ADCO_Init
[/~
void ADC_Init()
{

AMXOP = 0x09; // config for motor current

AMXON = OxFF; // single ended

ADCOCF = 0x40; // SARCLK 272222,

ADCOCN = 0x80; // initiate on ADOBUSY

REFOCN = 0x08; // use vdd for reference
s
[
// UARTO_Init
[
void UARTO_Init (void)
{

SCONO = 0x10; // enable receiver

TMOD &= ~0x30; // clear T1 mode

TMOD |= 0x20; // T1 mode 2

CKCON]= 0x08; // T1 uses SYSCLK

TH1 = Ox96; // Tixed 115200 baud

TL1 = TH1; // init Timerl

TR1 = 1; // START Timerl

TIO = 1; // Indicate TXO ready
by

SILICON LABS

Rev. 0.2 25

ANZ208

TO_ISR.c

// Sensorless BLDC Motor Reference Design

R R R ==

// Copyright 2006 Silicon Laboratories Inc.

//

// AUTH: KAB

// DATE: 30 AUG 2006

//

// This program provides Sensorless BLDC motor control using the
// “F310. This software is written specifically for the SBLDC
// reference design hardware. Please see the full application
// note for further information.

//

// Target: C8051F30x

//

// Tool chain: KEIL “c” full-version required

//

R e e =,

// Includes

#include <c8051f310.h> // SFR declarations
#include <slbdc.h> // macro constants

const unsigned char code skipPattern[6]=
{071,055,047,066,036,033}; // code in octal

const unsigned char code openPhase[6]=
{0x0C,0x0B,0x0A,0x0C,0x0B,0x0A}; // open phase mux value

const unsigned char code TRamp[192]= // linear acceleration table

{
OxFO, 0x63, 0x4C, 0x40, 0x38, 0x33, Ox2F, 0x2B,

0x29, 0x26, 0x25, 0x23, 0x21, 0x20, Ox1F, Ox1E,
0x1D, Ox1C, 0x1B, 0Ox1B, Ox1A, 0x19, 0x19, 0x18,
0x18, 0x17, Ox17, 0x16, Ox16, 0x16, 0Ox15, Ox15,
0x15, 0Ox14, 0x14, 0x14, 0x13, 0x13, 0x13, 0x13,
0x12, 0x12, Ox12, 0x12, Ox11, Ox11, Ox11, Ox11,
Ox11, Ox11, Ox10, 0x10, 0Ox10, 0x10, 0Ox10, Ox10,
Ox0F, OxOF, OxOF, OxOF, OxOF, OxOF, OxOF, OxOF,
Ox0E, OxXOE, OxOE, OxOE, OxOE, OxOE, OxOE, OxOE,
Ox0E, OxOD, OxOD, 0Ox0OD, OxOD, 0OxOD, OxOD, OxOD,
0x0D, 0Ox0OD, Ox0OD, 0x0D, OxOD, 0Ox0OC, 0OxOC, OxOC,
0x0C, 0x0C, 0Ox0C, 0x0C, OxOC, 0x0C, OxOC, 0OxoOC,
0x0C, 0x0C, 0Ox0C, 0x0C, Ox0B, 0x0OB, 0OxOB, 0x0B,
0x0B, 0x0OB, 0Ox0B, 0xOB, Ox0B, 0x0OB, 0OxOB, OxO0B,
0x0B, 0xOB, 0Ox0B, 0xOB, OxOB, 0x0OB, 0OxO0B, OxOA,
Ox0A, OxOA, OxO0A, OxO0A, OxOA, OxO0OA, OxOA, OxOA,
Ox0A, OxOA, OxO0A, OxO0A, OxOA, OxO0OA, OxOA, OxOA,
Ox0A, OxOA, Ox0A, OxO0A, OxOA, OxO0A, OxO0A, OxOA,
0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09,
0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09,
0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09,

26 Rev. 0.2

SILICON LABS

ANZ208

0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09,
0x09, 0x09, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08,

0x08, 0x08, 0x08, 0x08, 0x08,

void StartMotor(void);

void TO_Init(void);

void TO_ISR (void);

void stop(void);

void align(void);

void start(void);

void startO(void);

void start7(void);

void run(void);

void runO(void);

void runl(void);

void run2(void);

void run3(void);

unsigned int avgCurrent(void);
signed int avgVoltage(void);
signed int avgVmid(void);
signed int avgVdelta(void);
signed int flip(signed int);
void updateT(void);

void commutate();

void error(void);

// Global Variables

// Public accessed by GUI
unsigned char Status;
unsigned int Imotor;
unsigned iInt Vpot;

signed int Vemf;

signed int Verror;

bit Stall;

bit OverCurrent;

// Local global TO_ISR variables
unsigned char Tslot;

unsigned int NextT;

unsigned char Acclndex;

unsigned char Mtrindex;

signed int idata Vmid[6];

signed int idata Vdelta[6];
signed int Vmin;

signed int Vmax;

bit Flip;
sbit AlignLED
sbit BlinkLED

PO~2;
PO"3;

// external T2_ISR variables

0x08, 0x08

//
//
//

//
//
//

//
//

motor state variable
motor current measurement
speed pot voltage measurement

error voltage from min-point voltage
stall flag bit
over-current flag bit

used for avg Verror calc
used for average Vdelta calc

SILICON LABS

Rev. 0.2

27

ANZ208

extern unsigned char Speed;

// StartMotor function - called from main

void StartMotor(void)

{
TLO = OxFO; //
THO = OXxFF; //
ETO = 1; //
TRO = 1; //
Mtrindex = 5; //
Status = ALIGN; //
AlignLED = ON; //
Tslot = 0; //
Speed = 0; //

¥

// TO_Init - called from main

void TO_Init(void)

{
TMOD &= ~0x03; //
TMOD |= 0x01; //
CKCON &= ~0x07; //
CKCON |= 0x02; //
1P |= 0x02; //
CKCON |= 0x10; //
TMR2RLL = T2 RELOAD L; //
TMR2RLH = T2_RELOAD_H; //

}

// TO_ISR

void TO_ISR (void) interrupt 1

TO overflow in 16 ticks
msb set to FF

enable TO interrupt
start TimerO

Mtrindex will flip to O
set Status to ALIGN state
turn on LED

commutate on next ISR

reset speed ramp controller

clear TO mode

TO mode 1

clear SCAx and TOM
TO uses SYSCLK/48
TO high priority
T2 uses SYSCLK
Timer 2 Low Byte
Timer 2 High Byte

{
if (Tslot==0) commutate(); // commutate first if time slot zero
switch(Status) // implement state diagram
{
case STOP:
stop(Q); // stop motor
break;
case ALIGN:
align(Q):; // align motor
break;
case START:
start(); // start motor
break;
case RUN:
runQ; // run
28 Rev. 0.2)

SILICON LABS

ANZ208

break;
s
updateT();
[/
// stop() called from TO_ISRQ
[/
void stop (void)
{
PCAOCPHO = 0;
PCAOCPH1 = 0;
PCAOCPMO = 0x00;
PCAOCPM1 = 0x00;
ETO = 0;
ET2 = 0;
TRO = O;
TMR2CN &= ~0x04;
by
/[-
// align() called from TO_ISRQ
[/
void align(void)
{
static unsigned char v=0;
static unsigned char d=0;
Tslot = 1;
NextT = TENMS;
if(v < (128 + VLIMIT))
{
V++;
PCAOCPHO = v;
PCAOCPH1 = v;
ks
else if (d < TALIGN)
{
d++;
}
else
{
Status = START;
Acclndex = 0;
Tslot = O;
AlignLED = OFF;
v = 0;
d = 0;
3
s
/[

void start(void)

{
switch(Tslot)

// update T before returning

// reset duty cycle

// reset duty cycle

// disable PWM

// disable PWM

// disable TO interrupt
// disable T2 interrupt
// stop Timer O

// stop Timer 2

// don’t commutate
// execute align every 10ms
// ramp voltage to 50% + VLIMIT

// increment v
// update PWM
// update PWM

// align delay

// increment d

// go to next state

// reset table index

// commutate on next interrupt
// turn off LED

// clear v for next restart
// clear d for next restart

// implement time slot manager

SILICON LABS

Rev. 0.2 29

ANZ208

{

case O:

start0(Q);

break;
case 7:

start7();

break;

}

Tslot++;
Tslot &= 0x07;

//

//

do startO() one of eight times

check if done

increment time slot
mask to 3 bits (modulus 8)

}
/)
// start0(Q)
/)
void startOo(void)
{
unsigned int t,v;
unsigned char d;
t = TRamp[Acclndex]; // look-up table value
v = VSTART / t; // divide to get v
t *= TSCALE; // scale to get t
v += 128; // add 50%
v += VLIMIT; // add VLIMIT
if(v > 255) // limit to unsigned char
{
v = 255;
¥
d = v; // copy to unsigned char d
PCAOCPHO = d; // update PWM
PCAOCPH1 = d; // update PWM
Acclndex++; // increment index
NextT = t; // update next T
}
/)
// start7()
/)
void start7(void)
{
if (Acclndex > 191) // check if done accelerating
{
Status = RUN; // go to next state
NextT = 16 * TSCALE; // update next T
AMXOP = 0x09; // config for motor current
AMXON = OxFF; // single ended
ADCOCN = 0x81; // initiate on TO overflow
TMR2CN]= 0x04; // enabe Timer 2
ET2 = 1; // Enable T2 interrupt
}
}
/)
// runQ
Y et ettt e L L e e
void run(void)
{
Tslot &= 0x03; // mask Tslot to 2 bits (modulo 4)
switch(Tslot) // implement time slot manager
30 Rev. 0.2)

SILICON LABS

ANZ208

{
case O:
run0Q);
break;
case 1:
runl(Q);
break;
case 2:
run2Q);
break;
case 3:
run3Q;
break;
b
Tslot++;
Tslot &= 0x03;
}
// run0Q
void runO(void)
{
Imotor = avgCurrent();
if (Imotor > ILIMIT)
{
OverCurrent = 1;
AlignLED = ON;
Status = STOP;
b
AMXOP = OXxOE;
AMXON = OXxFF;

ADCOCN = 0xCO;

ADCOCF |= 0x04;

ADOINT = 0O;

ADOBUSY = 1;

while (TADOINT);

Vpot = ADCOH;

AMXOP = openPhase[Mtrindex];
AMXON = OxO0D;

ADCOCF &= ~0x04;

ADCOCN = 0x81;

void runl(void)
{
signed int v;
v = avgVoltage();
v = Flip(v);
Vmin = v;
ADCOCN = 0x81;

void run2(void)

{

signed int v;

//

//

//

//

//
//
//
//

run time slot 0O

run time slot 1

run time slot 2

run time slot 3

increment time slot
mask Tslot to 2 bits (modulo 4)

avg motor current using ADC

config for pot

single ended

initiate on ADOBUSY, LPT
left justify

clear ADCO end-of-conversion
initiate conversion

wait for conversion to complete
read speed pot

config for open phase
differential measurement
right justify

initiate on TO overflow

read back EMF

flip every other cycle
save min voltage
initiate on TO overflow

SILICON LABS

Rev. 0.2 31

ANZ208

Vmid[Mtrindex] = avgVoltage();
v = avgVmid() - Vmid[Mtrindex];

v = Flip(v);
Verror = v;
ADCOCN = 0x81;
}
// run3Q)
void run3(void)
{
static unsigned char stable = 12;
signed int v;
v = avgVoltage();
v = Flip(v);
Vmax = v;
Vdelta[MtriIndex]= Vmax - Vmin;
if(stable==0)
{
Vemf = avgvVdelta(Q);
if(Vemf<VSTALL)
Stall = 1;
AlignLED = ON;
}
else
{
Stall = 0;
AlignLED = OFF;
}
3
else
{
stable--;
¥
AMXOP = 0x09;
AMXON = OxFF;
ADCOCN = 0x81;
}
// rund(Q

unsigned int avgCurrent(void)

{

unsigned Int sum, result;
udblbyte v;

unsigned char i

sum = 0;

while (TADOINT);

v.b.lo = ADCOL;

v.b.hi = ADCOH;

sum += V.w;

ADCOCN = 0x80;

for (i = 7; 1 1'=0; i--)
{

//
//
//
//
//

//
//

//
//

//
//

//
//

//
//

read avg voltage and store in array
subtract from avg midpoint

flip every other cycle

store in global Verror

initiate on TO overflow

read avg voltage

flip every other cycle
store max voltage
calculate delta
stabilization delay

calculate back EMF magnitude
check for stall

set stall flag
blink LED

clear stall flag
turn off LED

decrement stable delay

config for motor current
single ended
initiate on TO overflow

wait for conversion to complete
read ADC

initiate on ADOBUSY
repeat 7 more times

32

Rev. 0.2

SILICON LABS

ANZ208

ADOINT = 0;
ADOBUSY = 1;
whille (YADOINT);
v.b.lo = ADCOL;
v.b.hi = ADCOH;
sum += V.w;

b

result = sum>>2;

return result;

signed int flip (signed int v)

{
ifT ((Mtrindex & 0x01) == 0x00)

{
}

return v;

vV = -v;

signed int avgVoltage(void)
{
signed int sum, result;
sdblbyte v;

unsigned char i ;

sum = 0;

while (TADOINT);

v.b.lo ADCOL ;

v.b.hi ADCOH;

sum += V.w;

ADCOCN 0x80;

for (i 7; 1 1=0; 1--)
{

n i< i

ADOINT = 0;
ADOBUSY = 1;
whille (YADOINT);
v.b.lo = ADCOL;
v.b.hi = ADCOH;
sum += Vv.w;

b

result = sum>>2;

return result;

signed int avgVmid(void)
{
signed int sum;
unsigned char i;
sum = 0;

//
//
//
//

//

//

//

//
//

//
//
//

//
//
//
//

clear ADCO end-of-conversion
initiate conversion

wait for conversion to complete
read ADC

add to sum

return average reading

flip on 0, 2, and 4

wait for conversion to complete
read ADC

add to sum
initiate on ADOBUSY
repeat 7 more times

clear ADCO end-of-conversion
initiate conversion

wait for conversion to complete
read ADC

divide by 4, 11-bit effective
return average reading

SILICON LABS

Rev. 0.2 33

ANZ208

for (i = 0; 1 < 6; I++)
{

sum += Vmid[i];

b

sum /=6;

return sum;
T

signed int avgVdelta(void)
{
signed int sum;
unsigned char i;
sum = 0;
for (i = 0; i < 6; i++)
{

s
sum /=6;
return sum;

sum += Vdelta[i];

void updateT (void)

{
udblbyte tO;
t0.b.lo = TLO;
t0.b.hi = THO;
t0.w -= NextT;
TLO t0.b.lo;
THO t0.b.hi;

void commutate (void)

{

MtriIndex++;
if(Mtrindex>5)

Mtrindex = 0;

b

P1 = Oxff;
PCAOCPMO = 0x00;
PCAOCPM1 = 0x00;

XBR1 &= ~0x40;

P1SKIP = skipPattern[Mtrindex];

XBR1 |= 0x40;
PCAOCPMO = 0x42;
PCAOCPM1 = 0x42;

if(Mtrindex==0)

{
BlinkLED = ON;

// repeat 6 times
// calculate sum of midpoints

// divide by 6
// return average

// repeat 6 times
// calculate sum of Vdelta

// divide by 6

// get current value

// subtract period
// save new overflow value

// increment Mtrindex
// Fix if greater than 5

// P1 all high
// disable PWM
// disable PWM
// disable crossbar

// enable crossbar

// enable 8-bit PWM mode
// enable 8-bit PWM mode

// toggle LED on zero

34

Rev. 0.2

SILICON LABS

AN208

}

else

{
}

BIinkLED = OFF;

SILICON LABS

Rev. 0.2

35

ANZ208

T2 ISR.C

// Sensorless BLDC Motor Reference Design

B e i i s =

// Copyright 2006 Silicon Laboratories Inc.

//

// AUTH: KAB

// DATE: 30 AUG 2006
//

// This program provides Sensorless BLDC motor control using the
// “F310. This software is written specifically for the SBLDC
// reference design hardware. Please see the full application

// note for further information.
//

// Target: C8051F30x

//

// Tool chain: KEIL “c” full-version required

//

S

// Includes

) ——————————
) R ...

// Includes

#include <c8051f310.h>
#include <slbdc.h>

// External Public Variables

extern unsigned int Vpot;
extern signed int Verror;
extern unsigned Int NextT;

signed int Ki=0;
signed int Kp=KPINIT;
unsigned int SpeedRPM;
signed int Vpi;

signed int Vout;
unsigned char Speed;

void T2_Init(void);

void T2_ISR (void);

void Pl (void) ;

saturate (signed int,signed int);

SFR declarations
macro constants

pot reading from TO_ISR.c
error signal from TO_ISR.c
next period to TO_ISR.c

integral constant (initially zero)
proportional constant

speed in RPM for GUI

output from Pl controller

output voltage

speed for ramp controller

/)
// T2_Init - called from main
Y e e e e L e
void T2_Init(void)
{
CKCON |= 0x10; // T2 uses SYSCLK
TMR2RLL = T2_RELOAD_L; // Timer 2 Low Byte
36 Rev. 0.2)

SILICON LABS

ANZ208

TMR2RLH = T2_RELOAD_H;

void T2_ISR (void) interrupt 5

{
static unsigned int ramp = 1024;
signed int omega;
unsigned char v;

if(ramp==0)
{
if(Speed < (Vpot>>1))

Speed++;
}
else if (Speed > (Vpot>>1))
{

}
ramp = 1024;

Speed--;

H
else

{
}

omega = (Speed>>1) + VMIN;

ramp--;

Vout = omega;

P1O;

omega -= (Vpi>>5);
if(omega<VLIMIT)

{

}

else if(omega > (128-VLIMIT))
{

}

omega=VLIMIT;
omega = (128-VLIMIT);

if(Vpi > 128)

{
Vout = omega + VLIMIT;

}
else if (Vpi <-128)

{

Vout = omega - VLIMIT;
ks
if(Vout< (VMIN+VLIMIT))
{

//

/7/

//

//

//

//

//

//

//

//

//

//

//

//

Timer 2 High Byte

sets speed ramp
used for omega calculation
used for voltage calculation

do 1 of 1024 times

bump up

bump down

reload ramp value

decrement ramp counter

convert 0-255 to omega
copy to Vout
do PI

subtract error

fix if under limit

fix if over limit

if over limit

ix if under limit

fix if under limit

SILICON LABS

Rev. 0.2 37

ANZ208

Vout=(VMIN+VLIMIT) ;

¥
else if(Vout > 127) // Fix if over limit
{
Vout = 127;
}
SpeedRPM = omega * RPM_SCALE; // calc RPM for GUI
NextT = TRUN_TIMES_127/(unsigned char)(omega); // calc next period
v = Vout + 128; //update output voltage
PCAOCPHO = v;
PCAOCPH1 = v;
}
/)~
/7 P1QO
)
void Pl(void)
{
static signed int i = 0;
signed int p,e;
{
e = 0; // clear error
if(Kp!=0) // check for zero
// pre-saturate p term to 14 bits
p = saturate (Verror, (8192/Kp));
e += p * Kp; // multiply p term
}
if(Kil=0) //check for zero
{
i += Verror; // integrate error
i = saturate (i, (8192/Ki)); // pre-saturate i term to 14 bits
e += 1 * Ki; // multiply i term and add (15 bits)
}
Vpi = e>>2; // shift output
¥
}
/)
// saturate()
/)
signed int saturate (signed int i, signed int I)
{
ifi > 1) // if greater than upper limit
{
i = +l; // set to upper limit
3
else if (i < -1) // if less than lower limit
{
1= -1; // set to lower limit
}
return i; // return saturated value
}
38 Rev. 0.2)

SILICON LABS

ANZ208

DOCUMENT CHANGE LIST

Revision 0.1 to Revision 0.2
m Updated code for slbdc.h.

®

SILICON LABS

Rev. 0.2

39

Simplicity Studio

One-click access to MCU and
wireless tools, documentation,
software, source code libraries &
more. Available for Windows,
Mac and Linux!

loT Portfolio SW/HW Quality Support and Community
www.silabs.com/loT www.silabs.com/simplicity www.silabs.com/quality community.silabs.com

Disclaimer

Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or
intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical"
parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes
without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included
information. Silicon Labs shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted
hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent of
Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal
injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass
destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

Trademark Information

Silicon Laboratories Inc.® , Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®,
EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers”, Ember®, EZLink®, EZRadio®, EZRadioPRO®,
Gecko®, ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® and others are trademarks or registered trademarks of Silicon
Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand
names mentioned herein are trademarks of their respective holders.

®

Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701

USA

SILICON LABS http://www.silabs.com

	1. Introduction
	2. Theory of Operation
	Figure 1. DC Motor Characteristics
	Figure 2. Stepper Motor Model
	Figure 3. Stepper Motor Characteristics
	2.1. PWM Scheme
	Figure 4. Three-Phase Bridge
	Table 1. Low-Side PWM Commutation
	Figure 5. Low-Side PWM Back EMF
	Table 2. Symmetric PWM Commutation
	Figure 6. Symmetric PWM Back EMF

	3. Back EMF Waveforms
	Table 3. Back EMF Control
	3.1. Safe Operating Range
	Figure 7. Output Voltage and Speed
	Figure 8. Safe Operating Area
	Figure 9. Constant-Voltage with Limiting

	3.2. Starting
	Figure 10. SBLDC State Diagram

	3.3. Alignment
	Figure 11. Motor Current vs. Duty Cycle

	3.4. Starting
	3.5. Running
	3.6. Back EMF Measurements
	Figure 12. Back EMF Sampling

	4. Hardware Description
	5. Software Description
	6. Summary
	Appendix A—Schematic
	Appendix B—Bill of Materials
	Table 4. Sensorless Brushless DC Motor Reference Design Bill of Materials

	Appendix C—PCB Layers
	Figure 13. PCB Silkscreen Layer
	Figure 14. PCB Top Copper Layer
	Figure 15. PCB Bottom Copper Layer
	Figure 16. PCB Top Solder Mask Layer
	Figure 17. PCB Bottom Solder Mask

	Appendix D—Sensorless BLDC Motor Code
	slbdc.h
	slbdc.c
	T2_ISR.c

	Document Change List
	Revision 0.1 to Revision 0.2

