This document will describe how to apply the Silicon Labs Si5348 as part of a Telecom Boundary Clock solution in a PTP network.

KEY POINTS

- Explains the characteristics of master, slave, grandmaster, ordinary, boundary, and transparent PTP clock types.
- Describes Si5348 key design decisions.
- Lists standards compliance reports, such as:
 - ITU-T G.8273.2 T-BC
 - ITU-T G.8262 (SyncE)
 - ITU-T G.812 Type III, IV & G.813 Option 1
 - Telcordia GR-124
 - GR-253 (Stratum-3/3E)
- Discusses ClockBuilder Pro and the Si5348 sample plan.
1. Overview

1.1 Synchronization

Current widely deployed telecommunication networks based on time division multiplexing (TDM), such as SONET/SDH/PDH, require precise frequency synchronization (i.e., syntonization) for accurate data transfer. These networks have worked well for voice and low bandwidth data. However, TDM networks are costly to scale with increased traffic. Further, some modern communication services now require both time and frequency synchronization. There are many timing applications that can make use of highly accurate synchronized distributed clocks. These include data acquisition, digital video distribution, financial trading, the Internet of Things (IoT), small cell coordination, manufacturing automation and robotics, power systems, and mobile telephone cell coordination. Wireless backhaul is an example application driving this requirement, where mobile subscribers must be handed off from one service area or cell to another.

In addition, typical computer networks closer to the end user are Ethernet-based packet networks. These are low cost asynchronous networks that transfer data with much less frequency accuracy than their TDM counterparts. The result is that carriers must manage the delivery of various communication services across a network that is technologically heterogeneous. An illustration of such a heterogeneous network is shown in the figure below, from Silicon Labs application note, AN420: "SyncE and IEEE 1588: Sync Distribution for a Unified Network".

![Figure 1.1. Example Network with Mixed Synchronous and Asynchronous Equipment](image)

There are several approaches to “synchronize” packet networks to TDM networks:

1. **Primary Reference Source (PRS)**

 This option adds a Primary Reference Source (PRS) yielding Stratum 1 quality frequency and timing, such as a GPS-derived clock at every node communicating to a TDM network. This is a high quality but relatively costly approach.

2. **Synchronous Ethernet (SyncE)**

 The SyncE approach uses physical layer clock distribution, which relies on the concept of line timing to provide frequency synchronization similar to previous generation synchronous networks, such as SDH/SONET. In short, the free-running XOs at each Ethernet node whose frequencies are within ±100 ppm of each other are replaced by clock recovery PLLs with free-run accuracy ±4.6 ppm. However, this approach can only supply accurate frequency and not phase information, since the path delays between network elements are unknown and unaccounted.

3. **PTP (Precision Time Protocol)**

 Packet based timing inserts dedicated timing stamp packets into the packet network’s data stream. PTP (Precision Time Protocol) standardized by IEEE 1588 has been widely adopted as the method for implementing packet based timing. This is a lower cost solution that can support both frequency and phase synchronization traceable to a Primary Reference Source. Synchronization is implemented by messages exchanged between a master clock and a slave clock on the network.

Both SyncE and packet based (IEEE 1588) synchronization approaches are recognized and specified by the ITU-T G.8261 standard.
1.2 PTP (Precision Time Protocol) Network Clock Types

A clock distribution network employing IEEE 1588 PTP (Precision Time Protocol), described above, is a PTP network. The several types of clocks in a PTP network are listed below with their notable characteristics. This application note concentrates on the Boundary Clock as described below. Figure 1.2 Example PTP (Precision Time Protocol) Network on page 2 illustrates these clock types.

1. Master Clock
 - Initiates sync messages to Slave Clocks.
 - Determines the time base for Slave Clocks lower in hierarchy.

2. Slave Clock
 - Receives sync messages from Master Clock.
 - Time base is determined for the Slave Clock by a Master Clock higher in hierarchy.

3. Grand Master Clock
 - Root timing reference for the time distribution network. In other words, the Grand Master is the "top" of the synchronization hierarchy. The Grand Master determines the time base for all clocks lower than it in the hierarchy.
 - Normally has a very stable oscillator or is locked to a GPS receiver. The Grand Master Clock (T-GM) is shown on the left-hand side in the figure below. It acts as a Master Clock to the Boundary Clock (T-BC) at its right.

4. Ordinary Clock
 - PTP clock with a single PTP port. This is also referred to as an end device or end node in the PTP network.
 - This type of clock is "ordinary" in the sense that it can operate as either a master clock or a slave clock, but not both, as in the case of the Boundary Clock below. In the figure below, the Grand Master Clock (T-GM) and Slave Clock (T-TSC) are all "ordinary" clocks with a single port to the PTP network.

5. Boundary Clock
 - An intermediate clock with multiple PTP ports.
 - Operates as a slave clock to upstream nodes, and a master clock to downstream nodes.
 - This type clock is called a boundary clock because it operates across network segment boundaries. It can synchronize one network segment to another. The Boundary Clocks (T-BC) are the intermediate clocks shown in the figure below. Viewed left to right, the first Boundary Clock acts as a Slave Clock to the Grand Master and as a Master Clock to the second Boundary Clock "downstream". The second Boundary Clock in turn acts as a Slave Clock to the first Boundary Clock and as a Master Clock to the Slave Clock (T-TSC).

 Note: Per Rec. ITU-T G.8271/Y.1366 (02/2012), ITU-T uses the differentiating term telecom boundary clock (T-BC) to refer to a boundary clock as defined in IEEE1588-2008 "and with additional performance characteristics for further study". Unless specifically noted otherwise in context, we will regard the terms Boundary Clock (BC) and Telecom Boundary Clock (T-BC) as synonymous.

6. Transparent Clock
 - An intermediate clock with multiple PTP ports.
 - Unlike the Boundary Clock, the Transparent Clock does not process PTP messages. It does not operate as either a Master Clock or Slave Clock.
 - Forwards PTP synch messages, but adds the time spent in the clock to the message's correction field. The correction field enables that time to be removed from subsequent calculations as if the clock was not there. This feature is what makes the clock "transparent".
 - Not currently approved by the ITU.
1.3 Silicon Labs Si5348

The Silicon Labs Si5348 is a monolithic IC with three independent DSPLLs supporting flexible SyncE/IEEE 1588 and SETS (Synchronous Equipment Timing Source) architectures. It provides wander and jitter attenuation on all three DSPLLs.

The purpose of this application note is to describe how to apply the Silicon Labs Si5348 as part of a Telecom Boundary Clock solution in a PTP network. The basic idea of how the Si5348 supports Telecom Boundary applications is illustrated in the annotated figure below.

Figure 1.3. Si5348 as Part of a Telecom Boundary Clock Solution in a PTP Network

The Telecom Boundary Clock (T-BC), as shown, represents a node in a PTP frequency and phase synchronization network and is typically implemented in an Ethernet switch or router. The Ethernet ports process the upstream and downstream Ethernet packets as usual. The example T-BC solution illustrated consists of the following elements:

- **Switch SoC or FPGA**
 - Supports 1588 Stack, Time Stamp Engine, and ToD (Time of Day) functions.
 - Processes and switches or routes PTP packets.

- **µP or MCU**
 - Hosts servo loop s/w.
 - Adjusts Si5348 DSPLL C phase by DCO (Digitally Controlled Oscillator) mode via the host's serial control port. The Si5348's optional DCO mode provides precise frequency adjustment for clock steering applications, such as in PTP networks, with frequency adjustment resolutions to 1 ppt or below.

- **Si5348**
 - DSPLL C operates as the IEEE 1588 DCO. It generates a 1 PPS clock locked to upstream recovered SyncE, phase adjusted per PTP packets, which feeds back to the FPGA.
 - DSPLL D operates as the SyncE PLL. It supplies a downstream SyncE Transmit clock also locked to recovered SyncE.

While not shown here, the Si5348 has a third DSPLL available, in this example DSPLL A, which can be used for an additional non-wander filtering synchronous function.

1.4 Standard and Compliance Reports

The Si5348 meets the requirements of the following relevant standards, which are necessary to support PTP:

- ITU-T G.8273.2 T-BC
- ITU-T G.8262 (SyncE) EEC Options 1 & 2
- ITU-T G.812 Type III, IV
- ITU-T G.813 Option 1
- Telcordia GR-1244, GR-253 (Stratum-3/3E)

Compliance reports are available upon request.
2. Silicon Labs Si5348 Key Design Decisions

2.1 Reference

The reference clock applied to the reference input determines DSPLL/DCO free-run/holdover accuracy and stability. Therefore reference clock selection is key to Si5348's output clock wander performance. A TCXO (Temperature Compensated Crystal Oscillator) or OCXO (Oven Controlled Crystal Oscillator) may be considered depending on the level of performance required. The reference clock input will support clocks in the range of 5 – 250 MHz, similar to the other input clocks.

Please refer to Silicon Labs application note, AN905: “Si534x External References; Optimizing Performance”, for general information regarding references for Si534x devices. This particular application note discusses the use of XOs, TCXOs, and OCXOs at the Si534x XA/XB interface only.

2.1.1 TCXO

TCXOs have improved holdover stability and MTIE/TDEV wander performance over temperature versus uncompensated XOs. They can be used to help meet Stratum 3 and G.8262 applications. However, they will generally not meet Stratum 3E, or high accuracy 1588 applications such as LTE.

2.1.2 OCXO

OCXOs have the best holdover stability and MTIE/TDEV wander performance. OCXOs can be used to meet the most stringent Stratum 3E, and 1588 applications, e.g., LTE FDD which requires an accuracy of ±1.5 µs.

The OCXO selected as the reference for the Si5348 should have both good wander and jitter performance. Further, any components such as buffers, in the signal path between the OCXO and the Si5348, should have low additive jitter.

An example suitable OCXO for use with the Si5348 is the Rakon P/N STP3158. This 12.8 MHz oscillator is installed on the SiOCXO1-EB evaluation board. See UG123: "SiOCXO1-EVB Evaluation Board User's Guide".

2.2 XTAL

The crystal applied to the Si5348 crystal inputs XA and XB primarily contributes to the output clock jitter performance. The crystal should be selected as specified in the datasheet. The allowable range is 48 – 54 MHz. The typical application uses a relatively low ESR 48 MHz crystal. Higher Q crystals yield lower phase noise than lower Q crystals. Recommended crystals are listed in the Si5348 Reference Manual.

2.3 Layout and Environmental Considerations

Please refer to both the Si5348 Reference Manual and to application note, AN905: “Si534x External References; Optimizing Performance”, previously cited for XTAL, TCXO, and OCXO layout and environmental recommendations.
2.4 Loop Bandwidths

There are three independent DSPLLs (A, C, and D) available, each of which needs an assigned loop bandwidth selected per its application. The loop bandwidths are programmable from 1 mHz to 4 kHz. The Si5348’s DSPLLs will generally be used as wander filtering PLLs in PTP applications, which means relatively narrow bandwidths less than 10 Hz. Common loop BWs for Telecom Boundary Clock applications are in the 0.1 to 10 Hz range. North American customers will select BW = 0.1 Hz per Telecordia, while European customers will select BWs in the 1 to 10 Hz range per ITU-T.

The Fastlock bandwidths for these DSPLLs may be conveniently set to 10X or more than the operating bandwidth. For example, if the loop bandwidth is set to 0.1 to 10 Hz, then the Fastlock Bandwidth may be set to 100 Hz.

DSPLL B is pre-assigned to the Reference input, which determines the overall wander and hold-over performance of all the output clocks. An OCXO will typically have good wander performance but not necessarily good jitter performance. For an OCXO with both good wander and jitter performance, we can make the DSPLL B loop bandwidth much wider than DSPLLs A, C, and D. (A wide DSPLL B bandwidth helps to suppress wander associated with the crystal.) A suggested target for both the loop bandwidth and the Fastlock bandwidth is 1 kHz. If necessary, this can be increased to 4 kHz for both settings.

However, if an OCXO or the combination of an OCXO plus intervening buffers has poor jitter performance, then some jitter attenuation may be necessary. In such a case, the DSPLL B loop bandwidth can be decreased to, for example, 100 Hz. Wander and jitter testing will be needed to confirm the necessary system performance.

The block diagram below illustrates the architecture of the Si5348.

![Si5348 Detailed Block Diagram](image)

2.5 Frequency Synthesis

Each independent DSPLL can operate using input clocks as follows:
- Diff clock: 8 kHz – 750 MHz
- LVCMOS clock: 8 kHz – 250 MHz

All output clocks can be configured to yield differential clocks 100 Hz to 712.5 MHz, and single-ended LVCMOS clocks 100 Hz to 250 MHz. However, output 6 can also be configured to yield a 50% duty cycle 1 Hz LVCMOS clock which can serve as a 1 PPS clock. Further, each DSPLL can be used as a pin or software controllable DCO with typical resolution of 0.001 ppb/step.

2.6 Third PLL

Note that the Si5348 has three independent PLLs, with the third being used for implementing other on-board jitter attenuation or scaling clock paths not directly associated with PTP. This can be very useful to minimize the layout area and BOM in multi-function timing applications.
3. ClockBuilder Pro and the Si5348 Sample Design

ClockBuilder Pro supports the Si5348 network synchronizer clock. The GUI window flow for device configuration is very similar to that for all Si534x clock generators and jitter attenuators. There are a few window entries which are different and should be highlighted. The Si5348 Sample Design refers to the specific example which comes with CBPro.

- **Step 3 of 13 – Define Crystal & Reference (XAXB & REF)**

 There is a new section on the right-hand side, illustrated below, where you must enter the REF Input Frequency.

 ![Reference Input](image)

 Figure 3.1. Reference Input Frequency

- **Step 7 of 13 – Digitally Controlled Output (DCO)**

 There is an entirely new section supporting Finc/Fdec and Register Direct Write DCO functionality.

 The following steps configure the bandwidth and Fastlock bandwidth of the Si5348’s DSPLLs. Note that DSPLL B configures the REF clock’s DSPLL BW.

- **Step 9(A) of 13 – DSPLLA Configure**

- **Step 9(B) of 13 – DSPLLB Configure**

 The high stability OCXO/TCXO lock connected to the REF input should always be available, so unlike the other input clocks there is no need for hitless switching or supporting holdover.

- **Step 9(C) of 13 – DSPLLCC Configure**

- **Step 9(D) of 13 – DSPLLDD Configure**

 The Si5348 Sample Design currently assigns these bandwidths as follows:

<table>
<thead>
<tr>
<th>DSPLL</th>
<th>PLL Bandwidth</th>
<th>Fastlock Bandwidth</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>10 Hz</td>
<td>100 Hz</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>1 kHz</td>
<td>1 kHz</td>
<td>Balances REF clock jitter generation and transfer.</td>
</tr>
<tr>
<td>C</td>
<td>1 Hz</td>
<td>100 Hz</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>100 mHz</td>
<td>100 Hz</td>
<td></td>
</tr>
</tbody>
</table>

 Please refer to an example T-BC project plan for additional information, located at:

 1. CBPro Project File
 2. DCO Mode Feature Overview Training Video
4. Conclusion

The Silicon Labs Si5348 supports a number of unique features:

- Three independent flexible DSPLLS, configurable for SyncE PLL, IEEE 1588 DCO, and general purpose applications.
- One dedicated DSPLL for the TCXO/OCXO reference input clock determining overall accuracy and stability.
- DCO mode support for clock steering applications.
- 1 Hz clock output.

This unique combination of features makes the Si5348 an excellent fit for Telecom Boundary Clock (T-BC) solutions.
ClockBuilder Pro
One-click access to Timing tools, documentation, software, source code libraries & more. Available for Windows and iOS (CBGo only).

www.silabs.com/CBPro

Disclaimer
Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and “Typical” parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products must not be used within any Life Support System without the specific written consent of Silicon Laboratories. A “Life Support System” is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Laboratories products are generally not intended for military applications. Silicon Laboratories products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

Trademark Information
Silicon Laboratories Inc., Silicon Laboratories, Silicon Labs, SiLabs and the Silicon Labs logo, CMEMS®, EFM, EFM32, EFR, Energy Micro, Energy Micro logo and combinations thereof, “the world’s most energy friendly microcontrollers”, Ember®, EZLink®, EZMac®, EZRadio®, EZRadioPRO®, DSPLL®, IS0modem®, Precision32®, ProSLIC®, SiPHY®, USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.

Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
USA

http://www.silabs.com