
AN983: BLUETOOTH® 4.0 HEART RATE

SENSOR

APPLICATION NOTE

Wednesday, 02 December 2020

Version 1.5

Silicon Labs

VERSION HISTORY

Version Comment

1.0 First version

1.1 Services added

1.2 Updated BGscript code examples

1.3 Changed broadcast=”true” to advertise=”true”

1.4 Updated compile and installation instructions

1.5
Renamed "Bluetooth Smart" to "Bluetooth Low Energy" according to the
official Bluetooth SIG nomenclature

Silicon Labs

TABLE OF CONTENTS

1 Introduction ..4

2 What is Bluetooth Low Energy Technology? ...5

3 Typical Bluetooth 4.0 Application Architecture ...6

3.1 Overview ...6

3.2 What is a Profile? ..7

3.3 What Is a Service? ..8

3.4 What is a Characteristic? ..9

3.5 Relationship Between Profiles, Services and Characteristics ... 10

4 Introduction to the Bluegiga Bluetooth Low Energy Software .. 11

4.1 The Bluetooth Low Energy Stack .. 11

4.2 The Bluetooth Low Energy SDK .. 11

4.3 The BGAPI Protocol .. 13

4.4 The BGLib Host Library ... 14

4.5 BGScriptTM Scripting Language ... 15

4.6 The Profile Toolkit .. 16

5 Heart Rate Profile v1.0 ... 17

5.1 Description ... 17

5.2 Service requirements ... 17

5.3 Heart Rate Service requirements .. 18

5.4 Device Information Service requirements .. 18

5.5 Other requirements .. 18

5.6 Connection establishment requirement ... 19

5.7 Security requirements .. 20

6 Implementing a Heart Rate Sensor ... 21

6.1 Creating a project .. 22

6.2 Hardware configuration .. 23

6.3 Heart Rate Profile GATT database .. 24

6.4 Writing BGScript application .. 29

6.5 Compiling and Installing the Firmware .. 33

6.6 Testing the Heart Rate Sensor .. 37

6.7 Testing with BLEGUI ... 37

7 Debugging Heart Rate sensor code ... 44

8 External resources ... 47

Silicon Labs

Page 4 of 49

1 Introduction

This application note discusses how to build Bluetooth 4.0 Heart Rate Profile (HRP) sensor using Bluegiga’s
Bluetooth 4.0 software and DKBLE112 hardware development kits. The application note contains a practical
example of how to build GATT based Heart Rate Profile and how to make a standalone sensor device using
BGScript scripting language.

Notice that this application note only focuses on the Heart Rate Profile sensor implementation, not the Heart
Rate Profile Collector implementation.

Silicon Labs

Page 5 of 49

2 What is Bluetooth Low Energy Technology?

Bluetooth Low Energy (Bluetooth 4.0) is a new, open standard developed by the Bluetooth SIG. It’s targeted
to address the needs of new modern wireless applications such as ultra-low power consumption, fast
connection times, reliability and security. Bluetooth Low Energy consumes 10-20 times less power and is able
to transmit data 50 times quicker than classical Bluetooth solutions.

Link: How Bluetooth low energy technology works?

Bluetooth Low Energy is designed for new emerging applications and markets, but it still embraces the very
same benefits we already know from the classical, well established Bluetooth technology:

• Robustness and reliability - The adaptive frequency hopping technology used by Bluetooth Low
Energy allows the device to quickly hop within a wide frequency band, not just to reduce interference
but also to identify crowded frequencies and avoid them. On addition to broadcasting Bluetooth Low
Energy also provides a reliable, connection oriented way of transmitting data.

• Security - Data privacy and integrity is always a concern is wireless, mission critical applications.
Therefore Bluetooth Low Energy technology is designed to incorporate high level of security including
authentication, authorization, encryption and man-in-the-middle protection.

• Interoperability - Bluetooth Low Energy technology is an open standard maintained and developed
by the Bluetooth SIG. Strong qualification and interoperability testing processes are included in the
development of technology so that wireless device manufacturers can enjoy the benefit of many
solution providers and consumers can feel confident that equipment will communicate with other
devices regardless of manufacturer.

• Global availability - Based on the open, license free 2.4GHz frequency band, Bluetooth Low Energy
technology can be used in world wide applications.

 There are two types of Bluetooth 4.0 devices:

• Bluetooth 4.0 single-mode devices that only support Bluetooth Low Energy and are optimized for
low-power, low-cost and small size solutions.

• Bluetooth 4.0 dual-mode devices that support Bluetooth Low Energy and
classical Bluetooth technologies and are interoperable with all the previously Bluetooth specification
versions.

Key features of Bluetooth Low Energy wireless technology include:

• Ultra-low peak, average and idle mode power consumption

• Ability to run for years on standard, coin-cell batteries

• Low cost

• Multi-vendor interoperability

• Enhanced range

Bluetooth Low Energy is also meant for markets and applications, such as:

• Automotive

• Consumer electronics

• Smart energy

• Entertainment

• Home automation

• Security & proximity

• Sports & fitness

https://www.bluetooth.org/en-us/training-resources/technology
http://www.youtube.com/watch?v=KW-TKBBiFss
http://www.youtube.com/watch?v=9G19p4ec_vM
http://www.youtube.com/watch?v=xjm9YyV2yeM
http://www.youtube.com/watch?v=3bifVc_iC2Y
http://www.youtube.com/watch?v=Ei_L1Pu6YuI
http://www.youtube.com/watch?v=TUwedeshPJU
http://www.youtube.com/watch?v=uQuGvBci5CQ

Silicon Labs

Page 6 of 49

3 Typical Bluetooth 4.0 Application Architecture

3.1 Overview

Bluetooth Low Energy applications typically have the following architecture:

• Server

Service is the device that provides the information, so these are typically the sensor devices, like
thermometers or heart rate sensors. The server exposes implements services and the services
expose the data in characteristics.

• Client

Client is the device that collects the information for one or more sensors and typically either displays it
to the user or passes it forward. The client devices typically do not implement any service, but just
collect the information from the service provided by the server devices. Clients are typically devices
like mobile phones, tablets and PCs.

The figure below shows the relationship of these two roles.

Client Server

Service 1

Servic e 2

Service n

Figure 1: Bluetooth Low Energy device roles

Silicon Labs

Page 7 of 49

3.2 What is a Profile?

Profiles are used to describe devices and the data they expose and also how these devices behave. The data
is described by using services, which are explained later and a profile may implement single or multiple
services depending on the profile specification. For example a Heart Rate Service specification mandates that
the following services need to be implemented:

• Heart Rate Service

• Device Information Service

Profile specifications might also define other requirements such as security, advertisement intervals and
connection parameters.

The purpose of profile specifications is to allow device and software vendors to build standardized
interoperable devices and software. Standardized profiles have globally unique 16-bit UUID, so they can
easily identify.

Profiles are defined in profiles specifications, which are available at:

https://developer.bluetooth.org/gatt/profiles/Pages/ProfilesHome.aspx

https://developer.bluetooth.org/gatt/profiles/Pages/ProfilesHome.aspx

Silicon Labs

Page 8 of 49

3.3 What Is a Service?

Services such as a Heart Rate service describes what kind of data a device exposes, how the data can be
accessed and what the security requirements for that data are. The data is described using characteristics
and a service may contain single or multiple characteristics and some characteristics might be optional where
as some are mandatory.

Two types of services exist:

• Primary Service

A primary service is a service that exposes primary usable functionality of this device. A primary service
can be included by another service.

• Secondary Service

A secondary service is a service that is subservient to another secondary service or primary service. A
secondary service is only relevant in the context of another service.

Just like the profiles also the services are defined in service specifications and the Bluetooth SIG standardized
services are available at:

https://developer.bluetooth.org/gatt/services/Pages/ServicesHome.aspx

Every service standardized by the Bluetooth SIG has a globally unique 16-bit UUID so just like the profiles
also the services can be easily identified.

However not every use case can be fulfilled by the standardized service and therefore the Bluetooth Low
Energy specification enables device vendors to make proprietary service. The proprietary services are
described just as the standardized services, but 128-bit UUIDs need to be used instead of use 16-bit UUIDs
reserved for the standard services.

https://developer.bluetooth.org/gatt/services/Pages/ServicesHome.aspx

Silicon Labs

Page 9 of 49

3.4 What is a Characteristic?

Characteristics are used to expose the actual data. Characteristic is a value, with a known type (UINT8,
UINT16, UTF-8 etc.), a known presentation format. Just like profiles and services also characteristics have
unique UUID so they can be easily identified and the standardized characteristics use 16-bit UUIDs and
vendor specific characteristics use 128-bit UUIDs.

Characteristics consist of:

• Characteristic Declaration describing the properties of characteristic value such as:

• characteristic (UUID)

• Access control (read, write, indicate etc.)

• Characteristic value handle (unique handle within a single device)

• Characteristic Value containing the value of a characteristic (for example temperature reading).

• Characteristic Descriptor(s) which provide additional information about the characteristic (characteristic
user description, characteristic client configuration, vendor specific information etc.).

Figure 2: Characteristic structure

Standardized characteristics are defined in Characteristic Specification and the standardized characteristics
are available at:

https://developer.bluetooth.org/gatt/characteristics/Pages/CharacteristicsHome.aspx

https://developer.bluetooth.org/gatt/characteristics/Pages/CharacteristicsHome.aspx

Silicon Labs

Page 10 of 49

3.5 Relationship Between Profiles, Services and Characteristics

The illustration below shows the relationship between profiles, services and characteristics.

Health thermometer profile

GAP service
(UUID: 1800)

Health thermometer
service

(UUID: 1809)

Device information
service

(UUID:180A)

Health thermometer service
(UUID: 1809)

Temperature measurement
(UUID: 2A1C)
Mandatory

Temperature type
(UUID: 2A1D)

Optional

Intermediate temperature
(UUID: 2A1E)

Optional

Measurement interval
(UUID: 2A21)

Optional

Temperature measurement

Handle : 1
UUID: 2803 (declaration)

Data:
Data UUID: 2A1D

Data Handle: 2
Data Properties: Indicate

Handle : 2
UUID: 2A1C (attribute value)

Data:
Flags: <uint8>
Measurement value:<float>

Time stamp: <date_time>
Temperature type: <temperature_type>

Handle: 3
UUID: 2903

Client characteristics configuration
Properties: Read, write

Figure 3: Health thermometer profile

Silicon Labs

Page 11 of 49

4 Introduction to the Bluegiga Bluetooth Low Energy Software

The Bluegiga Bluetooth Low Energy Software enables developers to quickly and easily develop Bluetooth Low
Energy applications without in-depth knowledge of the Bluetooth Low Energy technology. The Bluetooth Low
Energy Software consist of two parts:

• The Bluetooth Low Energy Stack

• The Bluetooth Low Energy Software Development Kit (SDK)

4.1 The Bluetooth Low Energy Stack

The Bluetooth Low Energy stack is a fully Bluetooth 4.0 single mode compatible software stack implementing
slave and master modes, all the protocol layers such as L2CAP, Attribute Protocol (ATT), Generic Attribute
Profile (GATT), Generic Access Profile (GAP) and security and connection management.

The Bluetooth Low Energy is meant for the Bluegiga Bluetooth Low Energy products such as BLE112,
BLE113 and BLED112 and it runs on the embedded MCU used in these products, so no host is needed.

4.2 The Bluetooth Low Energy SDK

The Bluetooth Low Energy SDK is a software development kit, which enables the device and software
vendors to develop products on top of the Bluegiga’s Bluetooth Low Energy hardware and software.

The Bluetooth Low Energy SDK supports multiple development models and the software developers can
decide whether the application software runs on a separate host (a low power MCU) or whether they want to
make fully standalone devices and execute their code on the MCU embedded in the Bluegiga Bluetooth Low
Energy modules. The SDK also contains documentation, tools for compiling the firmware, installing it into the
hardware and lot of example application speeding up the development process.

 fully standalone applications using a simple scripting language called BGScriptTM. Several profiles and
examples are also offered as a part of the Bluetooth Low Energy Software in order to easily develop the
Bluetooth Low Energy compatible end products.

Bluegiga’s Bluetooth Low Energy Software provides a complete development framework for Bluetooth Low
Energy application implementers.

Silicon Labs

Page 12 of 49

Figure 4: Bluetooth Low Energy Software

The Bluetooth Low Energy Software architecture is illustrated and it consists of the following components

• The Bluetooth Low Energy stack implementing the Bluetooth Low Energy protocol

• BGAPITM APIs that enable the software developers to interface to the Bluetooth Low Energy Stack

• BGScriptTM Virtual Machine (VM) and scripting language which enable application code to be
developed and executed directly on the Bluetooth Low Energy hardware

• BGLibTM lightweight host library which implements the BGAPI binary protocol and parser and is target
for applications where separate host processor is used to interface to the Bluetooth Low Energy
modules over UART or USB.

• Profile ToolkitTM is a GATT based profile development tool that enables software developers quickly
and easily to describe the Bluetooth Low Energy profiles, services and characteristics using simple
XML templates

Each of these components are described in more detail in the following chapters.

Silicon Labs

Page 13 of 49

4.3 The BGAPI Protocol

For applications where a separate host is used to implement the end user application, a transport protocol is
needed between the host and the Bluetooth stack. The transport protocol is used to communicate with the
Bluetooth stack as well to transmit and receive data packets. This protocol is called BGAPI and it's a
lightweight binary based communication protocol designed specifically for ease of implementation within host
devices with limited resources.

The BGAPI protocol is a simple command, response and event based protocol and it can be used over UART
SPI (at the moment not supported by the Bluetooth Low Energy hardware) or USB interfaces.

Figure 5: BGAPI protocol

The BGAPI provides access for example to the following layers in the Bluetooth Low Energy Stack:

• Generic Access Profile - GAP allows the management of discoverability and connetability modes
and open connections

• Security manager - Provides access the Bluetooth Low Energy security functions

• Attribute database - An class to access the local attribute database

• Attribute client - Provides an interface to discover, read and write remote attributes

• Connection - Provides an interface to manage Bluetooth Low Energy connections

• Hardware - An interface to access the various hardware layers such as timers, ADC and other
hardware interfaces

• Persistent Store - User to access the parameters of the radio hardware and read/write data to non-
volatile memory

• System - Various system functions, such as querying the hardware status or reset it

Silicon Labs

Page 14 of 49

4.4 The BGLib Host Library

For easy implementation of BGAPI protocol an ANSI C host library is available. The library is easily portable
ANSI C code delivered within the Bluetooth Low Energy SDK. The purpose is to simplify the application
development to various host environments.

Figure 6: BGLib host library

Silicon Labs

Page 15 of 49

4.5 BGScriptTM Scripting Language

The Bluetooth Low Energy SDK Also allows the application developers to create fully standalone devices
without a separate host MCU and run all the application code on the Bluegiga Bluetooth Low Energy
Hardware. The Bluetooth Low Energy modules can run simple applications along the Bluetooth Low Energy
stack and this provides a benefit when one needs to minimize the end product’s size, cost and current
consumption. For developing standalone Bluetooth Low Energy applications the SDK includes the Script VM,
compiler and other BGScript development tools. BGScript provides access to the same software and
hardware interfaces as the BGAPI protocol and the BGScript code can be developed and compiled with free-
of-charge tools provided by Bluegiga.

Typical BGScript applications are only few tens to hundreds lines of code, so they are really quick and easy to
develop and lots of readymade examples are provides with the SDK.

Figure 7: BGScript application model

BGScript code example:

System Started

event system_boot(major, minor, patch, build, ll_version, protocol_version,hw)

 #Enable advertising mode

 call gap_set_mode(gap_general_discoverable,gap_undirected_connectable)

 #Enable bondable mode

 call sm_set_bondable_mode(1)

 #Start timer at 1 second interval (32768 = crystal frequency)

 call hardware_set_soft_timer(32768)

end

Silicon Labs

Page 16 of 49

4.6 The Profile Toolkit

The Bluetooth Low Energy profile toolkit a simple set of tools, which can used to describe GATT based
Bluetooth Low Energy services and characteristics. The profile toolkit consists of a simple XML based
description language and templates, which can be used to describe the devices GATT database. The profile
toolkit also contains a compiler, which converts the XML to binary format and generates API to access the
characteristic values.

Figure 8: A profile toolkit example of GAP service

Silicon Labs

Page 17 of 49

5 Heart Rate Profile v1.0

5.1 Description

Heart Rate Profile enables a Heart Rate Collector to connect and exchange data with a Heart Rate Sensor in
sports and fitness applications.

Heart Rate Profile defines two roles:

• The Heart Rate Sensor

The Heart Rate Sensor measures the heart rate and exposes it via the Heart Rate Service. The
sensor also contains the Device Information Service, which contains information for example about
the manufacturer of the device. The Heart Rate Sensor is the GATT server.

• The Heart Rate Collector

The Heart Rate Collector accesses the information exposed by the Heart Rate Sensor and can for
example display it to the end user or store it on non-volatile memory for later analysis. The Heart Rate
Collector is the GATT client.

The figure below shows the relationship of these two roles.

Heart Rate Collector Heart Rate Sensor

Device Information
Service

Heart Rate Service

Figure 9: Heart Rate profile roles

5.2 Service requirements

The table below describes the service requirements.

Service UUID Heart Rate Sensor

Heart Rate Service 180A Mandatory

Device Information Service 180D Mandatory

Table 1: Service requirements

The Heart Rate Sensor implements one and only one instance of Heart Rate Service.

The Heart Rate Sensor implements one instance of Device Information Service.

Silicon Labs

Page 18 of 49

5.3 Heart Rate Service requirements

The table below describes the structure and requirements for the Heart Rate Service

Characteristic UUID Type Support Security Properties

Heart rate measurement 2A37 8bit Mandatory none Notify

Body sensor location 2A38 8bit Optional none Read

Heart rate control point 2A39 8bit Conditional none Write

Table 2: Heart Rate Service structure

5.4 Device Information Service requirements

The table below describes the structure and requirements for the Device Information Service when used in the
context of Heart Rate Service.

Characteristic UUID Type Support Security Properties

Manufacturer name string 2A29 UTF-8 Mandatory none Read

Table 3: Device Information Service structure

5.5 Other requirements

The Heart Rate Sensor should include the Heart Rate Service UUID in the advertisement data.

The Heart Rate Sensor should include the device name in the advertisement or scan response data.

The Heart Rate Sensor may support write property for the local name for the device name characteristic so
the Collector can write its value.

Silicon Labs

Page 19 of 49

5.6 Connection establishment requirement

5.6.1 Un-bonded devices

Advertisement duration Parameter Value

First 30 seconds Advertising interval 20ms to 30ms

After 30 seconds Advertising interval 1000ms to 2500ms

Table 4: Advertising parameters for un-bonded Heart Rate Sensor

1. The Heart Rate Sensor shall accept any valid values for connection interval and slave latency set by
the Collector until service discovery, bonding and/or encryption have are complete. After this the
sensor may request the change of connection parameters.

2. If the connection is not established within a time limit, the sensor may exit GAP Connectable mode.

3. If bonded the Heart Rate Sensor should write the address of the Collector to the white list and should
set the filtering policy so that scan and connection requests are only accepted from devices on the
white list.

4. When the Heart Rate Sensor no longer senses the heart rate it should terminate the connection for
example within 10 or 20 seconds.

5. When Heart Rate Sensor is disconnected by the Collector and ready to receive a connection (i.e.
senses the heart rate) it should initiate the connection procedure.

5.6.2 Bonded devices

The following produce is uses for bonded devices:

1. The Heart Rate Sensor should use GAP General discoverable mode with connectable undirected
advertisement events.

2. For the first 10 seconds the white list should be used to allow only connections from bonded devices.
After 10 seconds the white list should not be used to allow connections from other devices.

3. The advertisement parameters should be as in Table 4.

4. The Heart Rate Sensor shall accept any valid values for connection interval and slave latency set by
the Collector until service discovery, bonding and/or encryption have are complete. After this the
sensor may request the change of connection parameters.

5. If the connection is not established within a time limit, the sensor may exit GAP Connectable mode.

6. When the Heart Rate Sensor no longer senses the heart rate it should terminate the connection for
example within 10 or 20 seconds.

7. When Heart Rate Sensor is disconnected by the Collector and ready to receive a connection (i.e.
senses the heart rate) it should initiate the connection procedure.

5.6.3 Link loss procedure

When connection is terminated due to link loss the sensor should attempt reconnection with the Collector by
entering the GAP connectable mode using the recommended parameters from Table 4.

Silicon Labs

Page 20 of 49

5.7 Security requirements

1 The Heart Rate Sensor may bond with the Collector.

2 When bonding is not used:

2.1 The Heart Rate Sensor should use the Slave Security Request procedure to inform the Collector of its
security requirements.

3 When bonding is used:

3.1 The Heart Rate Sensor shall use LE security Mode 1 and either Security Level 2 or 3.

3.2 The Heart Rate Sensor shall use the Slave Security Request procedure.

3.3 All supported characteristics specified by the Heart Rate Service shall be set to Security Mode 1 and
either Security Level 2 or 3.

All supported characteristics specified by the Device Information Service should be set to the same security
mode and level as the characteristics in the Heart Rate Service.

Silicon Labs

Page 21 of 49

6 Implementing a Heart Rate Sensor

The chapter contains step by step instructions how to implement a stand-alone Heart Rate Sensor with
Bluegiga’s Bluetooth 4.0 Software Development Kit. The chapter is split into following steps:

1. Creating a project

2. Defining hardware configuration

3. Building Heart Rate and Device Information Services with Profile Toolkit

4. Writing a BGScript code

5. Compiling the GATT database and BGScript into a binary firmware

6. Installing the firmware into BLE112 or DKBLE112 hardware

The actual project comes as an example with the Bluegiga’s Bluetooth Low Energy Software Development Kit.

Note: This application note is written for firmware version 0.2.0 build 30.

Silicon Labs

Page 22 of 49

6.1 Creating a project

The Heart Rate Sensor implementation is started by first creating a project file (project.xml), which defines
the resources use by the project and the firmware output file.

Figure 10: Project file

• <gatt> Defines the XML-file containing the GATT database.

• <hardware> Defines the XML-file containing the hardware configuration.

• <script> Defines the BGScript-file which contains the BGScript code.

• <image> Defines the output HEX file containing the firmware image.

WARNING:

This example MUST only be installed on BLE112 module or DKBLE112 development kit. The example does
not use USB or UART interfaces, so the firmware can be installed only via the debug interface using CC
debugger. Installing the example into BLED112 USB dongle will brock the device.

Silicon Labs

Page 23 of 49

6.2 Hardware configuration

The hardware.xml file contains the hardware configuration for BLE112 device. It describes which interfaces
and functions are in used and their properties.

Figure 11: Hardware configuration for Heart Rate Sensor

• <sleeposc> Sleep oscillator is enabled to allow the device to enter low power modes like
Power mode 3. If this configuration is not used, the BLE112 device will not go to power mode 3. 30
refers to the crystal accuracy used in BLE112. Do not modify the value.

• <usb> USB interface is disabled to save power and allow the device to go to low power
modes.

• <txpower> TX power is set to +3dBm value. Every step represents 1 dBm change. Range is
15 to 0, corresponding TX power values from +3 dBm to -12 dBm.

This example uses a single ADC to read the heart rate value. DKBL112 development kit contains a
potentiometer, which can be read with the ADC.

Typically in a real heart rate sensor a GPIO would be used to indicate the heartbeat and a GPIO pin would be
used to detect it. This requires that one GPIO pin is configured as an input.

Silicon Labs

Page 24 of 49

6.3 Heart Rate Profile GATT database

This section describes how to define the Heart Rate Profile services using Bluegiga’s Profile Toolkit.

The Heart Rate Profile contains three services:

• Generic Access Profile (GAP) service

• Device Information Service (DIS)

• Heart Rate Service (HRS)

This example contains a minimum implementation of the above services, so only mandatory characteristics
are used. You may also implement the optional characteristics.

6.3.1 Generic Access Profile service

Every Bluetooth Low Energy device needs to implement a GAP service. The GAP service is very simple and
consists of only two characteristics. An example implementation of GAP service is show below.

The service has two characteristics, which are explained in Table 5. In this example the characteristics are
read-only, so they are also marked as const. Constant values are stored on the flash of BLE112 and the
value is defined in the GATT database. Constant values cannot be changed.

Figure 12: GAP service

Characteristic UUID Type Support Security Properties

Device name 2a00 UTF8 Mandatory none
Read
(optionally write)

Appearance 2A01 16bit Mandatory none Read

Table 5: GAP (UUID: 1800) service description

Silicon Labs

Page 25 of 49

6.3.2 Heart Rate Service

The Heart Rate Sensor must also implement the Heart Rate Service. The example implementation uses a
simplified Heart Rate Service with just the mandatory characteristics, but optionally you may implement the full
Hear Rate Service with the optional characteristics also.

Heart Rate Service is described below:

Characteristic UUID Type Support Security Properties

Heart Rate Measurement 2a37 16 bits to 56 bits Mandatory none Notify

Body Sensor location 2a38 8 bit Optional none Read

Heart Rate Control Point 2a39 8 bit Conditional none Write

Table 6: Heart Rate Service (UUID: 180D) description

Hear rate service specification: Hear Rate Service specification: Hear rate service specification

Hear Rate service at Bluetooth developer web site: Heart Rate Service

The example implementation of the minimum Heart Rate Service is shown below:

Figure 13: Minimal Heart Rate Service

A few explanations are needed:

• First of all the advertise=”true” option is needed for the Hear Rate Service UUID to be broadcasted
in the advertisement packets. For example the Apple iPhone 4S is not able to discover devices, if the
service UUIDs are not broadcasted.

• The id=”xgatt_HRS_2a37” defines the attribute ID, which the BGScript application can use to update
the Heart Rate measurement values.

• The length of the Heart Rate measurement is 16-bits in this example. The first 8 bits define the flags
for the Heart Rate measurement value and the next 8 bits contain the actual measurement value.

• Body Sensor location and Heart Rate Control Point characteristics are not used in this example as
they are not mandatory.

http://bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=239866
https://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.service.heart_rate.xml

Silicon Labs

Page 26 of 49

6.3.3 Device Information Service

The third mandatory service the Heart Rate Sensor must implement is the Device Information Service. This
service exposes information about the manufacturer of the device and optionally other information about the
device, which is for example device model number and software version. The example implementation uses a
simplified Device Information Service with just the mandatory characteristics, but optionally you may
implement the full Device Information Service with the optional characteristics also.

Device Information Service is described below:

Characteristic UUID Type Support Security Properties

Manufacturer name string 2a29 UTF-8s Conditional none Read

Model number string 2a24 UTF-8s Conditional none Read

Serial number string 2a25 UTF-8s Conditional none Read

Hardware revision string 2a27 UTF-8s Conditional none Read

Firmware revision string 2a26 UTF-8s Conditional none Read

Software revision string 2a28 UTF-8s Conditional none Read

System ID 2a35
uint40 or
uint64

Conditional none Read

IEEE 11073-20601 Regulatory Certification
Data List

2a36
reg-cert-data-
list

Conditional none Read

Table 7: Device Information Service (UUID: 180A) description

Device Information Service specification: Hear Rate Service specification: Device Information Service
specification

Device Information Service at Bluetooth developer web site: Device Information Service

http://bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=239866
http://bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=239866
http://bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=238689

Silicon Labs

Page 27 of 49

The example implementation of the minimum Device Information Service is shown below:

Figure 14: Minimal Device Information Service

A few explanations are needed:

• The Heart Rate Profile service only mandates that Manufacturer Name String characteristic is
implemented, but the example also implements the Model Number String characteristic.

Silicon Labs

Page 28 of 49

6.3.4 Summary

The full GATT database implementation is shown below.

Figure 15: Heart Rate Profile GATT database

Silicon Labs

Page 29 of 49

6.4 Writing BGScript application

The example implements a standalone Heart Rate Sensor device where no external host processor is
needed. The Heart Rate Sensor application is created as a BGScript script application and the BGScript code
explained in this chapter.

BGScript uses an event based programming approach. The script is executed when an event takes place, and
the programmer may register listeners for various events.

The Heart Rate Sensor BGScript uses the following event listeners:

1. system_boot(…) event listener

When the system is started a boot event is generated and this event listener should be the entry point
for all the BGScript applications. In the example above, when the system is started, the unit starts to
advertise, enables bonding mode, and starts a timer.

Figure 16: system_boot(...) event listener

Silicon Labs

Page 30 of 49

2. hardware_soft_timer(…)event listener

When the timer expires this event is generated. In the Heart Rate Sensor example the timers are used
to alter the advertising intervals and read HR sensor.

Figure 17: hardware_soft_timer(…) event listener

Silicon Labs

Page 31 of 49

3. hardware_adc_result(…)event listener

The ADC read function generates an ADC event, which this event listener captures. The ADC result
event is used to read the HR value and write it to GATT database.

Figure 18: hardware_adc_result(…) event listener

4. connection_status(…)event listener

This event takes place when the device is connected. The code changes the connection status
parameter and starts the HR measurement timer.

Figure 19: connection_status(…) event listener

Silicon Labs

Page 32 of 49

5. connection_disconnected(…)event listener

The last event handler is executed when the Bluetooth is lost or closed by the remote device. The
event listener restarts the advertisement procedure.

Figure 20: connection_disconnected(…) event listener

Silicon Labs

Page 33 of 49

6.5 Compiling and Installing the Firmware

6.5.1 Using BLE Update tool

When you want to test your project, you need to compile the hardware settings, the GATT data base and
BGScript code into a firmware binary file. The easiest way to do this is with the BLE Update tool that can be
used to compile the project and install the firmware to a Bluetooth Low Energy Module using a CC debugger
tools

In order to compile and install the project:

1. Connect CC debugger to the PC via USB

2. Connect the CC debugger to the debug interface on the BLE112 or BLE113

3. Press the button on CC debugger and make sure the led turns green

4. Start BLE Update tool

5. Make sure the CC debugger is shown in the Port drop down list

6. Use Browse to locate your project file (for example BLE113-project.bgproj)

7. Press Update

BLE Update tool will compile the project and install it into the target device.

Figure 21: Compile and install with BLE Update tool

Note:

You can also double clikc the .BGPROJ file and it will automatically open the BLE Update tool.

If you have BLE113 Development Kit v.1.2 the CC debugger component is already placed on the kit and you
simply need to:

• Connect the DEBUGGER USB port to the PC

• Turn the DEBUGGER switch to MODULE

• Press the RESET DEBUGGER button and make sure the DEBUGGER led turns green

Silicon Labs

Page 34 of 49

The View Build Log opens up a dialog that shows the bgbuild compilere output and the RAM and Flash
memory allocations.

Figure 22: BLE Update build log

Silicon Labs

Page 35 of 49

6.5.2 Compiling Using bgbuild.exe

The project can also be compiled with the bgbuild.exe command line compiler. The BGBuild compiler simply
generates the firmware image file, which can be installed to the BLE112 or BLE113.

In order to compile the project using BGBuild:

1. Open Windows Command Prompt (cmd.exe)

2. Navigate to the directory where your project is

3. Execute BGbuild.exe compiler

Syntax: bgbuild.exe <project file>

Figure 23: Compiling with BGBuild.exe

If the compilation is successful a .HEX file is generated, which can be installed into a Bluetooth Low Energy
Module.

On the other hand if the compilation fails due to syntax errors in the BGScript or GATT files, and error
message is printed.

Silicon Labs

Page 36 of 49

6.5.3 Installing the firmware with TI’s Flash Tool

Texas Instruments flash tool can also be used to install the firmware into the target device using the CC
debugger.

In order to install the firmware with TI flash tool:

1. Connect CC debugger to the PC via USB

2. Connect the CC debugger to the debug interface on the BLE112

3. Press the button on CC debugger and make sure the led turns green

4. Start TI flash tool tool

5. Select program CCxxxx SoC or MSP430

6. Make sure the target device is recognized and displayed in the System-on-Chip field

7. Make sure Retain IEEE address.. field is checked

8. Select the .HEX file you want to program to the target device

9. Select Erase, Program and Verify

10. Finally press Perform actions and make sure the installation is successful

Figure 24: TI’s flash programmer tool

Note:

TI Flash tool should NOT be used with the Bluegiga Bluetooth Smart SDK v.1.1 or newer, but BLE Update tool
should be used instead. The BLE112 and BLED112 devices contain a security key, which is needed for the
firmware to operate and if the device is programmed with TI flash tool, this security key will be erased.

Silicon Labs

Page 37 of 49

6.6 Testing the Heart Rate Sensor

6.7 Testing with BLEGUI

This section describes how to test the Heart Rate Sensor application with BLEGUI software.

6.7.1 Discovering the Heart Rate Sensor

As soon as the Heart Rate Sensor is powered on it starts to advertise itself. A BLED112 USB dongle can for
example be used to scan for the sensor together with BLEGUI software.

Start Generic Scan to discover the device.

Figure 25: Scanning with BLEGUI

Silicon Labs

Page 38 of 49

6.7.2 Establishing a Connection

Simply select the DKBLE112 heart rate device and press the Connect button in the BLEGUI user interface.

Figure 26: Establishing connection with BLEGUI

Silicon Labs

Page 39 of 49

6.7.3 Making a Service Discovery

1. Press the GATT button to start GATT tool

2. Press Service Discover button to start a GATT primary service discovery procedure

Figure 27: GATT service discovery

The three services defined in the GATT database are visible in the device.

Silicon Labs

Page 40 of 49

6.7.4 Making a Descriptors Discovery

1. In order to discover the characteristics of the Device Information Service, select the service and press
Descriptors Discover button

2. A list of service descriptors are shown

Figure 28: GATT descriptors discovery

Silicon Labs

Page 41 of 49

6.7.5 Reading a Characteristics Value

1. To read a characteristic value, select the characteristic you are interested in and press the Read
button. For example the Manufacturer Name String has a read property, so the value can be read by
a GATT client.

Figure 29: Reading Manufacturer Name String

Silicon Labs

Page 42 of 49

6.7.6 Starting Notifications for HR Measurement

1. Heart Rate Measurement characteristic has a notify property

2. This means the Heart Rate Sensor notifies the characteristic value changes to the Heart Rate
Collector, instead of the collector having to read it constantly.

3. To enable notifications:

o Perform descriptors discovery to the Heart Rate Service

o Write “0x01” to the Client Characteristic Configuration

The Heart Rate Sensor starts to notify the HR measurements at 1 second interval

Figure 30: Enabling HR measurement notifications

Silicon Labs

Page 43 of 49

6.7.7 Terminating the Connection

To terminate the connection:

1. Press the Disconnect button

The Heart Rate Sensor restarts the advertisement procedure for the next 60 seconds, until it stops
advertisements and goes to Power Mode 3.

After 60 seconds you need to reset the device to restart the advertisements.

Figure 31: Terminating the connection

Silicon Labs

Page 44 of 49

7 Debugging Heart Rate sensor code

Debugging BGScript is easiest achieved over the USB interface. You can add debug prints to the BGScript
code and then monitor them via the USB interface for example with terminal software.

The enable debugging a few modifications are needed.

First you need to enable USB interface and give the access to it to BGScript. This can be done with the
following modifications to the hardware.xml file.

Figure 32: Hardware configuration with USB enabled and access give to BGScript

Silicon Labs

Page 45 of 49

To print the actual debug messages modifications to the BGScript code is needed. The debug messages are
printed to USB with system_endpoint_tx(…) command and a few examples are shown below.

Figure 33: BGscript code with debug prints

call system_endpoint_tx(3,5,”BOOT\n”) prints the actual debug messages. 3 refers to endpoint USB, 5
means that 5 bytes are written. “BOOT\n” is the actual message.

NOTE:

The “BOOT\n” message is actually never received by a terminal software when USB interface is used,
because the operating system enumerates the USB when the message is being printed. Other messages will
however be visible. If UART interface is used, the also the “BOOT\n” message can also be received.

Silicon Labs

Page 46 of 49

Monitoring debug messages can be done with a standard terminal software.

Figure 34: Monitoring debug messages

Silicon Labs

Page 47 of 49

8 External resources

• Bluetooth 4.0 software development kit is available at : www.bluegiga.com

• BLE112 and DKBLE112 hardware documentation is available at : www.bluegiga.com

• Heart Rate Profile can be downloaded from: Heart Rate Profile

• Bluetooth SIG’s developer portal: https://developer.Bluetooth.org/

http://www.bluegiga.com/
http://www.bluegiga.com/
http://bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=239865
https://developer.bluetooth.org/

IoT Portfolio
www.silabs.com/IoT

SW/HW
www.silabs.com/simplicity

Quality
www.silabs.com/quality

Support & Community
www.silabs.com/community

Simplicity Studio
One-click access to MCU and wireless
tools, documentation, software, source
code libraries & more. Available for
Windows, Mac and Linux!

Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
USA

http://www.silabs.com

Disclaimer
Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or
intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and “Typical”
parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes
without further notice to the product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information.
Without prior notification, Silicon Labs may update product firmware during the manufacturing process for security or reliability reasons. Such changes will not alter the specifications or
the performance of the product. Silicon Labs shall have no liability for the consequences of use of the information supplied in this document. This document does not imply or expressly
grant any license to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any FDA Class III devices, applications for which FDA
premarket approval is required, or Life Support Systems without the specific written consent of Silicon Labs. A “Life Support System” is any product or system intended to support or
sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Labs products are not designed or authorized for military
applications. Silicon Labs products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or
missiles capable of delivering such weapons. Silicon Labs disclaims all express and implied warranties and shall not be responsible or liable for any injuries or damages related to use of
a Silicon Labs product in such unauthorized applications.

Trademark Information
Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, ClockBuilder®, CMEMS®, DSPLL®, EFM®,
EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, “the world’s most energy friendly microcontrollers”, Ember®, EZLink®, EZRadio®, EZRadioPRO®,
Gecko®, Gecko OS, Gecko OS Studio, ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress®, Zentri, the Zentri logo and
Zentri DMS, Z-Wave®, and others are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM
Holdings. Keil is a registered trademark of ARM Limited. Wi-Fi is a registered trademark of the Wi-Fi Alliance. All other products or brand names mentioned herein are trademarks of
their respective holders.

