
AN1134: Dynamic Multiprotocol
Development with Bluetooth® and
Proprietary Protocols on RAIL in
GSDK v2.x

This application note provides details on how to develop a multi-
protocol application running Bluetooth and a proprietary protocol
at the same time. First the criteria for the coexistence of Blue-
tooth and a proprietary protocol are discussed. Then the applica-
tion note guides you through how to create a new DMP applica-
tion, how to configure Bluetooth and your proprietary protocol,
and how to transmit and receive proprietary packets while Blue-
tooth is running. Finally the Light/Switch DMP example demon-
strated in QSG155: Using the Silicon Labs Dynamic Multiprotocol
Demonstration Applications is introduced in more details. For
background on Dynamic Multiprotocol Application development in
general and about Bluetooth task priorities and scheduling, see
UG305: Dynamic Multiprotocol User’s Guide.

KEY POINTS

• Generic guidelines for protocol
coexistence

• Generating and configuring a new
Bluetooth/Proprietary DMP project

• Sending and receiving proprietary packets
• Using RAIL priorities
• Building and understanding the Light/

Switch DMP example

silabs.com | Building a more connected world. Rev. 0.3

1. Introduction

UG305: Dynamic Multiprotocol User’s Guide provides information about the Dynamic Multiprotocol solution, where two protocols are
running on the same device in parallel, and includes general background as well as information on Bluetooth task priorities and sched-
uling. This application note introduces the Bluetooth / Proprietary multiprotocol solution. It assumes that the reader is familiar with the
principles of Dynamic Multiprotocol and with all the terms related to it.

1.1 Requirements

To be able to use all the features discussed in this document, you will need the followings installed on your computer:
• Bluetooth SDK version 2.9.0 or higher
• Micrium OS-5 kernel

To be able to run the Light/Switch example, you will need the following installed on your computer:
• Bluetooth SDK version 2.7.0 or higher
• Flex SDK version 2.1 or higher
• Micrium OS-5 kernel
• An EFR32 chip with at least 512 kB of flash (required to run all the necessary software components)
• IAR Embedded Workbench for ARM (IAR-EWARM) (required for the RAIL Switch application). See the release notes for the Blue-

tooth SDK for the required IAR-EWARM version.

AN1134: Dynamic Multiprotocol Development with Bluetooth® and Proprietary Protocols on RAIL in GSDK v2.x
Introduction

silabs.com | Building a more connected world. Rev. 0.3 | 2

2. Guidelines for Bluetooth and Proprietary Coexistence

When you start implementing a Bluetooth / Proprietary DMP application the first thing to consider is if your proprietary protocol is com-
patible with Bluetooth. Here are some guidelines that you should always take into account:
• Bluetooth is deterministic. The huge advantage of the Bluetooth protocol in a DMP scenario is that it does not send and receive

packets at random times, but at predefined time instances – always at the start of a connection interval. This means, among other
things, that Bluetooth does not need a background receive, and your proprietary protocol can receive in the background, of
course with some interruptions.

• Bluetooth needs accuracy. The consequence of predefined time instances is that Bluetooth packets cannot be late – their timing
needs 500 ppm accuracy. If you delay a Bluetooth packet, it will not be received on the other side. So in case of collision with a
proprietary packet, either the proprietary packet has to be delayed, or one of the packets has to be dropped.

• Bluetooth connection is active. Once a Bluetooth connection is established, the connection is kept alive by sending and receiving
at least an empty packet every connection interval. Consequently your proprietary protocol need to be prepared to be interrupted
every connection interval. You can, however, set the connection interval to a long period if you do not need low Bluetooth latency.
You can also use the slave latency parameter to make Bluetooth communication less frequent on the slave side.

• Bluetooth uses short packets. If there is no data to be sent, the Bluetooth connection is kept alive by empty packets. An empty
packet takes 80.µs to be sent out on 1 meg PHY, and 40 µs on 2 meg PHY. Empty packets sending + inter frame space + empty
packet receiving takes 80 + 150 + 80 = 310 µs or 40 + 150 + 40 = 230 µs. This is the usual time needed by Bluetooth in every
connection interval. The largest Bluetooth packet has 257 byte payload which takes 2120 µs to be sent on 1 meg PHY and 1060 µs
on 2 meg PHY. Along with receiving an empty response packet this takes 2120 + 150 + 80 = 2350 µs on 1 meg PHY and 1060 +
150 + 40 = 1250 µs on 2 meg PHY.

• Bluetooth uses packet chains. If the data to be sent does not fit into one packet, Bluetooth communication can be extended within
a connection interval, that is you can expect that more than one packet is sent and received in an interval, but this is rare.

• Bluetooth is robust. If a Bluetooth packet cannot be sent, then it will be retransmitted in the next connection interval. If a Blue-
tooth packet is received with a CRC error, it is always signaled by the other side by not sending a response packet. Again, the
packet will be retransmitted in the next connection interval. The only limit is the supervision timeout. If there is no successful trans-
mission within the supervision timeout, then the connection is dropped. In other words, Bluetooth communication can be subdued
by higher priority radio tasks for a time interval shorter that the supervision timeout.

Summary: When implementing your DMP protocol, you have to take into account that Bluetooth will need the radio every connection
interval for a short time (230 µs – 2350 µs). Bluetooth needs accurate timing, so Bluetooth packets cannot be delayed. The Bluetooth
packets can interrupt both your packet sending and packet receiving, hence the proprietary protocol should implement acknowledge-
ment and retransmission mechanisms, or a deterministic timing that is interleaved with the Bluetooth communication. Bluetooth commu-
nication can be subdued by a higher priority radio task for a time interval shorter than the supervision timeout.

AN1134: Dynamic Multiprotocol Development with Bluetooth® and Proprietary Protocols on RAIL in GSDK v2.x
Guidelines for Bluetooth and Proprietary Coexistence

silabs.com | Building a more connected world. Rev. 0.3 | 3

3. Software Architecture of a Bluetooth / Proprietary DMP application

DMP applications are based on Micrium RTOS. The RTOS helps run the Bluetooth and Proprietary protocols in parallel and independ-
ently.

Since the Bluetooth stack itself is just a collection of functions, Bluetooth needs separate tasks to run the stack. The BluetoothTask()
and the LinkLayerTask() are responsible for this, and they can be used as they are. The functions of the Bluetooth stack can be ac-
cessed through these tasks using BGAPI, as in the case of an RTOS-less or an NCP application. The Bluetooth application (handling
Bluetooth events and calling Bluetooth commands) has to be implemented by the developer in the bluetoothAppTask(). For details
please refer to AN1114: Integrating Silicon Labs Bluetooth® Applications with the Micrium RTOS.

The proprietary protocol is implemented in the proprietaryAppTask(). Unlike Bluetooth, the proprietary protocol can access the radio
directly through the RAIL API. RAIL events need a callback function – radioEventHandler() – to be defined. This function is called
every time a new RAIL event is generated, and can notify the application about the event. Note: radioEventHandler() is called from
interrupt context, so only time-critical functions should be implemented in it. Everything else should be done in the application.

Although the Bluetooth and Proprietary applications are independent, they can communicate using inter-process communication (IPC).

AN1134: Dynamic Multiprotocol Development with Bluetooth® and Proprietary Protocols on RAIL in GSDK v2.x
Software Architecture of a Bluetooth / Proprietary DMP application

silabs.com | Building a more connected world. Rev. 0.3 | 4

4. Developing a Bluetooth / Proprietary DMP Project

4.1 Create a New Project

Silicon Labs Bluetooth SDK (v2.9 or later) includes the “SOC – Empty – RAIL – DMP” Software Example that should be used as a
starting point for every Bluetooth / Proprietary application. This example project:
• Includes the multiprotocol RAIL library
• Includes the Bluetooth library
• Includes the Micrium RTOS
• Has a default Bluetooth GATT database configuration
• Has a default RAIL configuration
• Has a default RTOS configuration
• Implements Bluetooth initialization
• Implements RAIL initialization
• Implements RTOS initialization

The only thing you have to do is to modify the configurations according to your needs and implement the bluetoothAppTask() and the
proprietaryAppTask(). The GATT database can be configured with the visual GATT editor tool, while the RAIL configuration can be
generated with the Radio Configurator tool. You may also need to add some emlib and emdrv files to your project to support peripheral
configuration. The general workflow to create a DMP project looks like this:

To create a new project.
1. Open Simplicity Studio.
2. Select your device on the Devices tab, or on the Solutions tab.
3. Click [New Project] in the Launcher perspective of Simplicity Studio, or click File > New > Project.
4. Select Bluetooth SDK. Click [Next].
5. If you have more SDKs installed, select Bluetooth SDK v2.9.0 or later. Click [Next].
6. Select SOC – Empty – RAIL – DMP sample application. Click [Next].
7. Name your project. Click [Next].
8. Check your part number.
9. Select the compiler you want to use. Click [Finish].

AN1134: Dynamic Multiprotocol Development with Bluetooth® and Proprietary Protocols on RAIL in GSDK v2.x
Developing a Bluetooth / Proprietary DMP Project

silabs.com | Building a more connected world. Rev. 0.3 | 5

4.2 Configure Bluetooth

Configuring Bluetooth consists of two steps:
• Configuring the local GATT database
• Configuring the Bluetooth stack

To configure the local GATT database, use the Visual GATT editor tool:
1. Open the .isc file in the project (if it is not already open).
2. Click on the Bluetooth Configurator tab.
3. Add your services and characteristics as described in QSG139: Bluetooth® Development with Simplicity Studio (or use the default

GATT database).
4. Click [Generate] to generate gatt.xml, gatt_db.c and gatt_db.h.

To configure the Bluetooth stack:
1. Open main.c.
2. Find the gecko configuration structure (gecko_configuration_t config).
3. Change the config according to your needs. For details see UG136: Silicon Labs Bluetooth® C Application Developer's Guide (or

use the default configuration).

AN1134: Dynamic Multiprotocol Development with Bluetooth® and Proprietary Protocols on RAIL in GSDK v2.x
Developing a Bluetooth / Proprietary DMP Project

silabs.com | Building a more connected world. Rev. 0.3 | 6

4.3 Configure Proprietary Protocol

Configuring the proprietary protocol consists of two steps:
• Configuring the radio channels (base frequency, modulation, and so on)
• Configuring the RAIL

To configure the radio channels, use the Radio Configurator tool:
1. Open the .isc file in the project (if it’s not opened yet).
2. Click the Proprietary Configurator tab.
3. Select Protocol Configuration.
4. Select Base Profile from the radio profiles.
5. Select a predefined radio PHY from the list, or select Custom settings, and apply your settings. For details see AN971: EFR32

Radio Configurator Guide.
6. Click [Generate] to generate rail_config.c and rail_config.h.

To configure RAIL:
1. Open main.c.
2. Find the proprietaryAppTask() function. RAIL init is done here.
3. If you have generated multiple radio configurations, you can select here which one to use, and you can subscribe here for RAIL

events.

AN1134: Dynamic Multiprotocol Development with Bluetooth® and Proprietary Protocols on RAIL in GSDK v2.x
Developing a Bluetooth / Proprietary DMP Project

silabs.com | Building a more connected world. Rev. 0.3 | 7

4.4 Develop Bluetooth Application

Bluetooth applications have to be implemented the same way as in a non-DMP scenario:
• BGAPI commands can be called from anywhere (except from interrupt context!)
• BGAPI events have to be fetched from the internal event queue of the Bluetooth stack. This is typically done in an infinite loop.

A single protocol Bluetooth application can run with or without RTOS. The DMP Bluetooth application can, however, only run over
RTOS. As described in section 3. Software Architecture of a Bluetooth / Proprietary DMP application, you must implement Bluetooth
event handling in bluetoothAppTask(). The skeleton of this task is implemented in main.c. To handle new Bluetooth events, simply
add new case statements with the appropriate event IDs. The general process can be seen in the following figure:

AN1134: Dynamic Multiprotocol Development with Bluetooth® and Proprietary Protocols on RAIL in GSDK v2.x
Developing a Bluetooth / Proprietary DMP Project

silabs.com | Building a more connected world. Rev. 0.3 | 8

4.5 Develop Proprietary Application

Proprietary application uses RAIL directly:
• RAIL API commands can be called from anywhere.
• RAIL API events have to be handled in the events callback function that was set in RAIL_Init().

By default the events callback function is set to radioEventHandler() and an empty radioEventHandler() function is implemented in
the DMP empty example. This function is called every time a new radio event is received from RAIL. Each RAIL event sets a specific
flag in the 64-bit bitfield. Be aware that multiple flags may be set, so you may have to handle multiple events within one callback. Note:
The events callback function is called from an interrupt context, so you have to handle it as an interrupt handler! Do only quick calcula-
tions, and set a flag to inform your main loop about the changes.

The main loop to process the radio events is to be implemented in the proprietaryAppTask(), which runs parallel to the
bluetoothAppTask(). It is the developer’s job to decide how to communicate between the radioEventHandler() and the
proprietaryAppTask(), but in general it is recommended to use the services of the RTOS, like semaphores, flags, message queues,
and so on.

The general process is shown in the following figure:

4.6 Communication between Bluetooth and Proprietary Protocol

Bluetooth and the proprietary protocol are running parallel in two independent tasks. However, often they need to be synchronized, for
example if you want to send out a proprietary packet when a value changed in the local GATT database, or you want to change a value
in the local GATT database when you received a proprietary packet.

To notify the Bluetooth task from the proprietary task, the easiest solution is to generate an external Bluetooth event.
gecko_external_signal() puts a new (external) event in the event queue of the Bluetooth stack. Then you can simply use the
gecko_evt_system_external_signal_id event ID in the bluetoothAppTask() to check if an external event was received. A 32-bit bitfield
can be used to differentiate 32 external events. For more information refer to UG136: Silicon Labs Bluetooth® C Application Developer's
Guide.

To notify the proprietary task from the Bluetooth task, the easiest way is to set an RTOS flag, in the same way you set flags in the
radioEventHandler() to notify the application about a new RAIL event.

AN1134: Dynamic Multiprotocol Development with Bluetooth® and Proprietary Protocols on RAIL in GSDK v2.x
Developing a Bluetooth / Proprietary DMP Project

silabs.com | Building a more connected world. Rev. 0.3 | 9

5. Examples

5.1 Sending Proprietary Packets

This simple example sends out a proprietary packet every time a specific characteristic in the local GATT database is written.
1. Create a new SOC – Empty – RAIL – DMP project as described in section 4.1 Create a New Project 4.1 Create a New Project.
2. Add a new characteristic to the GATT database (as described in QSG139: Bluetooth® Development with Simplicity Studio) with the

following parameters:
a. Name: Proprietary characteristic
b. ID: prop_char
c. Value type: hex
d. Length: 16 byte
e. Properties: Read, Write, Notify

3. Click [Generate] to generate the GATT database.
4. Define a CHARACTERISTIC_CHANGED flag in the header part of main.c. This flag will be used in the communication between the

bluetoothAppTask and the proprietaryAppTask, as part of the proprietary_event_flags flag group.

#define CHARACTERISTIC_CHANGED ((OS_FLAGS)0x01)

5. Create a Tx FIFO. Define the following in the header part of main.c:

#define RAIL_TX_FIFO_SIZE (64)
static uint8_t txFifo[RAIL_TX_FIFO_SIZE];

6. In the bluetoothAppTask():
a. Add a new event handler to the switch – case statement to handle characteristic value changes.
b. Check if it is the prop_char that has changed.
c. Set a flag to notify the proprietary protocol.

case gecko_evt_gatt_server_attribute_value_id:
if (bluetooth_evt->data.evt_gatt_server_attribute_value.attribute == gattdb_prop_char)
 {
 OSFlagPost(&proprietary_event_flags,
 CHARACTERISTIC_CHANGED,
 OS_OPT_POST_FLAG_SET,
 &err);
 }
break;

7. In the proprietaryAppTask() – before the infinite loop:
a. Set up the Tx FIFO for RAIL.
b. Define scheduler info for the packet to be sent.

RAIL_SetTxFifo(railHandle, txFifo, 0, RAIL_TX_FIFO_SIZE);
RAIL_SchedulerInfo_t txSchedulerInfo = (RAIL_SchedulerInfo_t){ .priority = 100,
 .slipTime = 100000,
 .transactionTime = 800 };

AN1134: Dynamic Multiprotocol Development with Bluetooth® and Proprietary Protocols on RAIL in GSDK v2.x
Examples

silabs.com | Building a more connected world. Rev. 0.3 | 10

8. Within the infinite loop of the proprietaryAppTask():
a. Wait for the CHARACTERISTIC_CHANGED flag.
b. Copy the content of the characteristic into the Tx FIFO.
c. Send out the packet.

while (DEF_TRUE) {
 RTOS_ERR err;
 OSFlagPend(&proprietary_event_flags,
 CHARACTERISTIC_CHANGED,
 (OS_TICK)0,
 OS_OPT_PEND_BLOCKING \
 + OS_OPT_PEND_FLAG_SET_ANY \
 + OS_OPT_PEND_FLAG_CONSUME,
 NULL,
 &err);

 struct gecko_msg_gatt_server_read_attribute_value_rsp_t *result;
 result = gecko_cmd_gatt_server_read_attribute_value(gattdb_prop_char,0);
 RAIL_WriteTxFifo(railHandle, &(result->value.data[0]), 16, true);
 RAIL_StartTx(railHandle, 0, RAIL_TX_OPTIONS_DEFAULT, &txSchedulerInfo);
}

9. In the radioEventHandler():
a. Check for the packet_sent event, and do not forget to yield the radio.

static void radioEventHandler(RAIL_Handle_t railHandle,
 RAIL_Events_t events)
{
 if (events & RAIL_EVENT_TX_PACKET_SENT) {
 RAIL_YieldRadio(railHandle);
 }
}

AN1134: Dynamic Multiprotocol Development with Bluetooth® and Proprietary Protocols on RAIL in GSDK v2.x
Examples

silabs.com | Building a more connected world. Rev. 0.3 | 11

5.2 Receiving Proprietary Packets

This example implements a receiver for the transmitter implemented in the previous section. Once a proprietary packet is received the
example updates a characteristic in the local GATT database.

To implement a receiver use the transmitter project described in the previous section and extend it with the following procedure.
1. Define a new flag for signaling packet reception to the proprietary application.

#define PACKET_RECEIVED ((OS_FLAGS)0x02)

2. Create an Rx FIFO. Define the following in the header part of main.c:

#define RAIL_RX_FIFO_SIZE (64)
static uint8_t rxFifo[RAIL_RX_FIFO_SIZE];

3. In the proprietaryAppTask() – before the infinite loop:
a. Set Rx transition in order to automatically restore Rx state after packet reception.
b. Set the Rx priority lower than the Tx priority.
c. Start Rx (before the infinite loop!).

RAIL_StateTransitions_t stateTransition = (RAIL_StateTransitions_t){
 .success = RAIL_RF_STATE_RX,
 .error = RAIL_RF_STATE_RX };
RAIL_SetRxTransitions(railHandle,&stateTransition);
RAIL_SchedulerInfo_t rxSchedulerInfo = (RAIL_SchedulerInfo_t){ .priority = 200 };
RAIL_StartRx(railHandle, 0, &rxSchedulerInfo);

4. In the radioEventHandler():
a. Check if a packet was successfully received.
b. Copy the packet content to your local Rx FIFO.
c. Set a flag to notify the proprietary protocol about the new packet.

if (events & RAIL_EVENT_RX_PACKET_RECEIVED) {
 RAIL_RxPacketInfo_t packetInfo;
 RTOS_ERR err;

 RAIL_GetRxPacketInfo(railHandle,
 RAIL_RX_PACKET_HANDLE_NEWEST,
 &packetInfo);

 if (packetInfo.packetStatus == RAIL_RX_PACKET_READY_SUCCESS) {
 RAIL_CopyRxPacket(rxFifo,&packetInfo);
 OSFlagPost(&proprietary_event_flags,PACKET_RECEIVED,OS_OPT_POST_FLAG_SET,&err);
 }
}

AN1134: Dynamic Multiprotocol Development with Bluetooth® and Proprietary Protocols on RAIL in GSDK v2.x
Examples

silabs.com | Building a more connected world. Rev. 0.3 | 12

5. Within the infinite loop of the proprietaryAppTask():
a. Check for two event flags: CHARACTERISTIC_CHANGED and PACKET_RECEIVED. You can wait for both of them and then

check which one was set.
b. If the PACKET_RECEIVED flag is set then write the content of the received packet into the local GATT database and
c. Notify the Bluetooth stack that the value has changed (using a Bluetooth external signal).

while (DEF_TRUE) {
 RTOS_ERR err;
 OS_FLAGS active_flags = OSFlagPend (&proprietary_event_flags,
 CHARACTERISTIC_CHANGED \
 + PACKET_RECEIVED,
 (OS_TICK)0,
 OS_OPT_PEND_BLOCKING \
 + OS_OPT_PEND_FLAG_SET_ANY \
 + OS_OPT_PEND_FLAG_CONSUME,
 NULL,
 &err);

 if (active_flags & CHARACTERISTIC_CHANGED)
 {
 struct gecko_msg_gatt_server_read_attribute_value_rsp_t *result;
 result = gecko_cmd_gatt_server_read_attribute_value(gattdb_prop_char,0);
 RAIL_WriteTxFifo(railHandle, &(result->value.data[0]), 16, true);
 RAIL_StartTx(railHandle, 0, RAIL_TX_OPTIONS_DEFAULT, &txSchedulerInfo);
 }

 if (active_flags & PACKET_RECEIVED)
 {
 gecko_cmd_gatt_server_write_attribute_value(gattdb_prop_char,0,16,rxFifo);
 gecko_external_signal(CHARACTERISTIC_CHANGED);
 }
}

6. In the bluetoothAppTask():
a. Add a new event handler for the external signal.
b. Check if you got a CHARACTERISTIC_CHANGED signal.
c. Send out a notification.

case gecko_evt_system_external_signal_id:
 if (bluetooth_evt->data.evt_system_external_signal.extsignals &
 CHARACTERISTIC_CHANGED)
 {
 gecko_cmd_gatt_server_send_characteristic_notification(0xff, gattdb_prop_char,
 16, rxFifo);
 }
break;

AN1134: Dynamic Multiprotocol Development with Bluetooth® and Proprietary Protocols on RAIL in GSDK v2.x
Examples

silabs.com | Building a more connected world. Rev. 0.3 | 13

6. Light/Switch Example

This section provides details on working with the Light/Switch example code that results in the example user interface documented in
QSG155: Using the Silicon Labs Dynamic Multiprotocol Demonstration Applications.

6.1 Working with the Light/Switch Example

To work with Light/Switch dynamic multiprotocol example you must install both the Flex SDK version 2.1.0 or higher, and the Bluetooth
SDK version 2.7.0 or higher. The Micrium kernel is installed along with the Bluetooth SDK. Use the version of IAR Embedded Work-
bench for ARM (IAR-EWARM) that is documented in the release notes for the SDK. The RAIL Switch and Bluetooth/RAIL Light Dynam-
ic multiprotocol applications are generated, built, and uploaded in the same way as other applications in their SDKs.
• To see details about installing Simplicity Studio and the Flex SDK and building an example application, see QSG138: Getting Star-

ted with the Silicon Labs Flex SDK for the Wireless Gecko (EFR32™) Portfolio.
• To see details about installing Simplicity Studio and the Bluetooth SDK and building an example application, see QSG139: Bluetooth

Development with Simplicity Studio.

Note: In a demonstration configuration with multiple RAIL/Bluetooth dynamical protocol light devices and a single switch device, unpre-
dictable behavior may occur. We recommend testing with a single light device and a single switch device.

The following summary procedures are provided for your convenience.

6.1.1 Building the RAIL:Switch Application

1. In Simplicity Studio, start a new project.
2. In the Applications dialog, select Silicon Labs Flex SDK, and click [Next].
3. In the Select Applications dialog, select RAIL: Switch and click [Next].
4. In the Project Configuration dialog, name the project and click [Next].
5. In project setup, make sure that the correct board and part are shown. Click [Finish].
6. If you get an auto-upgrade notice. click [OK].
7. Click [Generate] to generate project files.
8. Either automatically compile and flash using the debug button, or manually compile and then load.

Application load success indicators are code-dependent. With the RAIL: Switch example, the LCD displays a short menu before chang-
ing over to the light bulb display.

AN1134: Dynamic Multiprotocol Development with Bluetooth® and Proprietary Protocols on RAIL in GSDK v2.x
Light/Switch Example

silabs.com | Building a more connected world. Rev. 0.3 | 14

6.1.2 Building the Bluetooth Light Application

The Bluetooth Light application requires the Gecko Bootloader be loaded on the device. The Gecko Bootloader is loaded when you
load the precompiled SOC - Light - RAIL - DMP demonstration as described in QSG155: Using the Silicon Labs Dynamic Multiprotocol
Demonstrations. Alternatively you can build and load your own Gecko Bootloader combined image (called <projectname>-com-
bined.s37), as described in chapter 4 of UG266: Silicon Labs Gecko Bootloader User’s Guide.

1. In Simplicity Studio, start a new project.
2. In the Applications dialog, select Bluetooth SDK, and click [Next].
3. In the Select Applications dialog, select SOC - Light - RAIL - DMP and click [Next].
4. In the Project Configuration dialog, name the project and click [Next].
5. In project setup, make sure that the correct board and part are shown and, if you have both IAR and GCC configured, select one.

The active toolchain will be used in the project. Click [Finish].
6. You do not have to generate the files unless you have modified the GATT database.
7. Automatically compile and flash using the debug button.

Application load success indicators are code-dependent. With the SOC - Light - RAIL - DMP example, the LCD displays a light bulb.

6.1.3 Changing the PHY Configuration

The default PHY configuration for the RAIL/Bluetooth example is a sub Gigahertz configuration. You may want to modify this PHY con-
figuration as you begin to develop applications for your own hardware.

To change the PHY configuration:
1. Open the RAIL:Switch project.
2. Open the .isc file in the project.
3. Select the Radio Configuration tab.
4. Select a new PHY.
5. Click [Generate] to generate new rail_config.c and rail_config.h.
6. Open the SOC - Light - RAIL - DMP project.
7. Copy rail_config.c and rail_config.h from the RAIL:Switch project to the SOC - Light - RAIL – DMP project.
8. Make sure that you overwrite the old rail_config.c and rail_config.h files.
9. Rebuild and flash both projects as you would normally.

AN1134: Dynamic Multiprotocol Development with Bluetooth® and Proprietary Protocols on RAIL in GSDK v2.x
Light/Switch Example

silabs.com | Building a more connected world. Rev. 0.3 | 15

Smart.
Connected.
Energy-Friendly.

Products
www.silabs.com/products

Quality
www.silabs.com/quality

Support and Community
community.silabs.com

http://www.silabs.com

Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
USA

Disclaimer
Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or
intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical"
parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes without
further notice to the product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Without prior
notification, Silicon Labs may update product firmware during the manufacturing process for security or reliability reasons. Such changes will not alter the specifications or the performance
of the product. Silicon Labs shall have no liability for the consequences of use of the information supplied in this document. This document does not imply or expressly grant any license
to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any FDA Class III devices, applications for which FDA premarket approval is
required, or Life Support Systems without the specific written consent of Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health,
which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs
products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering
such weapons. Silicon Labs disclaims all express and implied warranties and shall not be responsible or liable for any injuries or damages related to use of a Silicon Labs product in such
unauthorized applications.

Trademark Information
Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, ClockBuilder®, CMEMS®, DSPLL®, EFM®, EFM32®,
EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®, Gecko®,
Gecko OS, Gecko OS Studio, ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® , Zentri, the Zentri logo and Zentri DMS, Z-
Wave®, and others are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a
registered trademark of ARM Limited. Wi-Fi is a registered trademark of the Wi-Fi Alliance. All other products or brand names mentioned herein are trademarks of their respective holders.

	1. Introduction
	1.1 Requirements

	2. Guidelines for Bluetooth and Proprietary Coexistence
	3. Software Architecture of a Bluetooth / Proprietary DMP application
	4. Developing a Bluetooth / Proprietary DMP Project
	4.1 Create a New Project
	4.2 Configure Bluetooth
	4.3 Configure Proprietary Protocol
	4.4 Develop Bluetooth Application
	4.5 Develop Proprietary Application
	4.6 Communication between Bluetooth and Proprietary Protocol

	5. Examples
	5.1 Sending Proprietary Packets
	5.2 Receiving Proprietary Packets

	6. Light/Switch Example
	6.1 Working with the Light/Switch Example
	6.1.1 Building the RAIL:Switch Application
	6.1.2 Building the Bluetooth Light Application
	6.1.3 Changing the PHY Configuration

