
AN1222: Production Programming of
Series 2 Devices

This application note demonstrates how to properly program, pro-
vision, and configure Series 2 devices in a production environ-
ment.
Series 2 devices contain a Secure Engine, which runs Secure Engine firmware. When
a newer version of Secure Engine firmware is released, the firmware may be upgraded
either in the production programming process for devices still in manufacturing or via a
field update for deployed devices. Keys must be provisioned to the Secure Engine's
one-time-programmable (OTP) memory to use the Secure Boot and Secure Debug fea-
tures.

For more information about Secure Engine, see section "Secure Engine Subsystem" in
application note AN1190: Series 2 Secure Debug.

KEY POINTS

• It is the customer's responsibility to ensure
the Secure Engine firmware is up-to-date

• The Secure Engine firmware can be
upgraded via the Serial Wire Debug
(SWD) interface

• Secure Engine firmware is protected from
downgrade

• Secure Engine's OTP memory prevents
re-writing of:
• GBL Decryption Key
• Public Sign Key
• Public Command Key
• Secure Boot Enable flag and Tamper

Configuration

silabs.com | Building a more connected world. Copyright © 2023 by Silicon Laboratories Rev. 0.9

https://www.silabs.com/documents/public/application-notes/an1190-efr32-secure-debug.pdf

1. Series 2 Device Security Features

Protecting IoT devices against security threats is central to a quality product. Silicon Labs offers several security options to help devel-
opers build secure devices, secure application software, and secure paths of communication to manage those devices. Silicon Labs’
security offerings were significantly enhanced by the introduction of the Series 2 products that included a Secure Engine. The Secure
Engine is a tamper-resistant component used to securely store sensitive data and keys and to execute cryptographic functions and
secure services.

On Series 1 devices, the security features are implemented by the TRNG (if available) and CRYPTO peripherals.

On Series 2 devices, the security features are implemented by the Secure Engine and CRYPTOACC (if available). The Secure Engine
may be hardware-based, or virtual (software-based). Throughout this document, the following abbreviations are used:
• HSE - Hardware Secure Engine
• VSE - Virtual Secure Engine
• SE - Secure Engine (either HSE or VSE)

Additional security features are provided by Secure Vault. Three levels of Secure Vault feature support are available, depending on the
part and SE implementation, as reflected in the following table:

Level (1) SE Support Part (2)

Secure Vault High (SVH) HSE only (HSE-SVH) Refer to UG103.05 for details on supporting devices.

Secure Vault Mid (SVM) HSE (HSE-SVM) "

" VSE (VSE-SVM) "

Secure Vault Base (SVB) N/A "

Note:
1. The features of different Secure Vault levels can be found in https://www.silabs.com/security.
2. UG103.05.

Secure Vault Mid consists of two core security functions:
• Secure Boot: Process where the initial boot phase is executed from an immutable memory (such as ROM) and where code is au-

thenticated before being authorized for execution.
• Secure Debug access control: The ability to lock access to the debug ports for operational security, and to securely unlock them

when access is required by an authorized entity.

Secure Vault High offers additional security options:
• Secure Key Storage: Protects cryptographic keys by “wrapping” or encrypting the keys using a root key known only to the HSE-SVH.
• Anti-Tamper protection: A configurable module to protect the device against tamper attacks.
• Device authentication: Functionality that uses a secure device identity certificate along with digital signatures to verify the source or

target of device communications.

A Secure Engine Manager and other tools allow users to configure and control their devices both in-house during testing and manufac-
turing, and after the device is in the field.

AN1222: Production Programming of Series 2 Devices
Series 2 Device Security Features

silabs.com | Building a more connected world. Rev. 0.9 | 2

https://www.silabs.com/security
https://www.silabs.com/documents/public/user-guides/ug103-05-fundamentals-security.pdf

1.1 User Assistance

In support of these products, Silicon Labs offers whitepapers, webinars, and documentation. The following table summarizes the key
security documents:

Document Summary Applicability

AN1190: Series 2 Secure Debug How to lock and unlock Series 2 debug access, including
background information about the SE

Secure Vault Mid and High

AN1218: Series 2 Secure Boot with
RTSL

Describes the secure boot process on Series 2 devices using
SE

Secure Vault Mid and High

AN1247: Anti-Tamper Protection Con-
figuration and Use

How to program, provision, and configure the anti-tamper
module

Secure Vault High

AN1268: Authenticating Silicon Labs
Devices using Device Certificates

How to authenticate a device using secure device certificates
and signatures, at any time during the life of the product

Secure Vault High

AN1271: Secure Key Storage How to securely “wrap” keys so they can be stored in non-
volatile storage.

Secure Vault High

AN1222: Production Programming of
Series 2 Devices (this document)

How to program, provision, and configure security information
using SE during device production

Secure Vault Mid and High

1.2 Key Reference

Public/Private keypairs along with other keys are used throughout Silicon Labs security implementations. Because terminology can
sometimes be confusing, the following table lists the key names, their applicability, and the documentation where they are used.

Key Name Customer Programmed Purpose Used in

Public Sign key (Sign Key Public) Yes Secure Boot binary authentication and/or OTA
upgrade payload authentication

AN1218 (primary),
AN1222

Public Command key (Command
Key Public)

Yes Secure Debug Unlock or Disable Tamper com-
mand authentication

AN1190 (primary),
AN1222, AN1247

OTA Decryption key (GBL De-
cryption key) aka AES-128 Key

Yes Decrypting GBL payloads used for firmware up-
grades

AN1222 (primary),
UG266/UG489

Attestation key aka Private De-
vice Key

No Device authentication for secure identity AN1268

1.3 SE Firmware

Silicon Labs strongly recommends installing the latest SE firmware on Series 2 devices to support the required security features. Refer
to AN1222 for the procedure to upgrade the SE firmware and UG103.05 for the latest SE Firmware shipped with Series 2 devices and
modules.

AN1222: Production Programming of Series 2 Devices
Series 2 Device Security Features

silabs.com | Building a more connected world. Rev. 0.9 | 3

https://www.silabs.com/documents/public/application-notes/an1222-efr32xg2x-production-programming.pdf
https://www.silabs.com/documents/public/user-guides/ug103-05-fundamentals-security.pdf

2. Overview

More steps are involved in the production programming process of Series 2 devices compared to Series 1 devices. The steps vary if the
device is to have Secure Boot enabled or disabled. For more information about Secure Boot, see AN1218: Series 2 Secure Boot with
RTSL. Enabling Secure Debug is a recommended step in the process. For more information about Secure Debug, see AN1190: Series
2 Secure Debug.

A general overview of the production programming steps is described in the following sections. Although some steps can be performed
using Simplicity Studio 5, this application note will focus more on using Simplicity Commander because it is more suitable for production
environments.

Silicon Labs provides Custom Part Manufacturing Service (CPMS) to customize the users' security features and settings.

AN1222: Production Programming of Series 2 Devices
Overview

silabs.com | Building a more connected world. Rev. 0.9 | 4

https://www.silabs.com/documents/public/application-notes/an1218-secure-boot-with-rtsl.pdf
https://www.silabs.com/documents/public/application-notes/an1218-secure-boot-with-rtsl.pdf
https://www.silabs.com/documents/public/application-notes/an1190-efr32-secure-debug.pdf
https://www.silabs.com/documents/public/application-notes/an1190-efr32-secure-debug.pdf
https://www.silabs.com/developers/custom-part-manufacturing-service

2.1 Production Programming for Secure Boot-Disabled Device

The following figure illustrates the production programming flow for Secure Boot-disabled devices. It is possible to upgrade Series 2
devices deployed in the field without Secure Boot to Secure Boot with RTSL.

Strongly Recommended

Update SE
Firmware

Download
Bootloader and

Application
Firmware

Provision keys
for GBL

Decryption,
Secure Boot and
Secure Debug

Unlock

Enable Debug
Lock

Required

Figure 2.1. Series 2 High-Level Production Programming Flowchart for Secure Boot-Disabled Devices

Upgrading the SE Firmware and flashing the bootloader and application firmware are required in the production programming process.
Provisioning the GBL Decryption Key for GBL payload decryption, Public Sign Key for Secure Boot, Public Command Key for Secure
Debug Unlock, and enabling the Debug Lock are strongly recommended.

A more detailed version of the Series 2 production programming flowchart for a Secure Boot-disabled device is illustrated in the follow-
ing figure.

Check
Hardware

Connections

Check Current
SE Version

Flash SE
Firmware

Run SE
Firmware

Verify Correct
SE Version

Flash
Application
Firmware

Provision GBL
Decryption Key1

SE Firmware
Upgrade

Bootloader and
Application Programming

Strongly Recommended

Required

Flash
Bootloader
Firmware

Provision Public
Sign Key2

Provision Public
Command Key3

y1

Provision Keys and
Enable Debug Lock

Enable Debug
Lock4

Figure 2.2. Series 2 Step-by-Step Production Programming Flowchart for a Secure Boot-Disabled Device

AN1222: Production Programming of Series 2 Devices
Overview

silabs.com | Building a more connected world. Rev. 0.9 | 5

Note:
1. Refer to 7.2 Provisioning the GBL Decryption Key in Simplicity Commander on how to program the GBL Decryption Key to the

Series 2 device.
2. The VSE devices store a Public Sign Key copy on the top page of the main flash for Secure Boot (see section "Signing for ECDSA-

P256-SHA256 Secure Boot" in AN1218: Series 2 Secure Boot with RTSL).
3. The Public Command Key can also be used to temporarily disable anti-tamper protection on HSE-SVH devices (see AN1247: Anti-

Tamper Protection Configuration and Use).
4. Enabling the debug lock should be the final step in production, and the following debug lock options are available on the Series 2

device.
• Standard Debug Lock
• Permanent Debug Lock
• Secure Debug Lock (Public Command Key was provisioned)

Note: For more information about these debug lock options, see the section "Debug Lock State Transition" in AN1190: Series 2
Secure Debug.

AN1222: Production Programming of Series 2 Devices
Overview

silabs.com | Building a more connected world. Rev. 0.9 | 6

https://www.silabs.com/documents/public/application-notes/an1218-secure-boot-with-rtsl.pdf
https://www.silabs.com/documents/public/application-notes/an1247-efr32-secure-vault-tamper.pdf
https://www.silabs.com/documents/public/application-notes/an1247-efr32-secure-vault-tamper.pdf
https://www.silabs.com/documents/public/application-notes/an1190-efr32-secure-debug.pdf
https://www.silabs.com/documents/public/application-notes/an1190-efr32-secure-debug.pdf

2.2 Production Programming for Secure Boot-Enabled Device

The following figure illustrates the production programming flow for Secure Boot-enabled devices.

Strongly Recommended

Update SE
Firmware

Download
SIGNED

Bootloader and
Application
Firmware

Provision Key for
Secure Boot,

Enable Secure
Boot and Tamper

Configuration

Provision keys
for GBL

Decryption and
Secure Debug

Unlock

Enable Debug
Lock

Required

Figure 2.3. Series 2 High-Level Production Programming Flowchart for Secure Boot-Enabled Devices

Upgrading the SE Firmware and flashing the SIGNED bootloader and application firmware are required in the production programming
process. Provisioning the Public Sign Key and enabling Secure Boot and Tamper Configuration (HSE-SVH only) are also needed in the
production programming process to enable the Secure Boot option. Provisioning the GBL Decryption Key for GBL payload decryption,
Public Command Key for Secure Debug Unlock, and enabling the Debug Lock are strongly recommended.

A more detailed version of the Series 2 production programming flowchart for a Secure Boot-enabled device is illustrated in the follow-
ing figure.

Check
Hardware

Connections

Check Current
SE Version

Flash SE
Firmware

Run SE
Firmware

Verify Correct
SE Version

Flash (UN)SIGNED
Application
Firmware2

Provision Public
Command Key6

SE Firmware
Upgrade

Provision Keys and
Enable Debug Lock

Strongly Recommended

Required

Bootloader and
Application Programming

Flash SIGNED
Bootloader
Firmware1

Provision Key and
Enable Secure Boot

Provision Public
Sign Key3

Enable Secure
Boot and Tamper

Configuration4

Provision GBL
Decryption Key5

Enable Debug
Lock7

Figure 2.4. Series 2 Step-by-Step Production Programming Flowchart for a Secure Boot-Enabled Device

AN1222: Production Programming of Series 2 Devices
Overview

silabs.com | Building a more connected world. Rev. 0.9 | 7

Note:
1. The device will enter the Secure Boot failed state if the bootloader firmware is either unsigned or incorrectly signed (see 5. Boot-

loader Firmware Programming).
2. If the Secure Boot option is enabled in the bootloader, the application firmware must be signed (see 6. Application Firmware Pro-

gramming).
3. The VSE devices store a Public Sign Key copy on the top page of the main flash for Secure Boot (see section "Signing for ECDSA-

P256-SHA256 Secure Boot" in AN1218: Series 2 Secure Boot with RTSL).
4. On HSE-SVH devices, the anti-tamper protection configuration is provisioned with Secure Boot settings (see 8. Enabling Secure

Boot and Tamper Configuration).
5. Refer to 7.2 Provisioning the GBL Decryption Key in Simplicity Commander on how to program the GBL Decryption Key to the

Series 2 device.
6. The Public Command Key can also be used to temporarily disable anti-tamper protection on HSE-SVH devices (see AN1247: Anti-

Tamper Protection Configuration and Use).
7. Enabling the debug lock should be the final step in production, and the following debug lock options are available on the Series 2

device.
• Standard Debug Lock
• Permanent Debug Lock
• Secure Debug Lock (Public Command Key was provisioned)

Note: For more information about these debug lock options, see the section "Debug Lock State Transition" in AN1190: Series 2
Secure Debug.

AN1222: Production Programming of Series 2 Devices
Overview

silabs.com | Building a more connected world. Rev. 0.9 | 8

https://www.silabs.com/documents/public/application-notes/an1218-secure-boot-with-rtsl.pdf
https://www.silabs.com/documents/public/application-notes/an1247-efr32-secure-vault-tamper.pdf
https://www.silabs.com/documents/public/application-notes/an1247-efr32-secure-vault-tamper.pdf
https://www.silabs.com/documents/public/application-notes/an1190-efr32-secure-debug.pdf
https://www.silabs.com/documents/public/application-notes/an1190-efr32-secure-debug.pdf
https://www.silabs.com/documents/public/application-notes/an1190-efr32-secure-debug.pdf

3. Using Simplicity Commander

1. This application note uses Simplicity Commander v1.14.2. The procedures and console output may be different for the other ver-
sions of Simplicity Commander. The latest version of Simplicity Commander can be downloaded from https://www.silabs.com/
developers/mcu-programming-options.

commander --version

Simplicity Commander 1v14p2b1232

JLink DLL version: 7.70d
Qt 5.12.10 Copyright (C) 2017 The Qt Company Ltd.
EMDLL Version: 0v18p7b669
mbed TLS version: 2.16.6

Emulator found with SN=440048205 USBAddr=0

DONE

2. The Simplicity Commander's Command Line Interface (CLI) is invoked by commander.exe in the Simplicity Commander folder. The
location for Simplicity Studio 5 in Windows is C:\SiliconLabs\SimplicityStudio\v5\developer\adapter_packs\commander.
For ease of use, it is highly recommended to add the path of commander.exe to the system PATH in Windows.

3. If more than one Wireless Starter Kit (WSTK) is connected via USB, the target WSTK must be specified using the --serialno <J-
Link serial number> option.

4. If the WSTK is in debug mode OUT, the target device must be specified using the --device <device name> option.

For more information about Simplicity Commander, see UG162: Simplicity Commander Reference Guide.

AN1222: Production Programming of Series 2 Devices
Using Simplicity Commander

silabs.com | Building a more connected world. Rev. 0.9 | 9

https://www.silabs.com/developers/mcu-programming-options
https://www.silabs.com/developers/mcu-programming-options
https://www.silabs.com/documents/public/user-guides/ug162-simplicity-commander-reference-guide.pdf

4. SE Firmware Programming

4.1 Overview

Production programming of Series 2 devices is identical to production programming of Series 1 devices, with the addition of the SE
Firmware in the production programming process. Consistent with best practices for Internet of Things (IoT) security, the SE Firmware
provided with Series 2 devices supports secure firmware updates. Silicon Labs will periodically release new versions of the SE Firm-
ware to fix bugs and patch vulnerabilities, which may require updates to devices on the manufacturing line or to devices already in the
field.

Silicon Labs operates under a "Security as a Shared Responsibility Model". This model provides flexibility to system integrators to
manage SE Firmware security updates on their own timetable based on their product's use case, risk assessment, agility of their manu-
facturing flow, and the agility of their field firmware deployment flow.

Series 2 devices are rarely shipped with the latest SE Firmware installed, meaning system integrators must add SE Firmware program-
ming to their production programming flow.

In all cases, Silicon Labs recommends that system integrators:
• Subscribe to security notifications by managing their notification settings in the Silicon Labs Support Portal. This is the easiest meth-

od to be notified of SE Firmware updates and discovered vulnerabilities.

• Ensure they are installing the latest SE Firmware release in their manufacturing line.
• Be prepared to deploy security-related field updates to devices in the field.

4.2 How to Check the SE Firmware Version on a Device

The SE Firmware version of the device can be found in two ways.
• Simplicity Studio
• Simplicity Commander

AN1222: Production Programming of Series 2 Devices
SE Firmware Programming

silabs.com | Building a more connected world. Rev. 0.9 | 10

4.2.1 Check the SE Firmware Version Using Simplicity Studio 5

This application note uses Simplicity Studio v5.2.1.1. The procedures and pictures may be different for the other versions of Simplicity
Studio 5.

1. Change the Wireless Starter Kit (WSTK) Debug Mode: to External Device (OUT).
2. Right-click the selected debug adapter Custom Board (ID:J-Link serial number) to display the context menu.

Figure 4.1. Context Menu of Debug Adapters

3. Click Device configuration... to open the Configuration of device: J-Link Silicon Labs (serial number) dialog box. Click the
Device hardware tab to enter the part number in the Target part: box.

Figure 4.2. Configuration of Device

4. Click [OK] to exit.

AN1222: Production Programming of Series 2 Devices
SE Firmware Programming

silabs.com | Building a more connected world. Rev. 0.9 | 11

5. Connect the device to the WSTK. Select the device in the Debug Adapters view.

Figure 4.3. SE Firmware Version in Simplicity Studio

6. The SE Firmware version will appear in the Secure FW: row. In this example, the SE Firmware version on the EFR32MG21A is
1.2.9.

4.2.2 Check the SE Firmware Version Using Simplicity Commander

To check the SE Firmware version on the device, issue the Simplicity Commander security command security status.

commander security status --device EFR32MG21A010F1024 --serialno 440048205

SE Firmware version : 1.2.14
Serial number : 000000000000000014b457fffe045a8e
Debug lock : Disabled
Device erase : Enabled
Secure debug unlock : Disabled
Tamper status : OK
Secure boot : Disabled
Boot status : 0x20 - OK
DONE

In this example, the SE Firmware version on the EFR32MG21A is 1.2.14.

4.3 How to Find the Latest SE Firmware

Silicon Labs strongly recommends installing the latest SE firmware on Series 2 devices to support the required security features. The
latest SE firmware image (.seu and .hex) and release notes can be found in the Windows folder below.

For GSDK v3.2 and lower:

C:\SiliconLabs\SimplicityStudio\v5\developer\sdks\gecko_sdk_suite\<GSDK VERSION>\util\se_release\public

For GSDK v4.0 and higher:

C:\Users\<PC USER NAME>\SimplicityStudio\SDKs\gecko_sdk\util\se_release\public

AN1222: Production Programming of Series 2 Devices
SE Firmware Programming

silabs.com | Building a more connected world. Rev. 0.9 | 12

4.4 Serial Wire Debug (SWD)

The SE Firmware cannot be directly programmed to the SE using the SWD interface. Instead, an image containing the loader applica-
tion and SE Firmware is flashed onto the host MCU. The SE Firmware is encrypted, versioned, and signed.

ComputerDevice

Host

Loader
Application

Secure
Engine

Firmware

Secure
Engine

Figure 4.4. SWD SE Firmware Upgrade Block Diagram

Using the SWD interface, the user flashes the loader application onto the host. The host then runs the loader application, which checks
the signature and version of the SE Firmware. If the signature check passes and the upgrade's version number is higher than the devi-
ce's SE Firmware version, the firmware is applied to the SE.

The upgrade will not be applied if the signature check fails or if the upgrade's version number is less than or equal to the device's SE
Firmware version. Trying to apply a lower SE Firmware version to the device does no harm, but the upgrade will be ignored. This also
means the device's SE Firmware cannot be downgraded.

After the SE Firmware has been upgraded, the loader application can be deleted and the application firmware can be flashed via the
SWD interface.

As detailed in Figure 2.2 Series 2 Step-by-Step Production Programming Flowchart for a Secure Boot-Disabled Device on page 5 or
Figure 2.4 Series 2 Step-by-Step Production Programming Flowchart for a Secure Boot-Enabled Device on page 7, the steps to up-
grade the SE Firmware are:

1. Connect Hardware: Connect the device's SWD interface with the WSTK and ensure proper connections.
2. Check Version: Check the SE Firmware version already on the device.
3. Flash SE Firmware: Flash the loader application onto the host processor.
4. Run: Allow the loader application to run and install the SE Firmware.
5. Re-Check Version: Ensure the update succeeded.

Each of these steps is described in more detail in the next sections.

4.4.1 Connect Hardware

After connecting the device's SWD interface to the WSTK, try to read the device information using Simplicity Commander, to verify that
proper connections were established to the device.

commander device info --device EFR32MG21A010F1024 --serialno 440048205

Part Number : EFR32MG21A010F1024IM32
Die Revision : A1
Production Ver : 2
Flash Size : 1024 kB
SRAM Size : 96 kB
Unique ID : 14b457fffe045a8e
DONE

AN1222: Production Programming of Series 2 Devices
SE Firmware Programming

silabs.com | Building a more connected world. Rev. 0.9 | 13

4.4.2 Check Version

To check the SE Firmware version on the device, issue the Simplicity Commander security command security status.

commander security status --device EFR32MG21A010F1024 --serialno 440048205

SE Firmware version : 1.2.13
Serial number : 000000000000000014b457fffe045a8e
Debug lock : Disabled
Device erase : Enabled
Secure debug unlock : Disabled
Tamper status : OK
Secure boot : Disabled
Boot status : 0x20 - OK
DONE

Note: The Tamper status item is device-dependent.

4.4.3 Flash SE Firmware

To flash the SE Firmware upgrade application, run

commander flash --masserase s2c1_se_fw_upgrade_app_1v2p14.hex --device EFR32MG21A010F1024 --serialno 440048205

where s2c1_se_fw_upgrade_app_1v2p14.hex is replaced with the name of the SE Firmware upgrade application file.

Parsing file s2c1_se_fw_upgrade_app_1v2p14.hex...
Erasing chip...
Flash was erased successfully
Writing 57344 bytes starting at address 0x00000000
Comparing range 0x00000000 - 0x0000DFFF (56 KB)
Programming range 0x00000000 - 0x00001FFF (8 KB)
Programming range 0x00002000 - 0x00003FFF (8 KB)
Programming range 0x00004000 - 0x00005FFF (8 KB)
Programming range 0x00006000 - 0x00007FFF (8 KB)
Programming range 0x00008000 - 0x00009FFF (8 KB)
Programming range 0x0000A000 - 0x0000BFFF (8 KB)
Programming range 0x0000C000 - 0x0000DFFF (8 KB)
DONE

4.4.4 Run

Allow the SE Firmware upgrade application to run for at least two seconds. After two seconds, the SE Firmware should have been
upgraded.

4.4.5 Re-Check Version

Run the security status command again to check the upgraded SE Firmware version.

commander security status --device EFR32MG21A010F1024 --serialno 440048205

SE Firmware version : 1.2.14
Serial number : 000000000000000014b457fffe045a8e
Debug lock : Disabled
Device erase : Enabled
Secure debug unlock : Disabled
Tamper status : OK
Secure boot : Disabled
Boot status : 0x20 - OK
DONE

The version is now upgraded to 1.2.14.

AN1222: Production Programming of Series 2 Devices
SE Firmware Programming

silabs.com | Building a more connected world. Rev. 0.9 | 14

5. Bootloader Firmware Programming

If Secure Boot is enabled, a SIGNED version of the bootloader firmware must be programmed to the flash.

Instructions on how to sign the bootloader firmware can be found in sections "Signing for ECDSA-P256-SHA256 Secure Boot" and
"Signing for Certificate-Based Secure Boot" in AN1218: Series 2 Secure Boot with RTSL.

For Series 2 devices, the bootloader starting address is device-dependent. For more information about the bootloader starting address,
see section "Memory Space For Bootloading" in UG103.6: Bootloader Fundamentals.

Flashing the bootloader firmware using Simplicity Commander is similar to flashing the SE Firmware upgrade application.

commander flash --masserase <bootloader file> --device <device name> --serialno <J-Link serial number>

where <bootloader file> is the name of the bootloader firmware file.

For the TrustZone-aware bootloader, the <bootloader file> is the combined image of Secure and Non-secure bootloaders.

To check the Boot status of the device, run the security status command.

commander security status --device EFR32MG21A010F1024 --serialno 440048205

SE Firmware version : 1.2.14
Serial number : 000000000000000014b457fffe045a8e
Debug lock : Disabled
Device erase : Enabled
Secure debug unlock : Disabled
Tamper status : OK
Secure boot : Disabled
Boot status : 0x20 - OK
DONE

The Secure Boot process fails if the Boot status is not 0x20 - OK. It means the bootloader firmware is either unsigned or incorrectly
signed. The only way to recover is to flash a correctly-signed image (see section "Recover Devices when Secure Boot Fails" in
AN1218: Series 2 Secure Boot with RTSL).

AN1222: Production Programming of Series 2 Devices
Bootloader Firmware Programming

silabs.com | Building a more connected world. Rev. 0.9 | 15

https://www.silabs.com/documents/public/application-notes/an1218-secure-boot-with-rtsl.pdf
https://www.silabs.com/documents/public/user-guides/ug103-06-fundamentals-bootloading.pdf
https://www.silabs.com/documents/public/application-notes/an1218-secure-boot-with-rtsl.pdf

6. Application Firmware Programming

If the Secure Boot option is enabled in the bootloader, a SIGNED version of the application firmware must be programmed to the flash.

Instructions on how to sign the application firmware can be found in sections "Signing for ECDSA-P256-SHA256 Secure Boot" and
"Signing for Certificate-Based Secure Boot" in AN1218: Series 2 Secure Boot with RTSL.

For Series 2 devices, the application firmware starting address is device-dependent. For more information about the application starting
address, see section "Memory Space For Bootloading" in UG103.6: Bootloader Fundamentals.

Flashing the application firmware using Simplicity Commander is similar to flashing the SE Firmware upgrade application.

commander flash <application file> --device <device name> --serialno <J-Link serial number>

where <application file> is the name of the application firmware file.

For the TrustZone-aware application, the <application file> is the combined image of Secure and Non-secure applications.

Note: Do not use the --masserase option to flash the application firmware since it will erase the bootloader at the starting address.

AN1222: Production Programming of Series 2 Devices
Application Firmware Programming

silabs.com | Building a more connected world. Rev. 0.9 | 16

https://www.silabs.com/documents/public/application-notes/an1218-secure-boot-with-rtsl.pdf
https://www.silabs.com/documents/public/user-guides/ug103-06-fundamentals-bootloading.pdf

7. Key Provisioning

7.1 Overview

The symmetric GBL Decryption Key is used to decrypt GBL files. All encrypted images on this device must be encrypted with the same
128-bit AES key. 7.2 Provisioning the GBL Decryption Key in Simplicity Commander describes different ways to program the GBL De-
cryption Key to the Series 2 devices.

If the Secure Boot feature is to be used, the Public Sign Key must be provisioned to the device.

If the Secure Debug feature is to be used, the Public Command Key must be provisioned to the device.

The GBL Decryption Key (HSE device), Public Sign Key, and the Public Command Key are written to one-time-programmable (OTP)
memory. Once written, they cannot be changed.

Note: Silicon Labs strongly recommends provisioning these keys for future-proofing even if the device does not use the GBL Encryp-
tion, Secure Boot, and Secure Debug features.

7.2 Provisioning the GBL Decryption Key in Simplicity Commander

To generate the text file for the GBL Decryption Key, run the command

commander util genkey --type aes-ccm --outfile aes_key.txt

Using Windows' Cryptographic random number generator
DONE

where aes_key.txt contains the randomly generated AES-128 key.

Use the text editor to replace the randomly generated key in aes_key.txt with the desired GBL Decryption Key as below.

Key randomly generated by 'util genkey'
TOKEN_MFG_SECURE_BOOTLOADER_KEY: 81A5E21FA15286F1DF445C2CC120FA3F

To write the GBL Decryption Key to the HSE device, run the command

commander security writekey --decrypt aes_key.txt --device EFR32MG21A010F1024 --serialno 440048205

This command can be executed only once per device.

Device has serial number 000000000000000014b457fffe045a8e

==
Please look through any warnings before proceeding.
THIS IS A ONE-TIME command, any encrypting of GBL files must be done with this key.
Type 'continue' and hit enter to proceed or Ctrl-C to abort:
==
continue
DONE

Note: The GBL Decryption Key cannot be read back from the HSE OTP.

AN1222: Production Programming of Series 2 Devices
Key Provisioning

silabs.com | Building a more connected world. Rev. 0.9 | 17

To write the GBL Decryption Key to the Application Properties Strut of the GBL, run the command

commander convert bootloader-uart-xmodem.s37 --aeskey aes_key.txt --outfile bootloader-uart-xmodem.s37

Parsing file bootloader-uart-xmodem.s37...
Writing to bootloader-uart-xmodem.s37...
Overwriting file: bootloader-uart-xmodem.s37...
DONE

where bootloader-uart-xmodem.s37 is the GBL image file.

Note:
• The --aeskey option for the convert command requires Simplicity Commander v1.12.3 or above.
• The GBL Decryption Key can only be added to the GBL with Application Properties Struct v1.2 or higher (GSDK ≥ v4.1.0).
• This procedure must be implemented before signing the GBL image for Secure Boot.

To write the GBL Decryption Key to the top page of the main flash of the Series 2 device, run the command

commander flash --tokengroup znet --tokenfile aes_key.txt --device EFR32MG22C224F512 --serialno 440048205

Writing 8192 bytes starting at address 0x0007e000
Comparing range 0x0007E000 - 0x0007FFFF (8 KB)
Erasing range 0x0007E000 - 0x0007FFFF (1 sector, 8 KB)
Programming range 0x0007E000 - 0x0007FFFF (8 KB)
DONE

Note: The MCU Series 2 devices (like EFM32PG22C200F512IM40) require Simplicity Commander Version 1.12.2 or above to support
the flash --tokengroup znet command.

7.3 Provisioning the Public Sign Key in Simplicity Commander

To write the Public Sign Key to the device, run the command

commander security writekey --sign sign_pubkey.pem --device EFR32MG21A010F1024 --serialno 440048205

where sign_pubkey.pem is the Public Sign Key in Privacy Enhanced Mail (PEM) format. This command can be executed only once per
device.

Device has serial number 000000000000000014b457fffe045a8e

==
Please look through any warnings before proceeding.
THIS IS A ONE-TIME command, all code to be run on the device must be signed by this key.
Type 'continue' and hit enter to proceed or Ctrl-C to abort:
==
continue
DONE

To read the Public Sign Key on the device, run the command

commander security readkey --sign --device EFR32MG21A010F1024 --serialno 440048205

C4AF4AC69AAB9512DB50F7A26AE5B4801183D85417E729A56DA974F4E08A562C
DE6019DEA9411332DC1A743372D170B436238A34597C410EA177024DE20FC819
DONE

AN1222: Production Programming of Series 2 Devices
Key Provisioning

silabs.com | Building a more connected world. Rev. 0.9 | 18

To generate the Public Sign Key token file for the VSE device, run the command

commander util keytotoken sign_pubkey.pem --outfile sign_pubkey.txt

Writing EC tokens to sign_pubkey.txt...
DONE

To store a Public Sign Key copy on the top page of the main flash in the VSE device for ECDSA-P256-SHA256 Secure Boot, run the
command

commander flash --tokengroup znet --tokenfile sign_pubkey.txt --device EFR32MG22C224F512 --serialno 440048205

Writing 8192 bytes starting at address 0x0007e000
Comparing range 0x0007E000 - 0x0007FFFF (8 KB)
Erasing range 0x0007E000 - 0x0007FFFF (1 sector, 8 KB)
Programming range 0x0007E000 - 0x0007FFFF (8 KB)
DONE

Note: The MCU Series 2 VSE devices (like EFM32PG22C200F512IM40) require Simplicity Commander Version 1.12.2 or above to
support the flash --tokengroup znet command.

7.4 Provisioning the Public Command Key in Simplicity Commander

To write the Public Command Key to the device, run the command

commander security writekey --command command_pubkey.pem --device EFR32MG21A010F1024 --serialno 440048205

where command_pubkey.pem is the Public Command Key in PEM format. This command can be executed only once per device.

Device has serial number 000000000000000014b457fffe045a8e

==
Please look through any warnings before proceeding.
THIS IS A ONE-TIME command which permanently ties debug and tamper access to certificates signed by this key.
Type 'continue' and hit enter to proceed or Ctrl-C to abort:
==
continue
DONE

To read the Public Command Key on the device, run the command

commander security readkey --command --device EFR32MG21A010F1024 --serialno 440048205

B1BC6F6FA56640ED522B2EE0F5B3CF7E5D48F60BE8148F0DC08440F0A4E1DCA4
7C04119ED6A1BE31B7707E5F9D001A659A051003E95E1B936F05C37EA793AD63
DONE

AN1222: Production Programming of Series 2 Devices
Key Provisioning

silabs.com | Building a more connected world. Rev. 0.9 | 19

8. Enabling Secure Boot and Tamper Configuration

The Secure Boot feature verifies the integrity and authenticity of the host application before allowing it to execute. Enabling this feature
is IRREVERSIBLE, which means once enabled, Secure Boot can no longer be disabled throughout the life of the device. The Secure
Boot settings are written to the one-time-programmable (OTP) memory. They cannot be changed once programmed.

On HSE-SVH devices, the anti-tamper configuration is provisioned with Secure Boot settings. The anti-tamper configuration determines
the response from the HSE-SVH device if a tamper event occurs.

Note:
• All tamper-related information in the following sections is only valid on HSE-SVH devices.
• For more information about anti-tamper configuration, see AN1247: Anti-Tamper Protection Configuration and Use.
• Except for the EFR32xG21B devices, other HSE-SVH devices require Simplicity Commander Version 1.12.2 or above for tamper

configuration.

The user_configuration.json is a JSON file that contains the desired Secure Boot settings and anti-tamper configuration. Use the
following command on the target device (e.g., EFR32MG21B010F1024) to generate a default configuration file.

commander security genconfig --nostore -o user_configuration.json --device EFR32MG21B010F1024
--serialno 440048205

DONE

Note: The content of the JSON file is device-dependent (--device <device name>).

AN1222: Production Programming of Series 2 Devices
Enabling Secure Boot and Tamper Configuration

silabs.com | Building a more connected world. Rev. 0.9 | 20

https://www.silabs.com/documents/public/application-notes/an1247-efr32-secure-vault-tamper.pdf

The security genconfig command above generates a generic configuration file for EFR32MG21B010F1024 consisting of the proper-
ties listed in Table 8.1 Secure Boot Items (mcu_flags) for Series 2 Devices on page 22 and Table 8.2 Tamper Items for HSE-SVH
Devices on page 22. A text editor can be used to modify the default settings shown below to the desired configuration.

{
 "mcu_flags": {
 "SECURE_BOOT_ENABLE": true,
 "SECURE_BOOT_VERIFY_CERTIFICATE": false,
 "SECURE_BOOT_ANTI_ROLLBACK": true,
 "SECURE_BOOT_PAGE_LOCK_NARROW": false,
 "SECURE_BOOT_PAGE_LOCK_FULL": true
 },
 "tamper_levels": {
 "FILTER_COUNTER": 0,
 "WATCHDOG": 4,
 "SE_RAM_CRC": 4,
 "SE_HARDFAULT": 4,
 "SOFTWARE_ASSERTION": 4,
 "SE_CODE_AUTH": 4,
 "USER_CODE_AUTH": 0,
 "MAILBOX_AUTH": 0,
 "DCI_AUTH": 0,
 "OTP_READ": 4,
 "SELF_TEST": 4,
 "TRNG_MONITOR": 0,
 "PRS0": 0,
 "PRS1": 0,
 "PRS2": 0,
 "PRS3": 0,
 "PRS4": 0,
 "PRS5": 0,
 "PRS6": 0,
 "PRS7": 0,
 "DECOUPLE_BOD": 4,
 "TEMP_SENSOR": 0,
 "VGLITCH_FALLING": 0,
 "VGLITCH_RISING": 0,
 "SECURE_LOCK": 4,
 "SE_DEBUG": 0,
 "DGLITCH": 0,
 "SE_ICACHE": 4
 },
 "tamper_filter" : {
 "FILTER_PERIOD": 0,
 "FILTER_THRESHOLD": 0,
 "RESET_THRESHOLD": 0
 },
 "tamper_flags": {
 "DGLITCH_ALWAYS_ON": false
 }
}

Note: For USER_CODE_AUTH (user secure boot failed), recommends setting is 0 (Ignore) to avoid boot loops.

AN1222: Production Programming of Series 2 Devices
Enabling Secure Boot and Tamper Configuration

silabs.com | Building a more connected world. Rev. 0.9 | 21

Table 8.1. Secure Boot Items (mcu_flags) for Series 2 Devices

Name Description

SECURE_BOOT_ENABLE If set, verifies the host image on the Cortex-M33 before releasing the Cortex-M33
from reset.

SECURE_BOOT_VERIFY_CERTIFICATE If set, requires certificate-based signing of the host image.

SECURE_BOOT_ANTI_ROLLBACK If set, prevents secure upgrading to a host image with a lower version than the im-
age that is currently stored in flash.

SECURE_BOOT_PAGE_LOCK_NARROW If set, locks flash pages that have been validated by the Secure Boot process to pre-
vent re-flashing by other means than through the SE. Write/erase locks pages from
0 through the page where the Secure Boot host image signature is located, not in-
cluding the last page if the signature is not on a page boundary.

SECURE_BOOT_PAGE_LOCK_FULL If set, locks flash pages that have been validated by the Secure Boot process to pre-
vent re-flashing by other means than through the SE. Write/erase locks pages from
0 through the page where the Secure Boot host image signature is located, includ-
ing the last page if the signature is not on a page boundary.

Note: The host image is the firmware in the device's flash starting address. It is usually the Gecko Bootloader (GBL).

Table 8.2. Tamper Items for HSE-SVH Devices

Name Description

tamper_levels The tamper levels of different tamper sources.

tamper_filter The settings for tamper filters.

tamper_flags The settings for tamper flags.

The following command writes the Secure Boot settings and anti-tamper configuration in user_configuration.json file to the device.
This command can be executed only once per device.

commander security writeconfig --configfile user_configuration.json --device EFR32MG21B010F1024
--serialno 440048205

==

THIS IS A ONE-TIME configuration: Please inspect file before confirming:
user_configuration.json
Type 'continue' and hit enter to proceed or Ctrl-C to abort:
==
continue
DONE

AN1222: Production Programming of Series 2 Devices
Enabling Secure Boot and Tamper Configuration

silabs.com | Building a more connected world. Rev. 0.9 | 22

To check the device's Secure Boot settings and anti-tamper configuration, run the security readconfig command.

commander security readconfig --serialno 440048205

MCU Flags
Secure Boot : Enabled
Secure Boot Verify Certificate : Disabled
Secure Boot Anti Rollback : Enabled
Secure Boot Page Lock Narrow : Disabled
Secure Boot Page Lock Full : Enabled

Tamper Levels
FILTER_COUNTER : 1
WATCHDOG : 4
SE_RAM_CRC : 4
SE_HARDFAULT : 4
SOFTWARE_ASSERTION : 4
SE_CODE_AUTH : 4
USER_CODE_AUTH : 0
MAILBOX_AUTH : 1
DCI_AUTH : 0
OTP_READ : 4
SELF_TEST : 4
TRNG_MONITOR : 1
PRS0 : 1
PRS1 : 1
PRS2 : 2
PRS3 : 2
PRS4 : 4
PRS5 : 4
PRS6 : 7
PRS7 : 7
DECOUPLE_BOD : 4
TEMP_SENSOR : 2
VGLITCH_FALLING : 2
VGLITCH_RISING : 2
SECURE_LOCK : 4
SE_DEBUG : 0
DGLITCH : 2
SE_ICACHE : 4

Tamper Filter
Filter Period : 10
Filter Threshold : 6
Reset Threshold : 5

Tamper Flags
Digital Glitch Detector Always On: Disabled
DONE

AN1222: Production Programming of Series 2 Devices
Enabling Secure Boot and Tamper Configuration

silabs.com | Building a more connected world. Rev. 0.9 | 23

9. Enabling Debug Lock

The debug lock is an important feature to prevent attackers from using the debug interface to perform illegal operations on the device.
The following sections describe how to apply three different locks to the Series 2 debug interface.

9.1 Standard Debug Lock

The following command locks the debug interface.

commander security lock --device EFR32MG21A010F1024 --serialno 440048205

WARNING: Secure debug unlock is disabled. Only way to regain debug access is to run a device erase.
Device is now locked.
DONE

To check the debug lock status of the device, run the security status command

commander security status --device EFR32MG21A010F1024 --serialno 440048205

SE Firmware version : 1.2.14
Serial number : 000000000000000014b457fffe045a8e
Debug lock : Enabled
Device erase : Enabled
Secure debug unlock : Disabled
Tamper status : OK
Secure boot : Disabled
Boot status : 0x20 - OK
DONE

9.2 Permanent Debug Lock

The following command locks the debug interface.

commander security lock --device EFR32MG21A010F1024 --serialno 440048205

WARNING: Secure debug unlock is disabled. Only way to regain debug access is to run a device erase.
Device is now locked.
DONE

After locking the device, disable the device erase using the following command. This is an IRREVERSIBLE action and should be the
last step in production.

commander security disabledeviceerase --device EFR32MG21A010F1024 --serialno 440048205

==
THIS IS A ONE-TIME command which Permanently disables device erase.
If secure debug lock has not been set, there is no way to regain debug access to this device.
Type 'continue' and hit enter to proceed or Ctrl-C to abort:
==
continue
Disabled device erase successfully
DONE

To check the debug lock status of the device, run the security status command.

commander security status --device EFR32MG21A010F1024 --serialno 440048205

SE Firmware version : 1.2.14
Serial number : 000000000000000014b457fffe045a8e
Debug lock : Enabled
Device erase : Disabled
Secure debug unlock : Disabled
Secure boot : Disabled
Boot status : 0x20 - OK
DONE

AN1222: Production Programming of Series 2 Devices
Enabling Debug Lock

silabs.com | Building a more connected world. Rev. 0.9 | 24

9.3 Secure Debug Lock

The Secure Debug feature is enabled through the security lockconfig command. After locking the device, the security unlock
command securely unlocks the device for debugging until the next device reset without erasing flash and RAM contents. For more infor-
mation about Secure Debug Unlock, see AN1190: Series 2 Secure Debug.

The following command enables the secure debug unlock.

commander security lockconfig --secure-debug-unlock enable --device EFR32MG21A010F1024 --serialno 440048205

Secure debug unlock was enabled
DONE

For the TrustZone-unaware application, after enabling the Secure Debug feature, lock the debug interface using the following com-
mand.

commander security lock --device EFR32MG21A010F1024 --serialno 440048205

Device is now locked.
DONE

For the TrustZone-aware application, after enabling the Secure Debug feature, set the debug options (e.g., 1100) and lock the debug
interface using the following command.

commander security lock --trustzone 1100 --device EFR32MG21A010F1024 --serialno 440048205

Writing debug restriction bits:
DBGLOCK: 0
NIDLOCK: 0
SPIDLOCK: 1
SPNIDLOCK: 1
Device is now locked.
DONE

Note:
• The --trustzone option for the security lock command requires Simplicity Commander ≥ v1.13.3.
• It is strongly recommended to upgrade to SE firmware ≥ v1.2.14 (xG21 and xG22) or ≥ v2.2.1 (other Series 2 devices) so that the

debug options cannot be modified after the device is locked.
• Use commander security lock without the --trustzone #### option if the default setting of debug options (0000) is good enough

for a TrustZone-aware application.
• For more information about debug options, see the "TrustZone Debug Authentication" section in AN1190: Series 2 Secure Debug.

After locking the device, disable the device erase using the following command. This is an IRREVERSIBLE action and should be the
last step in production.

commander security disabledeviceerase --device EFR32MG21A010F1024 --serialno 440048205

==
THIS IS A ONE-TIME command which Permanently disables device erase.
If secure debug lock has not been set, there is no way to regain debug access to this device.
Type 'continue' and hit enter to proceed or Ctrl-C to abort:
==
continue
Disabled device erase successfully
DONE

Note: The debug options cannot be reset to the default value 0000 (unlock) if the device erase option is disabled.

AN1222: Production Programming of Series 2 Devices
Enabling Debug Lock

silabs.com | Building a more connected world. Rev. 0.9 | 25

https://www.silabs.com/documents/public/application-notes/an1190-efr32-secure-debug.pdf
https://www.silabs.com/documents/public/application-notes/an1190-efr32-secure-debug.pdf

For Simplicity Commander < v1.13.3, run the security status command to check the debug lock status of the device.

commander security status --device EFR32MG21A010F1024 --serialno 440048205

SE Firmware version : 1.2.14
Serial number : 000000000000000014b457fffe045a8e
Debug lock : Enabled
Device erase : Disabled
Secure debug unlock : Enabled
Tamper status : OK
Secure boot : Disabled
Boot status : 0x20 - OK
DONE

For Simplicity Commander ≥ v1.13.3, run the security status --trustzone command to check the full debug lock status of the de-
vice.

commander security status --trustzone --device EFR32MG21A010F1024 --serialno 440048205

SE Firmware version : 1.2.14
Serial number : 000000000000000014b457fffe045a8e
Debug lock : Enabled
Device erase : Disabled
Secure debug unlock : Enabled

Debug lock state: Locked

Non-secure, invasive debug lock (DBGLOCK) : Unlocked
Non-secure, non-invasive debug lock (NIDLOCK) : Unlocked
Secure, invasive debug lock (SPIDLOCK) : Locked
Secure, non-invasive debug lock (SPNIDLOCK): Locked

Non-secure, invasive debug lock state (DBGLOCK) : Unlocked
Non-secure, non-invasive debug lock state (NIDLOCK) : Unlocked
Secure, invasive debug lock state (SPIDLOCK) : Locked
Secure, non-invasive debug lock state (SPNIDLOCK): Locked

Tamper status : OK
Secure boot : Disabled
Boot status : 0x20 - OK
DONE

Note: For more information about Secure and Non-secure debug locks, see the " TrustZone Debug Authentication" section in AN1190:
Series 2 Secure Debug.

AN1222: Production Programming of Series 2 Devices
Enabling Debug Lock

silabs.com | Building a more connected world. Rev. 0.9 | 26

https://www.silabs.com/documents/public/application-notes/an1190-efr32-secure-debug.pdf
https://www.silabs.com/documents/public/application-notes/an1190-efr32-secure-debug.pdf

10. Field Upgrade the SE Firmware

10.1 Secure Boot-Disabled Device

Simplicity Commander or Gecko Bootloader can be used to upgrade the SE Firmware on a Secure Boot-disabled device. The following
table lists the scenarios of SE Firmware upgrade on the Secure Boot-disabled device.

Secure Debug Device Erase Debug Lock State SE Firmware Upgrade

Disabled Enabled Disabled Unlock Simplicity Commander or Gecko Bootloader

Disabled Enabled Enabled Standard debug lock Simplicity Commander or Gecko Bootloader

Disabled Disabled Enabled Permanent debug lock Gecko Bootloader

Enabled Disabled Enabled Secure debug lock Simplicity Commander or Gecko Bootloader

Simplicity Commander:

To flash the SE Firmware upgrade application (e.g., s2c1_se_fw_upgrade_app_1v2p9.hex), run

commander flash s2c1_se_fw_upgrade_app_1v2p9.hex --device EFR32MG21A010F1024 --serialno 440048205

Parsing file s2c1_se_fw_upgrade_app_1v2p9.hex...
Writing 49152 bytes starting at address 0x00000000
Comparing range 0x00000000 - 0x0000BFFF (48 KB)
Programming range 0x00000000 - 0x00001FFF (8 KB)
Programming range 0x00002000 - 0x00003FFF (8 KB)
Programming range 0x00004000 - 0x00005FFF (8 KB)
Programming range 0x00006000 - 0x00007FFF (8 KB)
Programming range 0x00008000 - 0x00009FFF (8 KB)
Programming range 0x0000A000 - 0x0000BFFF (8 KB)
DONE

The device should be unlocked before upgrading the SE Firmware if the standard or secure debug lock applies. The sections "Standard
Debug Lock and Unlock" and "Secure Debug Unlock and Roll Challenge" in AN1190: Series 2 Secure Debug describes how to unlock
the device.

Note: This method will OVERWRITE the bootloader and application firmware on the device. The user should then re-program the boot-
loader and application firmware after the SE Firmware upgrade.

Gecko Bootloader:

Refer to section "Generate a GBL Upgrade Image File" (Secure Engine Upgrade) in AN1218: Series 2 Secure Boot with RTSL for de-
tails.

The Gecko Bootloader can still parse the SE GBL upgrade image file and flash its content to the device even if a debug lock applies.
The application firmware must be updated through the Gecko Bootloader after the SE Firmware upgrade if the SE GBL upgrade image
file storage overwrites the existing application. Refer to section "Gecko Bootloader Operation - Secure Engine Upgrade" in UG266/
UG489 for details.

AN1222: Production Programming of Series 2 Devices
Field Upgrade the SE Firmware

silabs.com | Building a more connected world. Rev. 0.9 | 27

https://www.silabs.com/documents/public/application-notes/an1190-efr32-secure-debug.pdf
https://www.silabs.com/documents/public/application-notes/an1218-secure-boot-with-rtsl.pdf
https://www.silabs.com/documents/public/user-guides/ug266-gecko-bootloader-user-guide.pdf
https://www.silabs.com/documents/public/user-guides/ug489-gecko-bootloader-user-guide-gsdk-4.pdf

10.2 Secure Boot-Enabled Device

Simplicity Commander or Gecko Bootloader can be used to upgrade the SE Firmware on a Secure Boot-enabled device. The following
table lists the scenarios of SE Firmware upgrade on the Secure Boot-enabled device.

Secure Debug Device Erase Debug Lock State SE Firmware Upgrade

Disabled Enabled Disabled Unlock Simplicity Commander or Gecko Bootloader

Disabled Enabled Enabled Standard debug lock Simplicity Commander or Gecko Bootloader

Disabled Disabled Enabled Permanent debug lock Gecko Bootloader

Enabled Disabled Enabled Secure debug lock Gecko Bootloader

Note: Using Simplicity Commander to upgrade the SE Firmware on a Secure Debug Locked device is not recommended. It causes
Secure Boot failure since the SE Firmware upgrade erases the signed host image for Secure Boot. The user may have issues when
recovering a Secure Boot failure device with Device Erase disabled. See section "Recover Devices when Secure Boot Fails" in
AN1218: Series 2 Secure Boot with RTSL for details.

Simplicity Commander:

A signed SE Firmware should be used for the upgrade. To sign the SE Firmware upgrade application (e.g., s2c1_se_fw_upgrade_app_
1v2p9.hex) on ECDSA-P256-SHA256 Secure Boot device, run

commander convert s2c1_se_fw_upgrade_app_1v2p9.hex --secureboot --keyfile sign_key.pem
--outfile s2c1_se_fw_upgrade_app_1v2p9_signed.hex

where sign_key.pem is the Private Sign Key for Secure Boot.

Parsing file s2c1_se_fw_upgrade_app_1v2p9.hex...
Found Application Properties at 0x00000f18
Writing Application Properties signature pointer to point to 0x0000b364
Setting signature type in Application Properties: 0x00000001
Image SHA256: 251d76d8f3a479c11d55b5788e4fad9bc3b87b440f21eccccf7993b729e520e9
R = 9A391F0503DD25C60D28E7B685DEAD0739A13474567B1029C49C094F6F0BC679
S = BB29D28BFF26D8A38E34DA9CC45F6090486FC517D7D2D79C5CF257B0C94A26DA
Writing to s2c1_se_fw_upgrade_app_1v2p9_signed.hex...
DONE

To sign the SE Firmware upgrade application (e.g., s2c1_se_fw_upgrade_app_1v2p9.hex) on Certificate-based Secure Boot device,
run

commander convert s2c1_se_fw_upgrade_app_1v2p9.hex --secureboot --certificate bl_cert.bin
--keyfile bl_cert_key.pem --outfile s2c1_se_fw_upgrade_app_1v2p9_signed.hex

where bl_cert.bin is the bootloader certificate and bl_cert_key.pem is the Private Bootloader Key for Certificate-based Secure
Boot.

Parsing file s2c1_se_fw_upgrade_app_1v2p9.hex...
Writing certificate to location 0x0000b364
Private key matches public key in certificate.
Found Application Properties at 0x00000f18
Writing Application Properties signature pointer to point to 0x0000b3ec
Setting signature type in Application Properties: 0x00000001
Image SHA256: 7474265e2b99d81a69ecb195a5953cd24acd17b978794d6a24dccf2963fc7979
R = DF1D279B7B632A870EE1604637F1FD38ECBDF11F329E8C7A94D5430111279417
S = F3458E5BFC3BF524AA762F95D29F50E3B7F623589B061204CDAD1CAB435ED3E7

Verifying signed image...
Writing to s2c1_se_fw_upgrade_app_1v2p9_signed.hex...
DONE

The sections "Signing for ECDSA-P256-SHA256 Secure Boot" and "Signing for Certificate-Based Secure Boot" in AN1218: Series 2
Secure Boot with RTSL provide additional firmware signing information with HSM.

AN1222: Production Programming of Series 2 Devices
Field Upgrade the SE Firmware

silabs.com | Building a more connected world. Rev. 0.9 | 28

https://www.silabs.com/documents/public/application-notes/an1218-secure-boot-with-rtsl.pdf
https://www.silabs.com/documents/public/application-notes/an1218-secure-boot-with-rtsl.pdf
https://www.silabs.com/documents/public/application-notes/an1218-secure-boot-with-rtsl.pdf

If the SECURE_BOOT_PAGE_LOCK_NARROW or SECURE_BOOT_PAGE_LOCK_FULL in Table 8.1 Secure Boot Items (mcu_flags) for Series 2
Devices on page 22 was enabled for Secure Boot or the standard debug lock applies, run

commander security erasedevice --device EFR32MG21A010F1024 --serialno 440048205

to perform a device erase. Issue a power-on or pin reset to complete the device erase process.

Successfully erased device
DONE

To flash the signed SE Firmware upgrade application (s2c1_se_fw_upgrade_app_1v2p9_signed.hex), run

commander flash s2c1_se_fw_upgrade_app_1v2p9_signed.hex --device EFR32MG21A010F1024 --serialno 440048205

Parsing file s2c1_se_fw_upgrade_app_1v2p9_signed.hex...
Writing 49152 bytes starting at address 0x00000000
Comparing range 0x00000000 - 0x0000BFFF (48 KB)
Erasing range 0x00000000 - 0x00007FFF (4 sectors, 32 KB)
Erasing range 0x00008000 - 0x0000BFFF (2 sectors, 16 KB)
Programming range 0x00000000 - 0x00001FFF (8 KB)
Programming range 0x00002000 - 0x00003FFF (8 KB)
Programming range 0x00004000 - 0x00005FFF (8 KB)
Programming range 0x00006000 - 0x00007FFF (8 KB)
Programming range 0x00008000 - 0x00009FFF (8 KB)
Programming range 0x0000A000 - 0x0000BFFF (8 KB)
DONE

Note:
1. This method will OVERWRITE the signed bootloader and application firmware on the device. The user should then re-program the

SIGNED bootloader and application firmware after the SE Firmware upgrade.
2. If the SECURE_BOOT_ANTI_ROLLBACK in Table 8.1 Secure Boot Items (mcu_flags) for Series 2 Devices on page 22 was enabled for

Secure Boot, the device will prevent the signed SE Firmware upgrade when the host image version (e.g., Gecko Bootloader
v1.12.0) is equal to or higher than the SE Firmware version (e.g., v1.2.9). Under this situation, the Gecko Bootloader should be
used to upgrade the SE firmware. This method will OVERWRITE the bootloader version in SE flash with the SE Firmware version
after the upgrade.

Parsing file s2c1_se_fw_upgrade_app_1v2p9_signed.hex...
Writing 49152 bytes starting at address 0x00000000
Comparing range 0x00000000 - 0x0000BFFF (48 KB)
Erasing range 0x00000000 - 0x00007FFF (4 sectors, 32 KB)
Programming range 0x00000000 - 0x00001FFF (8 KB)
Programming range 0x00002000 - 0x00003FFF (8 KB)
Programming range 0x00004000 - 0x00005FFF (8 KB)
Programming range 0x00006000 - 0x00007FFF (8 KB)
Programming range 0x00008000 - 0x00009FFF (8 KB)
Programming range 0x0000A000 - 0x0000BFFF (8 KB)
JLinkError: Failed to halt CPU.
DONE

SE Firmware version : 1.2.6
Serial number : 000000000000000014b457fffe045a20
Debug lock : Disabled
Device erase : Enabled
Secure debug unlock : Disabled
Tamper status : Not OK
Secure boot : Enabled
Boot status : 0x10 - Failed: Error occured due to rollback prevention. Device has seen application with higher
version number
DONE

Gecko Bootloader:

Refer to section "Generate a GBL Upgrade Image File" (Secure Engine Upgrade) in AN1218: Series 2 Secure Boot with RTSL for de-
tails.

The Gecko Bootloader can still parse the SE GBL upgrade image file and flash its content to the device even if a debug lock applies.
The application firmware must be updated through the Gecko Bootloader after the SE Firmware upgrade if the SE GBL upgrade image
file storage overwrites the existing application. Refer to section "Gecko Bootloader Operation - Secure Engine Upgrade" in UG266/
UG489 for details.

AN1222: Production Programming of Series 2 Devices
Field Upgrade the SE Firmware

silabs.com | Building a more connected world. Rev. 0.9 | 29

https://www.silabs.com/documents/public/application-notes/an1218-secure-boot-with-rtsl.pdf
https://www.silabs.com/documents/public/user-guides/ug266-gecko-bootloader-user-guide.pdf
https://www.silabs.com/documents/public/user-guides/ug489-gecko-bootloader-user-guide-gsdk-4.pdf

11. Alternatives for Series 2 Programming

Besides the Simplicity Studio and Simplicity Commander, a mailbox interface from the Cortex-M33 or a dedicated Debug Challenge
Interface (DCI) can be used to program the Series 2 devices.

11.1 Mailbox Interface

The SE Manager can provision and program Series 2 devices through the Mailbox interface. For more information about the Mailbox
interface, see section "Command Interface - Mailbox" in AN1190: Series 2 Secure Debug.

Simplicity Studio 5 includes the SE Manager platform examples for Series 2 devices programming and provisioning as described in the
following table. The Secure Debug platform example can only run on the HSE device.

SE Manager Platform Example Usage

SE Manager Host Firmware Upgrade and Debug Lock Upgrade the host (Cortex-M33) firmware and enable debug lock.

SE Manager Key Provisioning Key provisioning, enabling secure boot and tamper configuration.

SE Manager SE Firmware Upgrade Upgrade the SE Firmware.

SE Manager Secure Debug (HSE only) Unlock the device, enable secure debug, and disable device erase.

Refer to the corresponding readme file for details about each SE Manager platform example. This file also includes the procedures to
create the project and run the example. Click the View Project Documentation link to open the readme file.

11.2 Debug Challenge Interface (DCI)

Simplicity Studio 5 includes an SE Manager platform example (using BRD4182A radio board) to use GPIO to emulate the Serial Wire
Debug (SWD) interface to provision and program Series 2 devices through the dedicated Debug Challenge Interface (DCI).

Refer to the corresponding readme file for details about this platform example. This file also includes the procedures to create the
project and run the example. Click the View Project Documentation link to open the readme file.

For more information about DCI and SWD programming, see AN1303: Programming Series 2 Devices using the Debug Challenge In-
terface (DCI) and Serial Wire Debug (SWD).

AN1222: Production Programming of Series 2 Devices
Alternatives for Series 2 Programming

silabs.com | Building a more connected world. Rev. 0.9 | 30

https://www.silabs.com/documents/public/application-notes/an1190-efr32-secure-debug.pdf
https://docs.silabs.com/simplicity-studio-5-users-guide/latest/ss-5-users-guide-getting-started/start-a-project#examples
https://docs.silabs.com/simplicity-studio-5-users-guide/latest/ss-5-users-guide-getting-started/start-a-project#examples
https://www.silabs.com/documents/public/application-notes/an1303-efr32-dci-swd-programming.pdf
https://www.silabs.com/documents/public/application-notes/an1303-efr32-dci-swd-programming.pdf

12. Related Documents

• AN136: Silicon Labs Production Programming Options
• AN958: Debugging and Programming Interfaces for Custom Designs
• UG103.6: Bootloader Fundamentals
• UG162: Simplicity Commander Reference Guide
• UG266: Silicon Labs Gecko Bootloader User’s Guide for GSDK 3.2 and Lower
• UG489: Silicon Labs Gecko Bootloader User's Guide for GSDK 4.0 and Higher
• AN1190: Series 2 Secure Debug
• AN1218: Series 2 Secure Boot with RTSL
• AN1247: Anti-Tamper Protection Configuration and Use
• AN1303: Programming Series 2 Devices using the Debug Challenge Interface (DCI) and Serial Wire Debug (SWD)

AN1222: Production Programming of Series 2 Devices
Related Documents

silabs.com | Building a more connected world. Rev. 0.9 | 31

https://www.silabs.com/documents/public/application-notes/AN136-production-programming-options.pdf
https://www.silabs.com/documents/public/application-notes/an958-mcu-stk-wstk-guide.pdf
https://www.silabs.com/documents/public/user-guides/ug103-06-fundamentals-bootloading.pdf
https://www.silabs.com/documents/public/user-guides/ug162-simplicity-commander-reference-guide.pdf
https://www.silabs.com/documents/public/user-guides/ug266-gecko-bootloader-user-guide.pdf
https://www.silabs.com/documents/public/user-guides/ug489-gecko-bootloader-user-guide-gsdk-4.pdf
https://www.silabs.com/documents/public/application-notes/an1190-efr32-secure-debug.pdf
https://www.silabs.com/documents/public/application-notes/an1218-secure-boot-with-rtsl.pdf
https://www.silabs.com/documents/public/application-notes/an1247-efr32-secure-vault-tamper.pdf
https://www.silabs.com/documents/public/application-notes/an1303-efr32-dci-swd-programming.pdf

13. Revision History

Revision 0.9

February 2023

• Updated figures and content (replace optional Enable Secure Debug with strongly recommended Enable Debug Lock) in 2.1 Pro-
duction Programming for Secure Boot-Disabled Device and 2.2 Production Programming for Secure Boot-Enabled Device.

• Updated 3. Using Simplicity Commander to v1.14.2.
• Fixed a typo (.sec to .seu) in 4.3 How to Find the Latest SE Firmware.
• Updated 5. Bootloader Firmware Programming for TrustZone-aware bootloader.
• Updated 6. Application Firmware Programming for TrustZone-aware application.
• Updated 7.2 Provisioning the GBL Decryption Key in Simplicity Commander for the GBL Decryption Key in the Application
Properties Strut of the GBL.

• Updated 8. Enabling Secure Boot and Tamper Configuration for Simplicity Commander v1.14.2.
• Added 9. Enabling Debug Lock (change from Enabling Secure Debug), 9.1 Standard Debug Lock, and 9.2 Permanent Debug Lock.
• Updated 9.3 Secure Debug Lock for TrustZone-unaware and TrustZone-aware applications.

Revision 0.8

June 2022

• Updated table and note in 1. Series 2 Device Security Features.
• Replaced Device Compatibility with SE Firmware in 1. Series 2 Device Security Features.
• Removed Table 4.1 in 4.2 How to Check the SE Firmware Version on a Device (this table is moved to UG103.05).

Revision 0.7

March 2022

• Added digit 4 to Note 3 in 1. Series 2 Device Security Features.
• Updated Device Compatibility and moved it under 1. Series 2 Device Security Features.

Revision 0.6

January 2022
• Added CPMS information to 2. Overview.
• Updated Shipped SE Firmware Version in Table 4.1.
• Updated 4.3 How to Find the Latest SE Firmware with Windows folder for GSDK v4.0 and higher.
• Added note to 7.2 Provisioning the GBL Decryption Key in Simplicity Commander for MCU Series 2 VSE devices.
• Added note to 7.3 Provisioning the Public Sign Key in Simplicity Commander for MCU Series 2 VSE devices.
• Updated note for Simplicity Commander support of tamper configuration on HSE-SVH devices in 8. Enabling Secure Boot and Tam-

per Configuration
• Updated Table 8.1 Secure Boot Items (mcu_flags) for Series 2 Devices on page 22.
• Updated 10. Field Upgrade the SE Firmware.
• Added UG489 to the table in 1.2 Key Reference and 12. Related Documents.

AN1222: Production Programming of Series 2 Devices
Revision History

silabs.com | Building a more connected world. Rev. 0.9 | 32

Revision 0.5

September 2021

• Formatting updates for source compatibility.
• Added revised terminology to 1. Series 2 Device Security Features and use this terminology throughout the document.
• Updated Device Compatibility.
• Removed terminology in 2. Overview.
• Updated Simplicity Commander version to 1.11.2 in 3. Using Simplicity Commander.
• Added security notification figure to 4.1 Overview.
• Updated SE Firmware version in Table 4.1.
• Updated the figures in 4.2.1 Check the SE Firmware Version Using Simplicity Studio 5.
• Updated 4.3 How to Find the Latest SE Firmware.
• Updated 7.2 Provisioning the GBL Decryption Key in Simplicity Commander.
• Updated 7.3 Provisioning the Public Sign Key in Simplicity Commander
• Renamed Enabling Secure Boot to 8. Enabling Secure Boot and Tamper Configuration, updated the content.
• Updated 10. Field Upgrade the SE Firmware.
• Added 11. Alternatives for Series 2 Programming.
• Updated 12. Related Documents.

Revision 0.4

October 2020
• Removed a duplicate paragraph from 1.1 User Assistance.

Revision 0.3

September 2020
• Added EFR32BG21B and EFR32MG21B to Device Compatibility.
• Added SE conventions to 2. Overview, updated the figures and content.
• Updated Simplicity Commander version to 1.9.2 in 3. Using Simplicity Commander.
• Added EFRxG21B to 4.2 How to Check the SE Firmware Version on a Device.
• Updated the figures in 4.2.1 Check the SE Firmware Version Using Simplicity Studio 5 to Simplicity Studio v5.
• Renamed Field Upgrade to Field Upgrade the Secure Element Firmware on a Secure Boot-Enabled Device, updated the content

and moved up two levels.
• Removed Over-The-Air (OTA) section.
• Added 5. Bootloader Firmware Programming.
• Updated 6. Application Firmware Programming.
• Updated Enabling Secure Boot for SE with Secure Vault devices.
• Added 7.2 Provisioning the GBL Decryption Key in Simplicity Commander.
• Added AN1247 and AN1271 to 12. Related Documents.

Revision 0.2

March 2020
• Added EFR32xG22 devices to Device Compatibility section.
• Added Simplicity Commander section.
• Updated figures in Check SE Firmware Version Using Simplicity Studio
• Modified Check SE Firmware Version Using Simplicity Studio section.
• Added Note to Check Version section.
• Added Field Upgrade to Serial Wire Debug (SWD) section.
• Added disable device erase procedure to Secure Debug Enabling section.
• Added UG162 to Related Documents section.
• Changed all Simplicity Commander outputs to text, easy to update in the future.

AN1222: Production Programming of Series 2 Devices
Revision History

silabs.com | Building a more connected world. Rev. 0.9 | 33

Revision 0.1

December 2019
• Initial Revision.

AN1222: Production Programming of Series 2 Devices
Revision History

silabs.com | Building a more connected world. Rev. 0.9 | 34

Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
USA

www.silabs.com

IoT Portfolio
www.silabs.com/IoT

SW/HW
www.silabs.com/simplicity

Quality
www.silabs.com/quality

Support & Community
www.silabs.com/community

Simplicity Studio
One-click access to MCU and wireless
tools, documentation, software,
source code libraries & more. Available
for Windows, Mac and Linux!

Disclaimer
Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software imple-
menters using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each
specific device, and “Typical” parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon
Labs reserves the right to make changes without further notice to the product information, specifications, and descriptions herein, and does not give warranties as to the
accuracy or completeness of the included information. Without prior notification, Silicon Labs may update product firmware during the manufacturing process for security or
reliability reasons. Such changes will not alter the specifications or the performance of the product. Silicon Labs shall have no liability for the consequences of use of the infor-
mation supplied in this document. This document does not imply or expressly grant any license to design or fabricate any integrated circuits. The products are not designed or
authorized to be used within any FDA Class III devices, applications for which FDA premarket approval is required or Life Support Systems without the specific written consent
of Silicon Labs. A “Life Support System” is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in
significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used
in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. Silicon Labs disclaims
all express and implied warranties and shall not be responsible or liable for any injuries or damages related to use of a Silicon Labs product in such unauthorized applications.
Note: This content may contain offensive terminology that is now obsolete. Silicon Labs is replacing these terms with inclusive language wherever possible. For more
information, visit www.silabs.com/about-us/inclusive-lexicon-project

Trademark Information
Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy
Micro logo and combinations thereof, “the world’s most energy friendly microcontrollers”, Redpine Signals®, WiSeConnect , n-Link, ThreadArch®, EZLink®, EZRadio®, EZRadioPRO®,
Gecko®, Gecko OS, Gecko OS Studio, Precision32®, Simplicity Studio®, Telegesis, the Telegesis Logo®, USBXpress® , Zentri, the Zentri logo and Zentri DMS, Z-Wave®, and others
are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered
trademark of ARM Limited. Wi-Fi is a registered trademark of the Wi-Fi Alliance. All other products or brand names mentioned herein are trademarks of their respective holders.

	1. Series 2 Device Security Features
	1.1 User Assistance
	1.2 Key Reference
	1.3 SE Firmware

	2. Overview
	2.1 Production Programming for Secure Boot-Disabled Device
	2.2 Production Programming for Secure Boot-Enabled Device

	3. Using Simplicity Commander
	4. SE Firmware Programming
	4.1 Overview
	4.2 How to Check the SE Firmware Version on a Device
	4.2.1 Check the SE Firmware Version Using Simplicity Studio 5
	4.2.2 Check the SE Firmware Version Using Simplicity Commander

	4.3 How to Find the Latest SE Firmware
	4.4 Serial Wire Debug (SWD)
	4.4.1 Connect Hardware
	4.4.2 Check Version
	4.4.3 Flash SE Firmware
	4.4.4 Run
	4.4.5 Re-Check Version

	5. Bootloader Firmware Programming
	6. Application Firmware Programming
	7. Key Provisioning
	7.1 Overview
	7.2 Provisioning the GBL Decryption Key in Simplicity Commander
	7.3 Provisioning the Public Sign Key in Simplicity Commander
	7.4 Provisioning the Public Command Key in Simplicity Commander

	8. Enabling Secure Boot and Tamper Configuration
	9. Enabling Debug Lock
	9.1 Standard Debug Lock
	9.2 Permanent Debug Lock
	9.3 Secure Debug Lock

	10. Field Upgrade the SE Firmware
	10.1 Secure Boot-Disabled Device
	10.2 Secure Boot-Enabled Device

	11. Alternatives for Series 2 Programming
	11.1 Mailbox Interface
	11.2 Debug Challenge Interface (DCI)

	12. Related Documents
	13. Revision History

