

AN1246: EFR32BG SoC *Bluetooth*® Smart Device Power Consumption Measurements

This version of AN1246 has been deprecated with the release of Simplicity SDK Suite 2024.12.2. For the latest version, see docs.silabs.com.

Silicon Labs offers a complete portfolio of fully-certified modules and SoC solutions for Bluetooth Smart connectivity that are known collectively as the EFR32BG family. This application note describes how to measure the power consumption of EFR32BG devices using the setup and procedures recommended in AN969: Measuring Power Consumption in Wireless Gecko Devices.

KEY POINTS

- · An EFR32BG kit is required.
- Test examples are available in the Bluetooth SDK.
- Results from that test example are provided for both Series 1 and Series 2 devices

1. Setup

- 1. Obtain a mainboard and radio board.
- 2. Build and install a test application, as described below.
- 3. Configure the mainboard as described in AN969: Measuring Power Consumption in Wireless Gecko Devices.

To observe power consumption, the device must be programmed with a suitable test application. This application note addresses the power measurement of EFR32 devices during Bluetooth legacy advertising and Bluetooth extended advertising with Constant Tone Extension (CTE).

For legacy advertising, a beaconing application is an excellent reference for power consumption evaluation because it showcases the real-world transmit (TX) and sleep currents of the device by default. With minor modifications to the application code, the receive (RX) current can be verified as well. Similarly, for a CTE packet transmission, a CTE transmitter AoA asset tag application using extended advertising is an excellent reference for power consumption evaluation. For both cases, the application note demonstrates and analyzes the power transients of the device at 0 dBm TX power.

If you have not already done so, install Simplicity Studio and the Gecko SDK. The Gecko SDK includes several software examples to create Bluetooth application projects.

1.1 Legacy Advertising

Select the **Bluetooth SOC** – **iBeacon** example. This provides an iBeacon device implementation that sends non-connectible advertisements in iBeacon format. The iBeacon Service gives Bluetooth accessories a simple and convenient way to send iBeacons to iOS devices. This example demonstrates the power consumption at 0 dBm TX power. Follow the directions in the quick-start guide applicable to your version of the SDK to build and flash the example project to the device (*QSG139*: *Bluetooth*® *SDK v2.x Quick Start Guide* or *QSG169*: *Bluetooth*® *SDK v3.x Quick-Start Guide*).

The SoC – iBeacon application sets the device to broadcast in a non-connectable mode, which means that only TX and sleep events are observed in the current profile. To observe RX events, edit the application script to make the device broadcast in a connectable mode as follows:

If you use Simplicity Studio 4/Bluetooth SDK 2.x:

- 1. Open the **main.c** file in the SoC iBeacon project by double-clicking it.
- 2. Edit the parameters for gecko_cmd_le_gap_start_advertising in the bcnSetupAdvBeaconing function.

```
gecko_cmd_le_gap_start_advertising(0, le_gap_user_data, le_gap_undirected_connectable)
```

3. Rebuild the project and program the test device with the new image.

If you use Simplicity Studio 5/Bluetooth SDK 3.x:

- Open the sl_bluetooth_config.h file inside the config folder of the SoC iBeacon project.
- 2. Change the maximum transmit power to 0 dBm.

```
#define SL_BT_CONFIG_MAX_TX_POWER (0)
```

- 3. Open the app.c file in the SoC iBeacon project by double-clicking it.
- 4. Edit the parameters for $sl_bt_advertiser_start$ in the $bcn_setup_adv_beaconing$ function.

5. Build the project and program the test device with the new image.

1.2 Extended Advertising with Constant Tone Extension (CTE)

Select the **Bluetooth SoC – AoA Asset Tag** example. This provides a CTE transmitter device implementation that sends CTE packets using extended advertisements (i.e Silabs enhanced mode). The Constant Tone Extension Service offers a simple and convenient way to send CTE packets using extended advertising. Follow the directions in *QSG169: Bluetooth® SDK v3.x Quick-Start Guide* to build and flash the example project to the device.

The Bluetooth SoC – AoA Asset Tag application enables the debug messages by default. Disable this feature to avoid the power consumption overhead of the UART. In addition, the example has two advertising sets: one connectable legacy advertising and another non-connectable extended advertising with CTE. For this project, disable the legacy advertising.

Make the following changes to the SoC – AoA Asset Tag project:

- 1. Open the sl_bluetooth_config.h file inside the config folder of the SoC iBeacon project.
- 2. Change the maximum transmit power to 0 dBm.

```
#define SL_BT_CONFIG_MAX_TX_POWER (0)
```

- 3. Disable UART debugging:
 - · Open the project configurator (*.slcp) file in the project.
 - Select the SOFTWARE COMPONENTS tab.
 - Uninstall the Application > Utility > Log component.
 - Uninstall Services > IO Stream > IO Stream: RETARGET STDIO.
 - Uninstall the Services > IO Stream > IO Stream: USART component with the default instance name: vcom.
 - Go to Platform > Board Control and disable Virtual COM UART.
 - Open the app.c file and comment out #include app_log.h header file and all the calls to app_log_info() API.
- 4. Comment out the following code part in app.c which starts the legacy advertising.

5. Build the project and program the test device with the new image.

Note that the CTE feature is only supported by specific series 2 devices. The measurement results in this documentation are from an EFR32BG22 device.

2. Test Example

This section:

- Gives a brief overview of current profiles (for example, magnitude vs. time) commonly observed in Bluetooth Smart devices for reference.
- Provides an example showing the capture of power measurements for an EFR32BG radio board and their interpretation

2.1 Reference Current Profiles

The following figures show the form and breakdown of a typical current consumption profile for a Bluetooth Smart device while in an advertising or connection state.

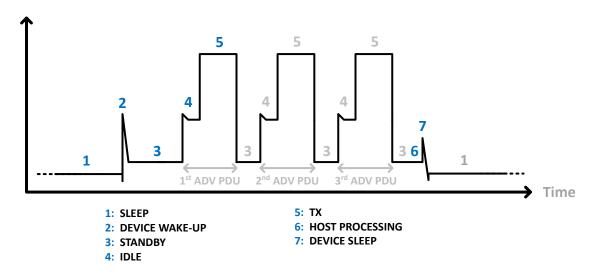


Figure 2.1. General Current Profile for a Non-Connectable Advertising Event

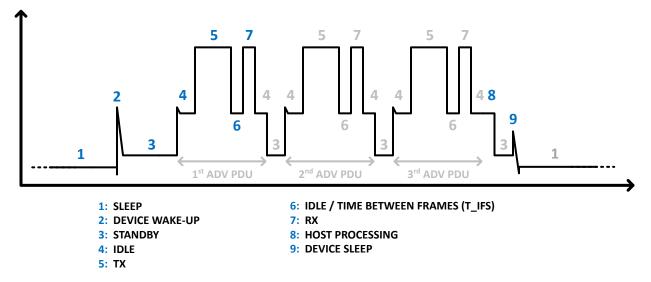


Figure 2.2. General Current Profile for a Connectable Advertising Event

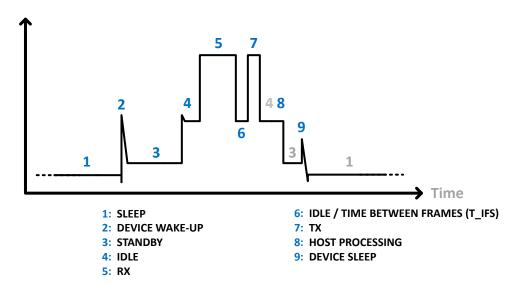


Figure 2.3. General Current Profile for a Connection Event

2.2 Measuring Power Consumption

Once you have gone through the setup and procedure steps outlined in *AN969: Measuring Power Consumption in Wireless Gecko Devices*, measuring the power consumption of an EFR32BG device is straightforward. This section provides an example of how to turn the captured current consumption profile to an actual set of power measurements giving useful information.

After running a test, use the scope cursors in the N6705B to measure every event in the current profile individually. The cursors can be enabled or disabled by pressing the Scope View button under "Measure" in the front panel of the DC analyzer. To scroll the cursors over the waveform, rotate the marker 1 and marker 2 knobs under "Waveform Display." The following figure shows a screenshot of a current profile with the scope cursors enabled. This current profile is a zoomed-in view of a large periodic burst corresponding to the current consumed by the SoC while broadcasting a beacon every 100 ms.

Note: Measurements are enabled by default when the scope cursors are active.

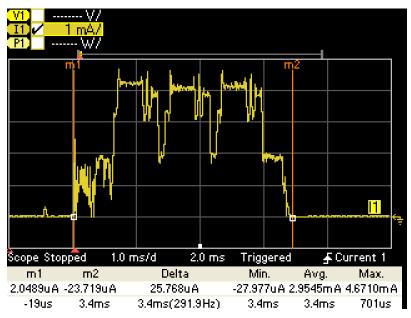


Figure 2.4. Current Profile Segment Measured with Scope Cursors - Device: Series 2 EFR32BG22

2.2.1 Measuring Power Consumption of SoC - iBeacon on Series 1 Devices

Per the application's default settings, the Series 1 EFR32BG1 device broadcasts a beacon with a frame of 46 octets every 100 ms, at a 0 dBm TX output power level, running from the DCDC converter. The figure below shows the active portion only of the captured current profile for a beacon broadcast broken into individual events similarly to the reference profiles in 2.1 Reference Current Profiles. The table that follows summarizes the measurements recorded using the scope cursors. Notice that the numbering of events in the upper part of the figure corresponds to the columns in the table.

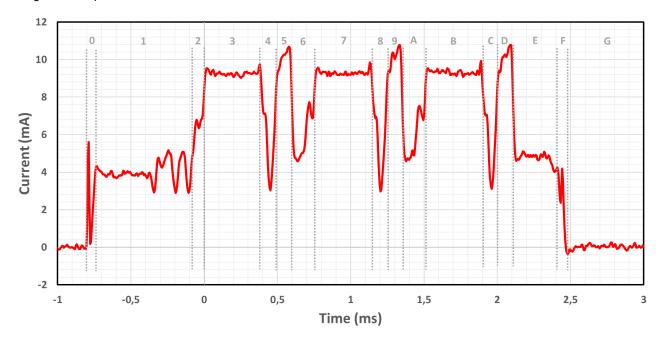


Figure 2.5. Current Profile for Series 1 EFR32BG1 SoC Running SoC-iBeacon Example Application (Active Only)

Table 2.1. Power and Energy Measurements for the Current Profile in the Figure Above

	UNIT	DEV WKUP	STANDBY	IDLE	TX_1	T_IFS	RX_1	STANDBY/IDLE	TX_2	T_IFS	RX_2	STANDBY/IDLE	TX_3	T_IFS	RX_3	POST PROCESS	DEV SLEEP	SLEEP
		0	1	2	3	4	5	6	7	8	9	A	В	С	D	E	F	G
Average Current	mA	2.1	4.0	6.1	9.2	5.8	9.9	6.2	9.3	5.9	10.0	6.1	9.3	5.8	9.9	5.0	2.7	0.0025
Time	μs	64	650	86	397	97	101	163	391	106	97	164	387	100	105	304	63	96725
Supply Voltage	V	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
Power	mW	6.9	13.2	20.1	30.5	19.1	32.7	20.5	30.6	19.5	33.0	20.1	30.7	19.1	32.7	16.5	8.9	0.008
Energy	μJ	0.4	8.6	1.7	12.1	1.9	3.3	3.3	12.0	2.1	3.2	3.3	11.9	1.9	3.4	5.0	0.6	0.8

The previous table shows the following:

- The captured current profile is divided into events numbered (in hex) 0 through G.
- The first and second rows show the measured average current for each event (in mA) and its duration (in μs).
- The third row shows the nominal supply level for the test device (3.3 V).
- · The fourth row shows the average power for each event, calculated by multiplying the first and third rows.
- The fifth row shows the energy consumed by the device in each event, calculated by multiplying the fourth and second rows (and dividing by 1000 for units to match).

The following table summarizes the measurements in the table above, which leads to some useful observations.

- The TX, RX, and sleep average currents for the Series 1 EFR32BG1 SoC are 9.27 mA, 9.93 mA, and 2.5 μ A respectively.
- In terms of energy, the Series 1 EFR32BG1 SoC consumes 75.5 μJ while broadcasting a beacon in connectable mode every 100 ms, out of which 74.7 μJ are used while the device is active and only 0.8 μJ while the device is sleeping.
- The previous observation implies that increasing the broadcast interval and, hence, keeping the device in sleep mode longer helps minimize energy consumption, as should be expected.
- Depending on the broadcasting interval, there is a point at which the sleep mode energy consumption will equal or exceed the energy consumed when the device is active, which can be verified independently.

Table 2.2. Summary of Power Measurements for Series 1 EFR32BG1 SoC

		Time (µs)	Average Current (mA)	Energy (µJ)
Full Event	0-G	100000	0.23	75.5
Active Only	0-F	3275	6.91	74.7
Sleep	G	96725	0.0025	0.8
TX	3, 7, B	1175	9.27	35.9
RX	5, 9, D	303	9.93	9.9

2.2.2 Measuring Power Consumption of SoC - iBeacon on Series 2 Devices

Per the application's default settings, the Series 2 EFR32BG22 device broadcasts a beacon with a frame of 46 octets every 100 ms, at a 0 dBm TX output power level, running from the DCDC converter. The figure below shows the active portion only of the captured current profile for a beacon broadcast broken into individual events similarly to the reference profiles in 2.1 Reference Current Profiles. The table that follows summarizes the measurements recorded using the scope cursors. Notice that the numbering of events in the upper part of the figure corresponds to the columns in the table.

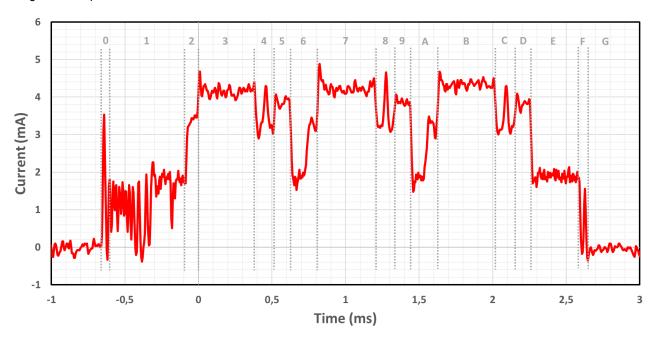


Figure 2.6. Current Profile for Series 2 EFR32BG22 SoC Running SoC-iBeacon Example Application (Active Only)

Table 2.3. Power and Energy Measurements for the Current Profile in the Figure Above (EM2 Debug Disabled)

	UNIT	DEV WKUP	STANDBY	IDLE	TX_1	T_IFS	RX_1	STANDBY/IDLE	TX_2	T_IFS	RX_2	STANDBY/IDLE	TX_3	T_IFS	RX_3	POST PROCESS	DEV SLEEP	SLEEP
		0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F	G
Average Current	mA	1.3	1.3	2.8	4.3	3.5	3.8	2.6	4.2	3.5	3.9	2.6	4.2	3.5	3.8	1.9	0.5	0.0014
Time	μs	41	542	104	382	134	109	185	388	131	109	190	385	134	116	337	57	96656
Supply Voltage	V	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Power	mW	4.0	3.8	8.5	13.0	10.4	11.5	7.8	12.7	10.4	11.6	7.7	12.5	10.4	11.4	5.6	1.5	0.004
Energy	μJ	0.2	2.0	0.9	5.0	1.4	1.3	1.4	4.9	1.4	1.3	1.5	4.8	1.4	1.3	1.9	0.1	0.4

The previous table shows the following:

- The captured current profile is divided into events numbered (in hex) 0 through G.
- The first and second rows show the measured average current for each event (in mA) and its duration (in μs).
- The third row shows the nominal supply level for the test device (3.0 V).
- · The fourth row shows the average power for each event, calculated by multiplying the first and third rows.
- The fifth row shows the energy consumed by the device in each event, calculated by multiplying the fourth and second rows (and dividing by 1000 for units to match).

The following table summarizes the measurements in the previous table, which leads to some useful observations.

- The TX, RX, and sleep average currents for the Series 2 EFR32BG22 SoC are 4.24mA, 3.83 mA, and 1.4 µA respectively.
- In terms of energy, the Series 2 EFR32BG22 SoC consumes 31.0 µJ while broadcasting a beacon in connectable mode every 100 ms, out of which 30.6 µJ is used while the device is active and only 0.4 µJ while the device is sleeping.
- The previous observation implies that increasing the broadcast interval and, hence, keeping the device in sleep mode longer helps minimize energy consumption, as should be expected.
- Depending on the broadcasting interval, there is a point at which the sleep mode energy consumption will equal or exceed the energy consumed when the device is active, which can be verified independently.

Table 2.4. Summary of Power Measurements for Series 2 EFR32BG22 SoC

		Time (µs)	Average Current (mA)	Energy (µJ)
Full Event	0-G	100000	0.10	31.0
Active Only	0-F	3344	3.05	30.6
Sleep	G	96656	0.0014	0.4
TX	3, 7, B	1155	4.24	14.7
RX	5, 9, D	334	3.83	3.8

2.2.3 Measuring Power Consumption of SoC - AoA Asset Tag on Series 2 Devices

Per the application's settings, the Series 2 EFR32BG22 device broadcasts CTE packets of length 160 µs every 20 ms, at a 0 dBm TX output power level, running from the DCDC converter. The figure below shows the active portion only of the captured current profile for an extended advertising with CTE packets broken into individual events similar to the reference profiles in 2.1 Reference Current Profiles. The first three transmission events, TX_1, TX_2, and TX_3, represent the power consumption for the advertising packets on the primary channels. These packets contain the information about the TX_4 event, i.e which secondary channel and the offset to the start time the auxiliary data with CTE will be transmitted. For the sake of convenience, the TX_4 event is divided into two sections (section 9 and A) that represent the power consumption during the transmission of the user data and CTE packet. The table that follows the graph summarizes the measurements recorded using the scope cursors. Notice that the numbering of events in the upper part of the figure corresponds to the columns in the table.

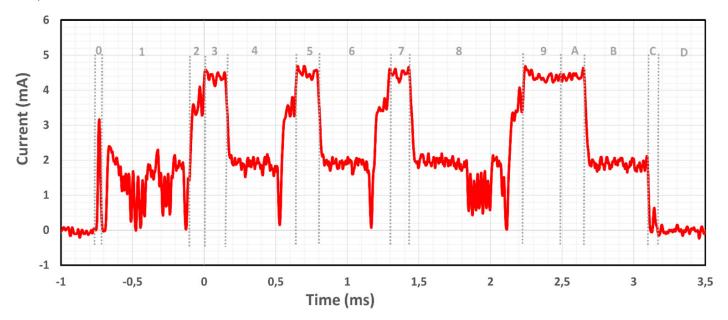


Figure 2.7. Current Profile for Series 2 EFR32BG2 SoC Running SoC AoA Asset Tag Example Application (Active Only)

Table 2.5. Power and Energy Measurements for the Current Profile in the Figure Above (EM2 Debug Disabled)

	UNIT	DEV WKUP	STANDBY	IDLE	1X_1	STANDBY/IDLE	TX_2	STANDBY/IDLE	TX_3	STANDBY/IDLE	TX_4	TX_4 (CTE)	POST PROCESS	DEV SLEEP	SLEEP
		0	1	2	3	4	5	6	7	8	9	Α	В	С	D
Average Current	mA	1.32	1.33	3.28	4.36	2.23	4.5	2.28	4.47	1.93	4.39	4.39	2.0	0.5	0.0014
Time	μs	39	607	100	153	495	142	507	139	801	251	160	442	68	16096
Supply Voltage	V	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Power	mW	3.96	3.99	9.84	13.08	6.69	13.5	6.84	13.41	5.79	13.17	13.17	6.0	1.5	0.0042
Energy	μJ	0.15	2.42	0.98	2.0	3.31	1.92	3.47	1.86	4.64	3.31	2.11	2.65	0.1	0.07

The previous table shows the following:

- The captured current profile is divided into events numbered (in hex) 0 through D.
- The first and second rows show the measured average current for each event (in mA) and its duration (in µs).
- The third row shows the nominal supply level for the test device (3.0 V).
- The fourth row shows the average power for each event, calculated by multiplying the first and third rows.

• The fifth row shows the energy consumed by the device in each event, calculated by multiplying the fourth and second rows (and dividing by 1000 for units to match).

The following table summarizes the measurements in the previous table, which leads to some useful observations.

- In terms of energy, the Series 2 EFR32BG22 SoC consumes ~29 μJ while transmitting CTE using Silicon Labs enhanced mode (i.e using extended advertising) every 20 ms, out of which ~28.9 μJ is used while the device is active and only 0.07 μJ while the device is sleeping.
- This observation implies that increasing the CTE advertising interval and, therefore, keeping the device in sleep mode longer helps minimize energy consumption, as is expected.
- Similarly, decreasing the CTE length from the default value 160 µs, to a smaller value ≥16 µs also helps reduce the energy consumption of the device further.

Table 2.6. Summary of Power Measurements of a CTE Transmitter Series 2 EFR32BG22 SoC

		Time (µs)	Average Current (mA)	Energy (µJ)
Full Event	0-D	20000	0.48	29.0
Active Only	0-C	3904	2.47	28.92
Sleep	D	16096	0.0013	0.07
тх	3, 5, 7, 9, A	865	4.41	11.19

2.2.4 Sleep Mode Current Profiles When Using a DCDC Converter

Keep in mind that the SoC-iBeacon application runs the EFR32BG device from the DCDC converter in Low Power (LP) mode (see *AN0948: Power Configurations and DC-DC*). As result, a current spike is observed every time the output voltage of the DCDC converter is refreshed while the device is sleeping.

Figure 2.8. Current Profile for Series 1 EFR32BG1 SoC Running SoC-iBeacon Example Application (Sleep)

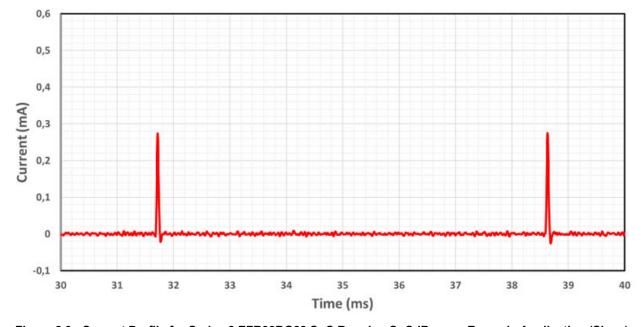


Figure 2.9. Current Profile for Series 2 EFR32BG22 SoC Running SoC-iBeacon Example Application (Sleep)

For beacons with a short broadcast interval (such as 100 ms or less), the measured average sleep current may differ from the datasheet sleep current for the device depending on (A) the number of current spikes observed during sleep and (B) the location of the spikes relative to the time interval used for sleep current averaging. For beacons with a long broadcast interval, however, the measured average sleep current and the datasheet sleep current for the device should be the same.

3. Document Revision History

Revision 0.4

June, 2022

· Added use case for extended advertisement with CTE

Revision 0.3

December, 2020

- Section 2.2 Figure 2.4 update (BG22)
- Section 2.2.1 Figure 2.5 update (BG1)
- Section 2.2.1 From Table 2.1 to Table 2.2 values update, also between the tables (BG1)
- Section 2.2.2 Figure 2.6 update (BG22)
- Section 2.2.2 From Table 2.3 to Table 2.4 values update, also between the tables (BG22)

Revision 0.2

September, 2020

Updated Section 1 for SDK v3.x quick-start guide and API.

Revision 0.1

March, 2020

Initial release.

IoT Portfolio www.silabs.com/products

Quality www.silabs.com/quality

Support & Community www.silabs.com/community

Disclaimer

Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes without further notice to the product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Without prior notification, Silicon Labs may update product firmware during the manufacturing process for security or reliability reasons. Such changes will not alter the specifications or the performance of the product. Silicon Labs shall have no liability for the consequences of use of the information supplied in this document. This document does not imply or expressly grant any license to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any FDA Class III devices, applications for which FDA premarket approval is required or Life Support Systems without the specific written consent of Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. Silicon Labs disclaims all express and implied warranties and shall not be responsible or liable for any injuries or damages related to use of a Silicon Labs p

Trademark Information

Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labs®, Silabs® and the Silicon Labs logo®, Bluegiga Logo®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world's most energy friendly microcontrollers", Redpine Signals®, WiSeConnect, n-Link, EZLink®, EZRadio®, EZRadioPRO®, Gecko®, Gecko OS, Gecko OS, Studio, Precision32®, Simplicity Studio®, Telegesis, the Telegesis Logo®, USBXpress®, Zentri, the Zentri logo and Zentri DMS, Z-Wave®, and others are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. Wi-Fi is a registered trademark of the Wi-Fi Alliance. All other products or brand names mentioned herein are trademarks of their respective holders.

Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA