SILICON LABS

AN1255: Transitioning from the v2.x to the
v3.x Bluetooth® SDK

Bluetooth Software Development Kit (SDK) v3.0 contains a number of changes com-

pared to Bluetooth SDK v2.x. Many of these changes are due to an underlying framework KEY POINTS
redesign that results in an improved developer experience within the new Simplicity Stu-
dio 5. Projects are now built on a component architecture. Simplicity Studio 5 includes Reviews differences in:

project configuration tools that provide an enhanced level of software component discov-

L , - . » Software architecture
erability, configurability, and dependency management. These include a Component Ed-

itor, and a redesigned GATT configurator. * The API
e GATT configurator
In Bluetooth SDK v3.0, sample applications have a new software architecture, the Blue- o Stack configuration

tooth API is updated, and the GATT configurator is completely redesigned. Additionally
the stack can now be configured in separate header files, and platform components can
be added to the project with the Component Editor instead of copying and including files
manually. While these changes are a result of overall improvements in the SDK and in
Simplicity Studio 5 it also means that migrating projects from Bluetooth SDK v2.x to v3.0
is not trivial. This document explains the steps needed to move your Bluetooth v2.x project
into the v3.0 environment.

¢ Adding platform components

Welcome to Simplicity Studio

Everything you need to develop, research, and configure devices for loT applications.

Get Started

Select a connected device or search for a product by name to see available documentation, example projects, and demos.

Connected Devices All Products

onnecte ces
"I" EFR32MG12 2400/915 MHz 19 dBm RB, WSTK Mainboard (ID: 000440085390) -

Recent Projects

Recent Projects 0

sleepy-demo-ftd h pen

~ Learn and Support
¢ Tips and Tricks ¢ Technical Support
Useful tips and tricks to help you_. placeholder content ar Get technical support from Silicon Lab ar

M Video Tour 22, Silicon Labs Community
atcl oin
Discover the basics of developing for loT devices and other types of embeded systems Join the Silicon Lab community to learn, get help, and grow your skills

silabs.com | Building a more connected world.

AN1255: Transitioning from the v2.x to the v3.x Bluetooth® SDK
Introduction

1 Introduction

Silicon Labs has introduced both a complete update to its Simplicity Studio tool suite, as well as a new, component-based Gecko Platform
architecture.

Version 5 of the Simplicity Studio tool suite represents a ground-up redesign of the underlying architecture. The Simplicity Studio 5 (SSv5)
framework includes a new user interface engine that enables attractive and responsive web-like user interfaces. The integrated develop-
ment environment (IDE) was also upgraded with the latest versions of Eclipse and the C/C++ Development Tooling (CDT). This added
robustness, performance improvements, and enables developers to customize their experience using the latest plug-ins from the Eclipse
Marketplace.

Gecko Software Development Kit suite version 3.0.0.0 (GSDK v3.0) is released with SSv5. It introduces a new underlying Gecko Platform
architecture based on components. Both the Bluetooth and the Flex v3.x SDKs are based on this new component-based architecture.
With SSv5 and GSDK v3.0, Bluetooth developers will benefit from the following component-based project configuration features:

e Search and filter to find and discover software components that work with the target device

¢ Automatically pull in all component dependencies and initialization code

e Configurable software components including peripheral inits, drivers, middleware, and stacks
¢ All configuration settings in C header files for usage outside of Simplicity Studio

¢ Configuration validation to alert developers to errors or issues

¢ Easily manage all project source via git or other SCM tools

e Managed migration to future component and SDK versions

¢ Simplified transitions from Silicon Labs development kits to custom hardware

Other features of the SSv5/GSDK v3.0 development environment include:

¢ Project source management options (link to SDK sources or copy all contents to user folder)

e Graphical pin configuration

¢ Redesigned Bluetooth Configurator with a fresh Ul that's more intuitive for Bluetooth and GATT customization

¢ Redesigned Radio Configurator with a fresh Ul that’s more intuitive for single- and multi-PHY customization

e lIterative development (configure components, edit sources, compile, debug) using SSv5 configuration tools and third-party IDEs

¢ GNU makefiles as a build option

Other changes are specific to the SDK. Bluetooth SDK v3.0 contains a number of changes compared to Bluetooth SDK v2.x. The main
changes are as follows:

1. The project structure of the sample applications has changed. Many autogenerated files and unified configuration files help adding
and configuring software components.

2. The entire project generation is now based on software components. This makes it possible to add functionality to the project with
only a click, instead of copying files manually and looking for dependencies.

3. The sample applications have a completely new software architecture to align with the concept of software components. Adding RTOS
to your project is also simplified.

4. The Bluetooth API has changed. The APl commands and events use a new nomenclature to comply with Silicon Labs standards.
Additionally, some new classes and commands are introduced and some of them are removed to make the APl more transparent and
consistent.

5. The GATT configurator is completely redesigned. The new user interface is more modern, while the generator tool makes it possible
to add partial extensions to the GATT database. This means that the GATT database can be easily extended programmatically.

6. The stack can now be configured in a separate header file (instead of main.c). A Component Configurator tool in SSv5 is available to
configure all the parameters, which makes it easy to use predefined values, and to validate custom values.

7. The AppLoader application has new features which requires the update of the bootloader.

This document guides you through these changes, and describes the migration steps necessary to move a project from Bluetooth SDK
v2.x to v3.0.

For details about the release, see the release notes provided with the SDK.

silabs.com | Building a more connected world.

AN1255: Transitioning from the v2.x to the v3.x Bluetooth® SDK
Project Structure

2 Project Structure

In Bluetooth SDK v2.x a Bluetooth project contains the following folders:

lapp Application specific files

/hardware Development board configuration files and drivers for external peripherals
Iplatform Device configuration files and drivers for the MCU peripherals

Iprotocol Bluetooth stack files

{util Utilities

When a new project is generated, a subset of the SDK files (source files, headers, configuration headers) is copied from the SDK folder
into the project folders based on hardware type and on the needs of the sample application. Additionally, some files (for example
init_mcu.c, hal-config.h, and so on) are generated from templates into the root folder of the project. Again, the output is based on the
hardware type and on the needs of the sample application.

In Bluetooth SDK v3.0 auto-generated files and configurations headers are clearly separated from the static SDK files and gathered into
separate folders:

lautogen Automatically generated files based on the installed software components
Iconfig Editable configuration files for the software components
Igecko_sdk_3.0.0

lapp Application specific files

/hardware Development board configuration files and drivers for external peripherals

Iplatform Device configuration files and drivers for the MCU peripherals

Iprotocol Bluetooth stack files

Jutil Utilities

Developers can now easily see which files can be modified by the generator script and it is easy to access all configuration files. This is
especially important, because in Bluetooth SDK v3.0 many more files are generated by the addition of software components (see Sec-
tion 3 Software Components).

silabs.com | Building a more connected world.

AN1255: Transitioning from the v2.x to the v3.x Bluetooth® SDK
Project Structure

Due to the new project structure — and due to the new auto-generated files required by the Bluetooth stack — migrating a v2.x
project into Bluetooth SDK v3.0 must begin by creating a new SoC-Empty project in the new SDK. Application logic should be
pulled into this new project. After you select a compatible part on SSv5’s Welcome page, an SoC-Empty project can be created
from the Part-specific Launcher perspective. The Technology filter makes it easy to find applicable projects.

BB vs_workspace - simplicity Stugio™ - o x|
File Edit Mavigete Segech Project Bun Window belp

1y Welceene /D) Recert 55§ Toeh B Install o Preferences = | & Launcher
B Debug Adapters i

% swma-o.- - EFR32MG12 2.4 GHz 10 dBm RB, WSTK Mainboard (ID: 000440085386)

EFR3ZMGT2 1.4 GHr 10 dBen BB (D4800853405)

OVERVIEW EXAMPLE PROJECTS & DEMOS: DOCUMENTATION COMPATIBLE TOOLS

[Run a pre-compiled dema or create a new project based on a software example.

11 reaowfees found

Bluetooth - NCP Empty

NCP (Metwark Co-Processar) targed applic

aticn wilh a minimal GATT database, that makes il

55 1o the host layer CREATE

Demos

om & host controfler via UART, It provides

Example Projects » wia BGAP| and not 1o the link layer via HCI

View Project Documentation 3
(@ what are Dema and Example Projects?

~ Technolegy Type @ Chear Filter

Bluetooth - NCP Host

E Blugtaath (11) Reference implementation of an NCP (Metwork Co-Processor) host. which is typically run on a ceniral MCU

3 iy Prodcts + 8 B88B=0

L Bluetaath Mesh (6) hout

It can connect 1o an NCP target via UART 1o access the Blustooth stack of the tanget and 1o CREATE
control it using BGAPI

View Project Documentation 1

Enter product name

O eooticader i)

] Piattom (32)

~ Provider @ Ciear Filter
Blueteoth - SoC DTM

[Gecko SDE Suite ¥3.1.0 (11) Thiz example demonstrates the direct teet mode application

B Peripheral Examgles (0} View Project Documentation [
~ Quality © Ciear Filter
O ALeHa (o) Bluetooth - SoC Empty

8 This example demonstrates the bare minimum needed for a Bluetooth C application that allows Ower-the-Air
O wone Specified (0)
Device Firmware Upgrading {OTA DFU). The application starts advertising after boot and restaris adverti

[PRODUCTION (11) after a connection iz closed

View Project Documentation 5

Loghh ™ s @ 2020 Sikcon Labs

silabs.com | Building a more connected world.

AN1255: Transitioning from the v2.x to the v3.x Bluetooth® SDK
Project Structure

In the project configuration dialog you can rename the project, change the project location, and define how to handle project files.

Note: In Bluetooth SDK v2.x all SDK files are copied into the project by default. In Bluetooth SDK v3.0 SDK files, considered to be
static, are linked by default. If you want to version-control your full project, it is recommended to change this setting to “Copy contents”
in the Project Configuration wizard, when you create the new project to have all content needed by the project in one folder.

«# New Project Wizard m] X

Project Configuration
Select the project name and location.

o Target, SDK ° Examples ° Configuration

Project name:

soc_empty_2| l

Use default location

Location: | C:\Users\arkalvac\SimplicityStudio\v5.rel.Staging_80\soc_empty_2 ‘ BROWSE ‘

With project files:

O Link to sources

@ Link sdk and copy project sources

choose this if you want to copy SDK files into the project as in Bluetooth SDK v2.x
2 Note: in this case an SDK update will not update SDK files in already created projects

CANCEL BACK | NEXT ‘ m

Bluetooth Projects automatically open on a ‘readme’ tab that describes the example. Other tabs are the Project Configurator (<project
name>.slcp and the GATT configurator (gatt_configuration.btconf) (see section 6 GATT Configurator for more information).

v5_workspace - filey/C:/Users/CAOWENS/SimplicityStudio/vs_workspace/soc_empty/readme.html - Simplicity Studio™

- o x
File Edit Mavigate Search Project Run Window Help
e B i | ® - &® ~i0 v 000 v o | 498 iy Welcome /D Recent 35 Tools &, Install 2 Preferences (| # Launcher {} Simplicity IDE
&5 Project Explorer 51 | E & W 8 = 0@ gatt configuration.btconf |l soc_emptysicp | i readme 53| =g
15 soc_empty [GNU ARM v72.1 - Debug] [EFR32MG12P332F1024GL1 & = [file// CfUsers/ CAOWENS /Simplicity Studio/v5_workspace/soc_empty/readme htm < B
> G Includes
> [autogen A
> = config

5 = gecko_sdk 310

> |¢] app_properties.c SOC - E m pty

> [€ app.c
> [H apph))
5 [@ main.c The Bluetooth SoC-Empty example is a project that you can use as a template for any standalone Bluetooth
create_bl_files.bat application.
% create_bl_files.sh
@ readme_imgO.png
@ readme_imgl.png
@ readme_img2.png .
@ readme g pg Getting Started
@ readme_imgd.png
0 readme html To learn the Bluetooth technology basics, see UG103.14: Bluetooth® LE Fundamentals.
soc_empty.pintool =
&% soc_ sl . ; .
B ::z_z::g;: To get started with Bluetooth and Simplicity Studio, see QSG169: Bluetooth® SDK v3.x Quick Start Guide.
- > The term SoC stands for "System on Chip", meaning that this is a standalone application that runs on the
B Debug Adapters X]SE outine | == EFR32/BGM and does not require any external MCU or other active components to operate.
SR ARRB-OEE As the name implies, the example is an (almaost) empty template that has only the bare minimum to make a

» RNERRISMIGRS 228 G ej10 OBy RE (1 $0085386) working Bluetooth application. This skeleton can be extended with the application logic.

The development of a Bluetooth applications consist of three main steps:

+ Designing the GATT database
+ Responding to the events raised by the Bluetooth stack

X .) v
+ Implementing additional application logic
[20 Problems 52 | " Search | 3 Call ierarchy | B Console | 7§ - O
Ditems
Description Resource Path Location Type
= (1

silabs.com | Building a more connected world.

AN1255: Transitioning from the v2.x to the v3.x Bluetooth® SDK
Software Components

3 Software Components

To add a new software component, for example a UART driver, in Bluetooth SDK v2.x the user must:
1. Copy the corresponding SDK files from the SDK folder into the project folder.

2. Copy all the dependencies of the given component into the project folder.

3. Add new include directories to the project settings.

And additionally:

4. Write the initialization code manually in the application.
5. Configure the component manually in the config files.
6. Use the API of the component in the application.

This is quite a cumbersome process, especially when figuring out the dependencies between components.

In Bluetooth SDK v3.0 software components can be added easily by installing them from the Component Library. The installation pro-
cess will automatically execute the first three steps listed above, and it also modifies the corresponding auto-generated files to integrate
the component into the application (“glue logic”).

Additionally the Component Configurator provides the possibility of:
1. Adding an “init” type component that initializes the software component
2. Configuring the component with a GUI

Some software components (like OTA DFU) will fully integrate into the application to perform a specific task without the need of any
additional code, while other components provide an API to be used in the application. The only task left for the developer is to use the
API of those component in the application.

It is important to note that in Bluetooth SDK v3.0 the Bluetooth stack itself is also just a collection of software components that can be
added to and removed from the project.

When migrating a project into Bluetooth SDK v3.0, start by finding out which functionality can be provided by installing a
software component from the Component Library. Although this means you must become familiar with the software compo-
nents first, it will save time later. Generally speaking, if you would have copied an additional SDK file into your project, you will
probably find a software component that solves the integration of that file.

silabs.com | Building a more connected world.

AN1255: Transitioning from the v2.x to the v3.x Bluetooth® SDK
Software Components

To see the component library, click the <project-name>.slcp tab of your project, and click Software Components. A number of filters
as well as a keyword search are available to help you explore the various component categories. Note that components for all installed
SDKs are presented.

n gﬂt._{anhgurﬂmn.hlmrl lm«nm‘ﬂ:p 3 4|Hdm¢ -
| soc_empty . v SOFTWARE COMPOMENTS . T |

Y Filter: Configurable Components [] Installed Components || Components installed by You [] Q, Search keywards, component’s name

» Advanced Configurators
» Bluetooth

» Bluetooth Mesh

» LwiP

» Platform

» RTOS

» Services

» Third Party

» Wi-Fi

silabs.com | Building a more connected world.

AN1255: Transitioning from the v2.x to the v3.x Bluetooth® SDK
Software Components

gatt_configurationbtconf |afle soc emptysicp &1 @ readme |

soc_empty SOFTWARE COMPONENTS

rds, component’'s name

Y Filter: Configurable Components D Ingtalled Components D Components Installed by You D Q, Searct

» Sensor -
» Service I £t configure
w Stack .
v DTM Description
Test Blustooth Low Ensrgy scack and ::‘.’.:'_:_':.!'.'_::1!
In addicion ©o this core COMponAnT, seleot features nesded by the !;'ﬁ‘_}.:l:'_’_‘_’_.
AFH
Quality
@ Advertiser PRODUCTION

@ Bluetooth Core o @
@ Connection
DFU

Even Connection Scheduling Algorithm

GAP

@ GATT Client X Uninstall View Dependencies

PO

Components installed in the project are checked (1), and can be uninstalled. Configurable components are indicated by a gear symbol
(2). To display only installed components or only configurable components, use the checkboxes at the top of the editor.

Click Configure to see a configurable component’s parameters in the Component Configurator.

L it s M

= 8

| B gatt_configuration.btconf o soc_empty.sicp @ readme 3 Bluetooth Core £3

Bluetooth Core ¢[> View Source X

| »

I Bluetooth Stack Configuration

Max number of connections
~

4

~

Max number of periodic advertising
synchronizations

~

0

w

I TX Power Levels

Minimum radiated TX power level in 0.1dBm unit

" 30

w

Max number of advertisers reserved for user

bl B

~

Buffer memory size for Bluetooth stack

" 3150

~

Max number of software timers

-~

4

w

Maximum radiated TX power level in 0.1dBm unit

*| 80

w

-

See QSG169: Bluetooth® SDK v3.x Quick Start Guide and the online Simplicity Studio 5 User’s Guide for more information about the

SSv5 project interface and the Bluetooth SDK.

silabs.com | Building a more connected world.

https://www.silabs.com/documents/public/quick-start-guides/qsg169-bluetooth-sdk-v3x-quick-start-guide.pdf
https://docs.silabs.com/simplicity-studio-5-users-guide/latest/

AN1255: Transitioning from the v2.x to the v3.x Bluetooth® SDK
Software Architecture

4 Software Architecture

41 Bluetooth Event Handling

In Bluetooth SDK v2.x the sample applications were written with simplicity in mind. Although many platform files are included in the project
— to make the features provided by the hardware available for the application — the application itself has a simple and transparent archi-
tecture. Taking the SoC-Empty project as an example:

e The stack configuration is defined in main.c
e MCU, board and app are initialized in main.c
e Stack is initialized in app.c

There is a simple loop in app.c to fetch and handle Bluetooth events

main.c app.c
int main (void) ——-| VOid appMain (gecko configuration t *pconfig)
{ {
/* Initialize device */ /* Initialize stack */
initMcu() ; gecko init (pconfig);
/* Initialize board */
initBoard(); while (1) {
/* Initialize application */ /* Event pointer for handling events */
initApp () ; struct gecko cmd packet* evt;
/* Start application */ /* Check for stack event. */
appMain (&configqg) ; evt = gecko wait event();
} /* Handle events */

switch (BGLIB MSG ID(evt->header)) {

case gecko evt system boot id:
printLog ("system booted\r\n");
break;

case gecko evt le connection opened id:
printLog ("connection opened\r\n");
break;

default:
break;

}

This software architecture is very easy to understand. However, it has drawbacks:

¢ Sleep is managed by the Bluetooth stack. gecko_wait event () puts the device into sleep mode, and processing continues only
when a Bluetooth event is triggered. If your application implements processes that should run regularly you must rely on the Bluetooth
stack software timers.

e The application is totally Bluetooth-event-driven. If your application needs custom events, you have to use the external signals of the
Bluetooth stack to extend the Bluetooth events with custom events.

e If your application needs a state machine, it may be challenging to merge the states of the state machine with the Bluetooth event
handlers / connection states.

¢ Since different software components (for example one that is reading your sensors, one that blinks the LEDs, and so on) may have
different needs, you always have to adjust your software architecture to these needs.

e While all of these problems can be addressed by using RTOS, RTOS may consume too many resources for your application.

silabs.com | Building a more connected world.

AN1255: Transitioning from the v2.x to the v3.x Bluetooth® SDK
Software Architecture

In contrast to this, the sample applications of Bluetooth SDK v3.0 were written with flexibility in mind. Although this makes the code a bit

less transparent, at the same time it makes it easy to extend the software with a new software component.

e Each software componenthas an init and a process function. The process functions are run in an infinite loop, and the device
is sent into sleep mode when neither of them needs the CPU. Sleep is automatically handled by the power manager. Here, the
Bluetooth stack is just one of the software components, it does not have a distinguished role.

e To regularly run a process the common sleeptimer can be used instead of the soft timers of the Bluetooth stack.

e When an interrupt wakes up the device, you do not need to trigger an external signal to get out of the wait event phase. All the
process functions will be called and can catch their respective events triggered by interrupts.

Furthermore:

¢ Due to the unified software architecture software components can easily be integrated into the code by adding the proper function
calls to predefined places in the code. This process is automatically handled by the Component Editor, which makes the addition of
a software component as easy as ticking a checkbox.

e Software components define their dependencies, therefore whenever a new component is added, all of its dependencies are also
automatically added to your project.

¢ In the new software architecture all configuration is put into header files. On one hand this separates functionality from config, and on
the other hand it makes it possible to provide a Component Editor for all configurations. Software components, including the Bluetooth
stack, can be easily configured within SSv5.

For these reasons, the new SoC-Empty example project is a bit more complicated. Main.c calls a generic init and process function,
which then calls the init and process functions of each installed component. The Bluetooth component implements the Bluetooth
event fetching in its own process function and ultimately calls the event handler function (s1_bt on event), which is to be imple-
mented in the application (app.c). Note: some components (like OTA DFU) may also handle some Bluetooth events before the application.

main.c sl system process action.c app.c
int main (void) void void
{ sl _system process_action (void) sl bt on event(sl bt msg t*
sl system init(); { evt)
app_init () ; sl platform process action(); {
sl service process_action(); // Handle stack events
while (1) { sl_stack_process_action() ; }
sl_system process_action() ; sl internal] app process action ();
app_process_action(); }
sl power manager sleep(); t
} sl _event handler.c
} void

sl _stack process_action (void)
{

sl bt step();
}

sl_bluetoot .c

void sl bt step()

{
sl bt msg t evt;

sl status t status =
sl bt pop event (&evt) ;

if (status != SL STATUS OK) {
return;

}
sl bt process_event (&evt) ;

} l
void

sl _bt_process_event (sl bt msg t
*evt)
{
sl bt ota dfu on event (evt);
sl bt on_event (evt) ;| = —

}

silabs.com | Building a more connected world. Rev. 0.3 |10

AN1255: Transitioning from the v2.x to the v3.x Bluetooth® SDK
Software Architecture

However, in the end implementing Bluetooth handlers is the same as in Bluetooth SDK v2.x. You can add all your event handlers in a
switch-case statement of s1 bt on event () defined inapp.c:

void sl bt on event(sl bt msg t* evt)
{

// Handle stack events
switch (SL BT MSG ID(evt->header)) {

case sl bt evt system boot id:
app log("System booted\r\n");

break;

case sl bt evt connection opened id:
app log("Connection opened\r\n");
break;

default:
break;

}
When migrating a Bluetooth application from v2.x to v3.0, copy the Bluetooth event handlers from appMain() into
sl_bt_on_event().

42 RTOS

The new unified software architecture is written so that adding RTOS to your application is as simple as possible. For example, the
Micrium OS Kernel can be added to your project with a click:

Rev. 0.3 | 11

silabs.com | Building a more connected world.

AN1255: Transitioning from the v2.x to the v3.x Bluetooth® SDK
Software Architecture

© gatt_configuration.btcont | ol soc_emptysicp L3

Lunl 3

soc_empty

SOFTWARE COMPONENTS

Y Filter: Configurable Components D

» RTOS
» FreeRTOS
v Micrium 0S
» Common
» CPU
Micrium OS Commen Libraries Module

Micrium OS Common Libraries Optimized Mem
Copy

Micrium 0S Common Module Core o

RTOS Description
Shell

v Kernel

Installed Components D

Micrium OS Kermnel o]

Components Installed by You D

I Micrium OS Kernel

Description

Quality
PRODUCTION

View Dependencies

The Bluetooth event handler function looks the same as in the RTOS-less version, therefore migrating your RTOS-based application is
as easy as migrating your RTOS-less application. Move the Bluetooth event handlers into s1 bt on event () defined in app.c. The
application task, which runs parallel to the Bluetooth event handler task, must be started in app_init (), which is also defined in app.c:

SL_WEAK void app_init (void)
{
RTOS_ERR err;

OSTaskCreate (&myAppTaskTCB,
"MY App Task",
myAppTask,
Ou,
MY APP TASK PRIO,
&myAppTaskStk[0Oul,

(MY APP TASK STACK SIZE / 10u),

MY APP TASK STACK SIZE,

Ou,

Ou,

Ou,
(OS_OPT TASK STK CHK |
&err) ;

0S_OPT TASK STK CLR),

silabs.com | Building a more connected world.

Rev.0.3 | 12

AN1255: Transitioning from the v2.x to the v3.x Bluetooth® SDK
Bluetooth API

5 Bluetooth API

The Bluetooth API changes in Bluetooth SDK v3.0. The most apparent change is the renaming of all the BGAPI commands and events
to align with the unified Silicon Labs coding standard. However, there are also new and removed commands and also new BGAPI classes
to make the APl more logical and transparent. This section describes all the changes related to the API.

5.1 Functionality Breaks
Advertising Set Management

While in Bluetooth SDK v2.x advertisement set handles were assigned by the developer arbitrarily, in Bluetooth SDK v3.0, advertising
set allocation is managed by the stack. Before any advertising operations, use the APl command s1 bt advertiser cre-
ate set () tocreate an advertising set. This command returns the handle of the created set. Thereafter, any advertiser commands
(sl bt advertiser) performing advertising operations can be called by passing the assigned advertising set handle. If a
command is called with a non-allocated handle, it will return an error. To free an advertising set, use command s1 bt adver-
tiser delete set (handle).

OTA Configuration and OTA Advertising Data

OTA configuration (flags and OTA device name) is removed from Bluetooth configuration structure. To set OTA flags and the OTA device
name, use sl bt ota set configuration() and sl bt ota set device name () respectively. Use the new com-
mand s1 bt ota set advertising data () toset OTA advertising data.

Some devices have multiple antenna ports. If you do not use the default port, the appropriate port should be set by
sl bt ota set rf path () toensure that the AppLoader uses the same port as the application.

5.2 Error Code Changes

In Bluetooth SDK v3.0 Bluetooth error codes (such as bg_err invalid conn handle) become part of the unified SL_STATUS
codes, which provide unique error codes for the whole software platform. This means that the values of the Bluetooth error codes change.
New definitions (such as SL. STATUS INVALID HANDLE) are introduced to cover the new codes. You can, however, also use the
old definitions in your code, as they are automatically mapped to the new values in the v3.0 SDK. In case your code contains hard-coded
error codes, they must be changed. The Bluetooth error codes can now be found in sl_status.h.

5.3 Changes in the BGAPI Classes

The BGAPI classes are slightly restructured in Bluetooth SDK v3.0. Most importantly the 1e gap class, which accommodated many
functions, is split into three new classes: gap, scanner and advertiser. The legacy hardware class, which accommodated only
two functions, is removed. The soft timer functions are moved into the systemclass. le_gap, le _connection, and flash classes
are renamed as shown in Table 1. A new ota class is created to accommodate functions configuring OTA upgrade (with Apploader),
since OTA configuration is now removed from the Bluetooth configuration structure.

Table 5-1. Changes in the BGAPI Classes

API2x API3.0 Notes |
le_gap gap Prefix "le_" is redundant as the stack supports LE only.
- scanner Split from le_gap. Provides API for scanning functions. Enables better size optimization.
- advertiser Split from le_gap. Provides APIs for advertising functions. Enables better size

optimization.

le_connection connection Prefix "le_" is redundant.
hardware - Removed. Soft timer commands are moved to system class.
flash nvm Renamed for aligning with functionality it provides.
- ota New class for OTA configurations

silabs.com | Building a more connected world. Rev. 0.3 |13

AN1255: Transitioning from the v2.x to the v3.x Bluetooth® SDK
Bluetooth API

5.4 Changes in BGAPI Commands

BGAPI command functions change both their name, to align with Silicon Labs standards, and their structure, to make the error checking
and the handling of return values simpler.

In Bluetooth SDK v3.0 BGAPI command function names start with s1_bt_ instead of gecko cmd used in Bluetooth SDK v2.x. This
means that all function name should be changed according to this rule, when migrating a project from v2.x to v3.0.

No compatibility layer is provided due to the additional changes listed below. However, a “Bluetooth API migration helper” component
can be found in the Component Library. If this component is installed, a header file is added to the project that provides verbose compiler
errors when an old API call is found in the code. A suggestion for the new APl is also present in the error message.

In Bluetooth SDK v2.x command functions returned a complex structure, providing both error code and return values. In Bluetooth SDK
v3.0 only a status code is returned, and the return values are passed back using pointer arguments. If the output of a command contains
variable size data, the application needs to give the destination for the data as well as the maximum size of the destination. See an
example below.

Command functions in v2.x

/* Function */
struct gecko msg gatt server read attribute value rsp t*
gecko_cmd gatt server read attribute_value (uintl6 attribute, uintl6 offset);

/* Response structure */
struct gecko msg gatt server read attribute value rsp t
{

uintl6 result,

uint8array wvalue

}

Command functions in v3.0

sl status sl bt gatt_server read attribute_ value (uintl6 attribute, uintlé offset, size t
max value size, size t *value len, void *value);

While for most commands the renaming means only changing gecko _cmd to s1 bt , many functions are renamed due to changed
functionality, changed API class or simply to make the APl more logical. Furthermore, some API functions are split into multiple ones,
and some functions are merged. These name changes are listed in Table 5-2. Changes in the BGAPI Commands. For other functions
not in this table, you only need to change the beginning of the function name from gecko cmd tosl bt .

The following table below was created based on Bluetooth SDK v3.0. If you are using Bluetooth SDK v3.1, additional changes apply. The
additional changes are listed in the Bluetooth SDK 3.1.0.0 Release Notes.

Table 5-2. Changes in the BGAPI Commands

API 2.x API 3.0 Notes
gecko_cmd_le_gap_enable_whitelisting sl_bt_gap_enable_whitelisting le_gap class renamed to gap
gecko_cmd_le_gap_set_data_channel_ sl_bt_gap_set_data_channel_
classification classification
gecko_cmd_le_gap_set_privacy_mode sl_bt_gap_set_privacy_mode

New API for creating an advertising set.
Call this command to create an
advertising set before any advertising
operations on an advertising set. The
returned handle of the created
advertising can then be used in other
commands for advertising operations.
A created advertising set can be
released by command
sl_bt_advertiser_delete_set.

- sl_bt_advertiser_create_set

- sl_bt_advertiser_delete_set New API for deleting an advertising set.

silabs.com | Building a more connected world. Rev.0.3 | 14

https://www.silabs.com/documents/public/release-notes/bt-software-release-notes-3.1.0.0.pdf

AN1255: Transitioning from the v2.x to the v3.x Bluetooth® SDK

Bluetooth API

API 2.x

gecko_cmd_le _gap_bt5_set_adv_
parameters

API 3.0

sl_bt_advertiser_set_timing
sl_bt_advertiser_set_channel_map
sl_bt_advertiser_set_report_scan_request

Notes

gecko_cmd_le_gap_set_mode

sl_bt_advertiser_start
sl_bt_advertiser_stop

gecko_cmd_le_gap_bt5_set_mode

sl_bt_advertiser_start
sl_bt_advertiser_stop
sl_bt_advertiser_set_timing
sl_bt_advertiser_set_configuration

gecko_cmd_le _gap_set_adv_data
gecko_cmd_le _gap_bt5_set_adv_data

sl_bt_advertiser_set_data
sl_bt_ota_set_advertising_data

New command
sl_bt_ota_set_advertising_data for setting
OTA advertising data.
sl_bt_advertiser_set_data no longer
supports setting OTA advertising data.

gecko_cmd_le_gap_set_adv_parameters

sl_bt_advertiser_set_timing
sl_bt_advertiser_set_channel_map

gecko_cmd_le_gap_set_adv_timeout

sl_bt_advertiser_set_timing

gecko_cmd_le_gap_set_advertise_timing

sl_bt_advertiser_set_timing

gecko_cmd_le_gap_set_advertise_report
_scan_request

sl_bt_advertiser_set_report_scan_request

gecko_cmd_le_gap_set_advertise_phy

sl_bt_advertiser_set_phy

gecko_cmd_le_gap_set_advertise
channel_map

sl_bt_advertiser_set_channel_map

gecko_cmd_le_gap_set_advertise
configuration

sl_bt_advertiser_set_configuration

gecko_cmd_le_gap_clear_advertise_
configuration

sl_bt_advertiser_clear_configuration

gecko_cmd_le_gap_set_advertise_tx_po
wer

sl_bt_advertiser_set_tx_power

gecko_cmd_le_gap_set_long_advertising
_data

sl_bt_advertiser_set_long_data

sl_bt_set_long_data_set_long_data data
does not support setting OTA advertising
data.

gecko_cmd_le_gap_start_advertising

sl_bt_advertiser_start

gecko_cmd_le_gap_stop_advertising

sl_bt_advertiser_stop

gecko_cmd_le_gap_start_periodic_
advertising

sl_bt_advertiser_start_periodic_
advertising

gecko_cmd_le_gap_stop_periodic_
advertising

sl_bt_advertiser_stop_periodic_
advertising

gecko_cmd_le_gap_set_advertise
random_address

sl_bt_advertiser_set_random_address

gecko_cmd_le_gap_clear_advertise_
random_address

sl_bt_advertiser_clear_random_address

gecko_cmd_le_gap_open
gecko_cmd_le_gap_connect

sl_bt_connection_open

Moved to connection class.

gecko_cmd_le_gap_set_scan_parameter
s

sl_bt_scanner_set_timing
sl_bt_scanner_set_type

gecko_cmd_le_gap_set_discovery_timing

sl_bt_scanner_set_timing

gecko_cmd_le_gap_set_discovery_type

sl_bt_scanner_set_mode

gecko_cmd_le_gap_start_discovery
gecko_cmd_le_gap_discover

sl_bt_scanner_start

gecko_cmd_le_gap_end_procedure

sl_bt_scanner_stop

silabs.com | Building a more connected world.

Rev.0.3 | 15

AN1255: Transitioning from the v2.x to the v3.x Bluetooth® SDK

Bluetooth API

API 2.x

gecko_cmd_le_gap_set_discovery
extended_scan_response

API 3.0

Notes

Removed.

A single event API
(sl_bt_evt_scanner_scan_report) for
advertising reports.

gecko_cmd_le_gap_set_conn_phy

sl_bt_connection_set_default_preferred_
phy

gecko_cmd_le_gap_set_conn_
parameters
gecko_cmd_le_gap_set_conn_timing_
parameters

sl_bt_connection_set_default_parameters

gecko_cmd_le_connection_close

sl_bt_connection_close

gecko_cmd_le_connection_disable_slave
_latency

sl_bt_connection_disable_slave_latency

gecko_cmd_le_connection_get_rssi

sl_bt_connection_get_rssi

gecko_cmd_le_connection_read_channel
map

sl_bt_connection_read_channel_map

gecko_cmd_le_connection_set_
parameters
gecko_cmd_le_connection_set_timing_
parameters

sl_bt_connection_set_parameters

gecko_cmd_le_connection_set_phy
gecko_cmd_le_connection_set_preferred
_phy

sl_bt_connection_set_preferred_phy

gecko_cmd_system_get_bt_address

sl_bt_system_get _identity_address

gecko_cmd_system_set_bt_address

sl_bt_system_set_identity_address

gecko_cmd_system_set_tx_power

sl_bt_system_set_max_tx_power

gecko_cmd_system_set_device_name

sl_bt_ota_set_device_name

gecko_cmd_hardware_get_time

Use sleeptimer API

gecko_cmd_hardware_set_lazy_soft_
timer

sl_bt_system_set_lazy_soft_timer

Moved to system class

gecko_cmd_hardware_set_soft_timer

sl_bt_system_set_soft_timer

Moved to system class

gecko_cmd_flash_ps_erase

sl_bt_nvm_erase

Class renamed from flash to nvm

gecko_cmd_flash_ps_erase_all

sl_bt_nvm_erase_all

Class renamed from flash to nvm

gecko_cmd_flash_ps_load

sl_bt_nvm_load

Class renamed from flash to nvm

gecko_cmd_flash_ps_save

sl_bt_nvm_save

Class renamed from flash to nvm

gecko_cmd_<class_name>_
<cmd_name>

sl_bt_<class_name>_<cmd_name>

For rest of the commands that aren't
mentioned in this table, prefix change
from gecko_cmd to sl_bt

silabs.com | Building a more connected world.

Rev.0.3 | 16

AN1255: Transitioning from the v2.x to the v3.x Bluetooth® SDK
Bluetooth API

5.5 Changes in BGAPI events

Just like BGAPI commands, BGAPI events are also renamed. In Bluetooth SDK v3.0 event IDs start with s1 bt evt instead of
gecko_evt . Similarly, the event struct types start with s1 bt evt instead of gecko msg evt , although these types are rarely
referenced in the application.

Additionally, some events are renamed because of changing BGAPI class. Table 5-3 contains all the events that have more than just the
name change.

Table 5-3. Changes in the BGAPI events

API 2.x
gecko_evt_le_gap_scan_response_id

struct gecko_msg_le_gap_scan_response_evt_t

API 3.0
sl_bt_evt_scanner_scan_report_id

sl_bt_evt_scanner_scan_report_t

Notes

Moved to scanner class

gecko_evt_le_gap_extended_scan_response_id

struct
gecko_msg_le _gap_extended_scan_response_evt_t

sl_bt_evt_scanner_scan_report_id

sl_bt_evt_scanner_scan_report_t

Moved to scanner class

gecko_evt_le_gap_adv_timeout_id

struct gecko_msg_le_gap_adv_timeout_evt_t

sl_bt_evt_advertiser_timeout_id

sl_bt_evt_advertiser_timeout_t

Moved to advertiser
class

gecko_evt_le_gap_scan_request_id

struct gecko_msg_le_gap_scan_request_evt_t

sl_bt_evt_advertiser_scan_request_id

sl_bt_evt_advertiser_scan_request_t

Moved to advertiser
class

gecko_evt_hardware_soft_timer_id

struct gecko_msg_evt_hardware_soft_timer_t

sl_bt_evt_system_soft_timer_id

sl_bt_evt_system_soft_timer_t

Moved to system class

gecko_evt_le_connection_opened_id

struct gecko_msg_evt_le_connection_opened_t

sl_bt_evt_connection_opened_id

sl_bt_evt_connection_opened_t

Renamed to connection
class

gecko_evt_le_connection_closed_id

struct gecko_msg_evt_le_connection_closed_t

sl_bt_evt_connection_closed_id

sl_bt_evt_connection_closed_t

Renamed to connection
class

gecko_evt_le_connection_rssi_id

struct gecko_msg_evt_le_connection_rssi_t

sl_bt_evt_connection_rssi_id

sl_bt_evt_connection_rssi_t

Renamed to connection
class

gecko_evt_le_connection_parameters_id

struct gecko_msg_evt_le_connection_parameters_t

sl_bt_evt_connection_parameters_id

sl_bt_evt_connection_parameters_t

Renamed to connection
class

gecko_evt_le_connection_phy_status_id

struct gecko_msg_evt_le_connection_phy_status_t

sl_bt_evt_connection_phy_status_id

sl_bt_evt_connection_phy_status_t

Renamed to connection
class

gecko_evt_<class_name>_<event_name>_id

struct
gecko_msg_<class_name>_<event_name>_evt_t

sl_bt_evt_<class_name>_<event_name>_id

sl_bt_evt_<class_name>_<event_name>_t

For the rest of the
events that aren't
mentioned in this table

silabs.com | Building a more connected world.

Rev.0.3 |17

AN1255: Transitioning from the v2.x to the v3.x Bluetooth® SDK
Bluetooth API

5.6 Enums and Defines

Due to the renamed classes some enumerations and definitions used by the Bluetooth API also change. The following table summarizes
these changes.

Table 5-4. Changes in the BGAPI enumerations and definitions

API 2.x

le_gap_address_type public
le_gap_address_type_random
le_gap_address_type_public_identity
le_gap_address_type_random_identity

API 3.0

gap_public_address
gap_static_address
gap_random_resolvable_address
gap_random_nonresolvable_address

Notes

Class renamed.
le_gap_address_type_public_identity
and
le_gap_address_type_random_identity
removed

le_gap_phy_1m
le_gap_phy_2m
le_gap_phy_coded

gap_1m_phy
gap_2m_phy
gap_coded_phy

Class renamed.
enum items renamed.

le_gap_non_discoverable
le_gap_limited_discoverable
le_gap_general_discoverable
le_gap_broadcast
le_gap_user_data

advertiser_non_discoverable
advertiser_limited_discoverable
advertiser_general_discoverable
advertiser_broadcast
advertiser_user_data

Moved to advertiser class

le_gap_non_connectable
le_gap_directed_connectable
le_gap_undirected_connectable
le_gap_connectable_scannable
le_gap_scannable_non_connectable
le_gap_connectable_non_scannable

advertiser_non_connectable
advertiser_directed_connectable
advertiser_connectable_scannable
advertiser_scannable_non_connectable
advertiser_connectable_non_scannable

Moved to advertiser class.
le_gap_undirected_connectable
removed. Corresponding enum value is
advertiser_connectable_scannable

le_gap_discover_limited
le_gap_discover_generic
le_gap_discover_observation

scanner_discover_limited
scanner_discover_generic
scanner_discover_observation

Moved to scanner class.

FLASH_PS_KEY_CTUNE

NVM_KEY_CTUNE

silabs.com | Building a more connected world.

Rev.0.3 | 18

AN1255: Transitioning from the v2.x to the v3.x Bluetooth® SDK
Bluetooth API

5.7 Changes in the C API

The Bluetooth API has some commands that are not part of the BGAPI classes. They can be used in SoC applications only, for example
to fetch events. These commands are part of the so-called C API. Due to the unified nomenclature these commands are also renamed
in Bluetooth SDK v3.0, and some of them will not exist anymore due to the new software architecture. Return values are also unified
similar to the BGAPI commands.

Table 5-5. Changes in the C API

API 2.x API 3.0 Notes
struct gecko_cmd_packet sl_bt_msg_t
BGLIB_MSG_ID SL_ BT_MSG_ID

struct gecko_cmd_packet* gecko_wait_event() | sl_status_t sl_bt_wait_event(sl_bt_msg_t* evt) | In API 3.0, an event object is
copied into the memory
provided by application.

struct gecko_cmd_packet* gecko_peek_event() | sl_status_t sl_bt_pop_event(sl_bt_msg_t* evt)

int gecko_event_pending() bool sI_bt_event_pending()

errorcode_t gecko_stack_init(const sl_status_t sl_bt_init_stack(const

gecko_configuration_t *config) sl_bt_configuration_t *config)

errorcode_t gecko_init(const - Component Configurator calls

gecko_configuration_t *config) the init functions. If not using
SSv5, call sl_bt_init_stack()
and the BGAPI class init
functions

uint32_t gecko_can_sleep_ms() - Power manager takes care of
sleeping

uint32_t gecko_can_sleep_ticks(void) -

uint32_t gecko_sleep_for_ms(uint32 max) -

void gecko_priority_handle(void) void sl_bt_priority_handle(void)

void gecko_external_signal(uint32 signals) void sl_bt_external_signal(uint32_t signals)
void gecko_send_system_awake() void sl_bt_send_system_awake()

void gecko_send_system_error(uint16 reason, | void sl_bt_send_system_error(uint16_t
uint8 data_len, const uint8* data) reason, uint8_t data_len, const uint8_t* data)
gecko_send_evt_user_message_to_host sl_bt_send_evt_user_message_to_host
gecko_send_rsp_user_message_to_target sl_bt_send_rsp_user_message_to_target

silabs.com | Building a more connected world. Rev. 0.3 [19

AN1255: Transitioning from the v2.x to the v3.x Bluetooth® SDK
Bluetooth API

5.8 Migration Example

The following code snippets show an example how a v2.x application is to be updated to work in the v3.0 environment, considering all
the changes mentioned above. The sample code simply starts advertising on boot and restarts advertising on connection close.

Code written in Bluetooth SDK v2.x Code in Bluetooth SDK v3.0
. " . " #include "sl bt api.h"
#includa "native gecko.h static uint8 t adv_h = 255; //adv. handle

void appMain (gecko configuration t* pconfi
ppHain (g - v ton_tt P tg) void sl bt on event(sl bt msg t* evt)

{
L {
tL ;
lzzkoofilt(config) ; // Handle stack events
gecko_ P g switch (SL BT MSG ID(evt->header)) f
case sl bt evt system boot id:

while (1
= err= sl bt advertiser create set(&adv_h);

{
struct gecko cmd packet* evt;
evt = gecko peek event();

// Handle stack events

. err = sl bt advertiser set timing(adv h,
switch (BGLIB MSG ID(evt->header)) { - = - - 160, lgO,
case gecko evt system boot id: 0, 0);
gecko cmd le gap set advertise timing(0,
160, 160,
0, 0);
gecko_cmd_le gap_start_advertising (0, err = sl bt advertiser start(adv_h,
le gap general discoverable, advertiser general discoverable,
le gap connectable scannable) ; advertiser connectable scannable);

printLog ("Started advertising\n");
break;

)) app log("Started advertising\n");
case gecko evt le connection opened id: break:

printLog ("Connection opened\n");

break; case sl bt evt connection opened id:
app_log("Connection opened\n");
case gecko evt le connection closed id: break;
printLog ("Connection closed\n");
if (boot to dfu) { case sl bt evt connection closed id:
// Enter to OTA DFU mode. app_log("Connection closed\n");
gecko cmd system reset(2);
} else { err = sl bt advertiser start (adv_h,
gecko cmd le gap start advertising (0, advertiser general discoverable,
le gap general discoverable, advertiser connectable scannable);

le gap connectable scannable);
printLog ("Started advertising\n");
}

break;
app_log("Started advertising\n");
default: break;
break;
} default:
} break;

silabs.com | Building a more connected world. Rev. 0.3 | 20

AN1255: Transitioning from the v2.x to the v3.x Bluetooth® SDK
GATT Configurator

6 GATT Configurator

In Bluetooth SDK v3.0 the GATT Configurator is completely redesigned. The new user interface is more modern, while the generator tool
makes it possible to add partial extensions to the GATT database.

New projects automatically open a GATT configurator tab. If the tab isn’t open when modifying an existing project, go to the Project
Configurator Configuration Tools tab. Click Open next to GATT Configurator. Alternatively you can double-click the gatt_configura-
tion.btconf file in the Project Explorer view.

While the user interface design is completely new, the underlying functionality stays the same as in Bluetooth SDK v2.x: you can add
predefined and custom services/characteristics to your GATT database and configure them.

9 gatt_configuration.btconf &3 l = 8

_-": » soc_empty.slcp

Bluetooth GATT Configurator ‘ [F] Custom BLE GATT 2

(] (] «
I Generic Access 0
[F] custom BLE GATT service
I ~ [5] Generic Access Name uuiD Info
Device Name Generic Access 1800 Abstract: The generic_access
Appearance service contains generic
_pp) P information about the device.
~ [5] Device Information O org bluetooth.service.gent All available Characteristics
Manufacturer Name String are readonly.
System ID F——
Contributed items prlmarg o - I Advertise service
~ [5] silicon Labs OTA
Silicon Labs OTA Control Service includes - Service capabilites -
£
Device Name - device_name
org.bluetooth.characteristic.gap.device_name PRSI
Appearance
org.bluetooth.characteristic.gap.appearance JPaR=0l}
Device Information
I Service 0
Name uuiD Infa
Device Information 1804 Abstract: The Device
Information Service M
The GATT Configurator menu is:

B (D) [v 3] [+ %]

1) Add an item.

2) Duplicate the selected item.
3) Move the selected item up.

4) Move the selected item down.
5) Import a GATT database.

6) Add Predefined.

7) Delete the selected item.

To add a custom service, click the Profile (Custom BLE GATT), and then click Add (1). To add a custom characteristic, select a service
and then click Add (1). To add a predefined service/characteristic click Add Predefined (6). To learn more about the configurator see
UG438: GATT Configurator User’s Guide for Bluetooth SDK v3.x.

silabs.com | Building a more connected world. Rev. 0.3 |21

AN1255: Transitioning from the v2.x to the v3.x Bluetooth® SDK
GATT Configurator

A new GATT configurator feature is that it can accept partial database extensions from additional .xml files. This is important, because
some software components may need to contribute to the GATT database with its custom service. For example, the OTA DFU component
adds the OTA service to the GATT database by adding an ota_dfu.xml file, which defines the service, next to the .btconf file:

~ I&5 soc_empty [GNU ARM v7.2.1 - Debug] [BGM1352 A

) Includes Bluetooth GATT Configurator

» (= autogen
w (= config = (A (1
v (& btconf D) V|@|Ellz]
| E3 gatt_configuration.btconf
— ota_dfuxml I IE| Custom BLE GATT
] app_assert_config.f v [5] Generic Access
» Lh] mbedtl fig.h .
0 s [C] Device Name
+ [n] pin_config.h
+ [1] sl_bluetooth_config.h b | (C] Appearance
» [1] sl_board_control_config.h v [5] Device Information
» [n] sl_device_init_dedc_config.h)
C
- [sl_device_init_emu_config.h (€] Manufacturer Name String
+ [n] sl_device_init_hfxo_config.h System ID
+ [1] sl_device_init_lfxo_config.h Contributed ite
- [1] sl_memory_config.h ~ 5] Silicon Labs OTA

» [n] sl_power_manager_config.h
+ [sl_rail_util_pa_config.h
+ [n] sl_rail_util_pti_config.h

[C] Silicon Labs OTA Control

Another important innovation is that the GATT database-related files (gatt_db.c, gatt_db.h) are automatically regenerated as you edit and
save the file (changes are not autosaved). There is no need to manually start the generator script as in Bluetooth SDK v2.x.

Migrating the GATT database is easy. You can import the database from your old project by clicking Import (6), and selecting
the gatt.xml file of your old project. If your old database contains an OTA service, remove it from the database. It is defined by
the new OTA DFU component.

silabs.com | Building a more connected world. Rev. 0.3 |22

AN1255: Transitioning from the v2.x to the v3.x Bluetooth® SDK
Stack Configuration and Initialization

7 Stack Configuration and Initialization

71 Configuration

The Bluetooth stack can be configured by passing a configuration structure to the stack init function. In Bluetooth SDK v2.x the configu-
ration structure is defined in gecko_configuration.h, and the default configuration is usually defined in main.c, like this:

static gecko configuration t config = {

.config flags = 0, /* Check flag options from UGl36 */
#if defingd(FEATURE_LFXO) | defined(PLFRCO_PRESENT)
.sleep.flags = SLEEP FLAGS DEEP SLEEP ENABLE, /* Sleep is enabled */
f#felse
.sleep.flags = 0,
#endif
.bluetooth.max connections = MAX CONNECTIONS, /* Maximum number of simultaneous
* connections */
.bluetooth.max advertisers = MAX ADVERTISERS, /* Maximum number of advertisement sets */
.bluetooth.heap = bluetooth stack heap, /* Bluetooth stack memory for connection

* management */
.bluetooth.heap size = sizeof (bluetooth stack heap),/* Bluetooth stack memory for connection
* management */
#if defined(FEATURE_LFXO)
.bluetooth.sleep clock accuracy = 100, /* Accuracy of the Low Frequency Crystal
* Oscillator in ppm. *
* Do not modify if you are using a module */
#elif defined(PLFRCO_PRESENT)

.bluetooth.sleep clock accuracy = 500, /* In case of internal RCO the sleep clock
accuracy is 500 ppm */
#endif
.gattdb = &bg gattdb data, /* Pointer to GATT database */
.ota.flags = 0, /* Check flag options from UGl36 */
.ota.device name len = 3, /* Length of the device name in OTA DFU mode */
.ota.device name ptr = "OTA", /* Device name in OTA DFU mode */
.pa.config enable = 1, /* Set this to be a valid PA config */
#if defined(FEATURE PA INPUT FROM VBAT)
.pa.input = GECKO_ RADIO PA INPUT VBAT, /* Configure PA input to VBAT */
#else
.pa.input = GECKO RADIO PA INPUT DCDC, /* Configure PA input to DCDC */
#endif // defined (FEATURE PA INPUT FROM VBAT)
.rf.flags = GECKO RF CONFIG ANTENNA, /* Enable antenna configuration. */
.rf.antenna = GECKO RF ANTENNA, /* Select antenna path! */

Y

In Bluetooth SDK v3.0 the configuration structure is defined in sl_bt_stack_config.h with slightly renamed type definitions:

Table 7-1. Changes in Bluetooth Configuration Types

API 2.x API 3.0 Notes
gecko_configuration_t sl_bt_configuration_t
gecko_bluetooth_config_t sl_bt_stack_config_t
gecko_* sl_bt_*

The configuration structure itself does not change much between v2.x and v3.0. Only the OTA config is removed from the structure. New
runtime commands are provided for setting OTA flags and device name.

In Bluetooth SDK v3.0 the default configuration is defined in the sl_bluetooth_config.h header file instead of main.c. Moving the default
configuration out of main.c separates config from functionality, and it also makes it possible to configure the stack using the Component
Editor.

To edit the configuration parameters using a normal text editor, open sl_bluetooth_config.h.

silabs.com | Building a more connected world. Rev. 0.3 |23

AN1255: Transitioning from the v2.x to the v3.x Bluetooth® SDK
Stack Configuration and Initialization

To edit the configuration parameters using the Component Editor in SSv5, go to the Software Components tab, find the Bluetooth Core
component, and click Configure:

| (3] gatt_configuration.btcont ke s0¢_emptyskp 3| @ readme | =lm |
soc_empty VERVIEW SOFTWARE COMPONMNENTS

Y Filter: Configurable Components [_] Installed Components [_] Components Installed by You [] Q, search keywords, component's name

LA

» RTOS | Bluetooth Core

» Sensor

» Service

Description

¥ Stack

v DTM

Test Quality
PRODUCTION
AFH

@ Advertiser
@ Bluetooth Core o
 Connection
DFU =

Even Connection Scheduling Algorithm i 1
0 A'g X Uninstall View Dependencies

GAP -

Set the configuration values in the input fields. The values will be automatically verified and saved into the header file without any fur-
ther action needed.

gatt_configuration.btconf |‘ soc_empty.slep ‘ D readme [ﬂ Bluetooth Core % l = 8

Bluetooth Core <[> View Source X

> I T]

I Bluetooth Stack Configuration

Max number of connections Max number of advertisers reserved for user Max number of software timers
~ly ~ly ~l
w A o
Max number of periodic advertising Buffer memory size for Bluetooth stack
synchronizations
y ~ 3150
Ead 0 "

~

TX Power Levels

Minimum radiated TX power level in 0.1dBm unit Maximum radiated TX power level in 0.1dBm unit
a0 80
- -

silabs.com | Building a more connected world. Rev. 0.3 |24

AN1255: Transitioning from the v2.x to the v3.x Bluetooth® SDK
Stack Configuration and Initialization

7.2 Initialization

To initialize the Bluetooth stack, many functions have to be called: one for initializing the stack in general with the configuration structure
and one for each BGAPI class (such as gap, gatt, connection, and so on) to initialize the classes. Furthermore, additional stack features
(such as AFH) have to be initialized with a feature init function. All of these functions are slightly renamed in Bluetooth SDK v3.0.

Table 7-2. Changes in Bluetooth init functions

API 2.x API 3.0 | Notes
gecko_stack_init(config) sl_bt_init_stack(config)
gecko_bgapi_class_*_init() sl_bt_class_*_init() For initializing BGAPI classes for NCP mode, add definition (-

D) SL_BT_API_FULL in application project.

gecko_init_<feature> sl_bt_init_<feature>

In Bluetooth SDKv2.x, gecko _init (*config) can be used to initialize the stack. This function calls gecko stack init (con-
fig) and all the BGAPI class init functions that are usually needed in a general Bluetooth application. Unnecessary classes can be
removed (to free up memory) and additional class init functions can be added based on the needs of the application. If a class is not
initialized the BGAPI commands of that class cannot be called. Additional features always have to be initialized after the stack init if they
are needed.

In Bluetooth SDK v3.0 each BGAPI class has a corresponding software component. This means that classes can be initialized by adding
their respective software component. When adding the “Bluetooth” component to your project, most BGAPI classes are also added by
default. To initialize additional classes, go to the Software Components tab and install the corresponding component. To remove unnec-
essary classes, uninstall the corresponding components. Filter on installed components to make the search easier. This may help make
your application size smaller.

Additional features, such as Adaptive Frequency Hopping, Periodic Advertising, and so on can be initialized the same way as BGAPI
classes, by installing the corresponding software component:

€ gatt_configuration btconf ol soc_empty.siep 21 | i readme a0

soc_empty SOFTWARE COMPONENTS

Y Filter : Configurable Components m Installed Components D Components Installed by You D Q, search keywords, component’s name

» OTA

» RTOS Al s [Install]

» Sensor

» Service Description

Bluetooth Adaptive Frequency Hopping (AFH) Ifeatuze

v Stack

» DTM Quality
PRODUCTION

AFH

@ Advertiser
@ Bluetooth Core e
& Connection

DFU

Even Connection Scheduling Algarithm View Dependencies

When migrating your project from v2.x to v3.0 it is recommended to remove all the initialization code from app.c and to add the
proper software components to your project instead.

silabs.com | Building a more connected world. Rev. 0.3 | 25

AN1255: Transitioning from the v2.x to the v3.x Bluetooth® SDK
AppLoader

8 AppLoader

Beginning with Bluetooth SDK v3.0 the AppLoader uses a new feature of the bootloader: parsing GBL headers in RAM. This means that
GBL headers do not have to be stored in flash during application update, which makes the process a bit faster, and more importantly it
does not make the old application image corrupt if the GBL headers are incorrect.

However, this also means that the AppLoader in Bluetooth SDK v3.0 is incompatible with older bootloader versions. Therefore,
if you migrate your project to Bluetooth SDK v3.0, and you use the AppLoader in the newly created project, rebuild the boot-
loader in v3.0 by selecting the bootloader example and building it, and update your device with the resulting compatible boot-
loader.

For information about building and using bootloaders, see UG266: Silicon Labs Gecko Bootloader User's Guide and online content at
docs.silabs.com.

silabs.com | Building a more connected world. Rev. 0.3 | 26

https://www.silabs.com/documents/public/user-guides/ug266-gecko-bootloader-user-guide.pdf
https://docs.silabs.com/bluetooth/latest/

AN1255: Transitioning from the v2.x to the v3.x Bluetooth® SDK
Migrating NCP projects

9 Migrating NCP projects

Migrating an NCP application is usually easy, since the stack and the application are well-separated. While the stack is running on the
NCP target, the application is running on the NCP host. Therefore, a stack update usually does not affect the application except that the
API changes must be respected.

An SDK update in the NCP use case means that:
1. The NCP target device must be programmed with the NCP — Empty sample app of the new SDK.

2. UART pins must be configured in the sample app.
3. The GATT database must be imported in the sample app.

Furthermore,
4. The NCP host device must include the new BGAPI header files, so that it can communicate with the target.
5. Deprecated API calls must be updated, if there are any.

Upgrading the NCP target code from Bluetooth SDK v2.x to v3.0 is easy. A new NCP — Empty project must be generated with Bluetooth
SDK v3.0. The UART pins can be easily configured with the Pin Tool, and the GATT database can be easily imported with the GATT
Configurator. Should you use deep sleep mode in the NCP target, you must install the Wake Lock component and configure it. For more
information see AN1259: Using the Silicon Labs v3.x Bluetooth® Stack in Network Co-Processor Mode.

The NCP host update involves more changes. After updating the header files, not only the full Bluetooth API has to be updated but also
some BGLIB commands and macros.

An NCP host code using Bluetooth SDK v2.x must contain the following header files:

e bg_errorcodes.h

e bg_types.h

e host_gecko.h

e gecko_bglib.h

and the following source file:

e gecko_bglib.c

An NCP host code using Bluetooth SDK v3.0 must contain the following header files:

o sl_status.h (in SDK_DIR/platform/common/inc)

e sl_bt_types.h (in SDK_DIR/protocol/bluetooth/inc)

e sl_bt_api.h (in SDK_DIR/protocol/bluetooth/inc)

e sl_bt_ncp_host.h (in SDK_DIR/protocol/bluetooth/inc)

and the following source files:

e sl_bt_ncp_host_api.c (in SDK_DIR/protocol/bluetooth/src)

e sl_bt_ncp_host.c (in SDK_DIR/protocol/bluetooth/src)

The new header files use the new nomenclature (commands/events starting with sl_bt_...) even if the underlying BGAPI packet content,

which is sent to the target device via UART, may be unchanged in some cases. Therefore NCP host code must be completely updated
according the description in section 5 Bluetooth API, using the new BGAPI.

Beside the changes in BGAPI (Bluetooth commands and events), the host APl is also changed similarly to the changes in C API detailed
in section 5.7 Changes in the C API. The following table summarizes the changes in the host API:

Table 9-1. Changes in the Host API

API 2.x API 3.0 Notes
BGLIB_DEFINE SL_BT_API_DEFINE
BGLIB_INITIALIZE SL_BT_API_INITIALIZE
BGLIB_INITIALIZE_NONBLOCK SL_BT_API_INITIALIZE_NONBLOCK
struct gecko_cmd_packet sl_bt_msg_t
BGLIB_MSG_ID SL_BT_MSG_ID

silabs.com | Building a more connected world. Rev. 0.3 |27

https://www.silabs.com/documents/public/application-notes/an1259-bt-ncp-mode-sdk-v3x.pdf

AN1255: Transitioning from the v2.x to the v3.x Bluetooth® SDK
Migrating NCP projects

API 2.x API 3.0 Notes

struct gecko_cmd_packet* gecko_wait_event() | sl_status_t sl_bt_wait_event(sl_bt_msg_t* evt) | In API 3.0, an event object is
copied into the memory
provided by application.

struct gecko_cmd_packet* gecko_peek_event() | sl_status_t sl_bt_pop_event(sl_bt_msg_t* evt)

int gecko_event_pending() bool sI_bt_event_pending()

The NCP host code must be updated according to these changes. For example fetching an event changes from:

struct gecko cmd packet *p;
p = gecko wait event();
switch (BGLIB MSG ID(p->header)) {..}

to:

sl bt msg t evt;

sl bt msg t *p = &evt;

sl bt wait event (&evt);

switch (SL BT MSG ID(p->header)) {..}

Regarding the software architecture, the empty host example created for PCs (in SDK_DIR/app/bluetooth/example_host/empty) is up-
dated to align with the new SoC software architecture (see section 4 Software Architecture). While it is not necessary to update the
architecture on the NCP host, it is recommended to use this new architecture on newly created NCP host projects, so that it aligns with
SoC code.

The NCP — host example created for EFR devices (find it among the example projects in SSv5) is also updated to the new software
architecture. If the host runs on a Silicon Labs device, it is highly recommended to start a new NCP — host project with the new software
architecture, and migrate your code into it, just as for an SoC project.

silabs.com | Building a more connected world. Rev. 0.3 | 28

AN1255: Transitioning from the v2.x to the v3.x Bluetooth® SDK
Migration Summary

10 Migration Summary

This section summarizes the steps required to migrate a project from Bluetooth SDK v2.x with Simplicity Studio 4 to Bluetooth SDK v3.0
with Simplicity Studio 5.

1. Create a new SoC-Empty project in the new SDK from the SSv5 Launcher view (section 2 Project Structure).

1B v5_warkspace - Simplicity Studia™ = B X
Eile Edit Maigste Segech Project Bun Window [Help

1y Welceene /D) Recert 55§ Toeh B Install o Preferences B | & Lsncher
B Debug Adapters = o

% swma-oo-« EFR32MG12 2.4 GHz 10 dBm RB, WSTK Mainboard (ID: 000440085386)

EFR3ZMGT2 2.4 GHr 10 dBem RE: (ID-480085346)

OVERVIEW EXAMPLE PROJECTS & DEMOS: DOCUMENTATION COMPATIBLE TOOLS

[Run a pre-compiled dema or create a new project based on a software example.

11 reaowfees found

Bluetooth - NCP Empty

ﬂ Blueiooth NCP (Metwark Co-Processor) targed application wilh a minimal GATT database, that makes if

provides access to the host layer CREATE

Demos

possible to access the Bluetooth stack from a host controller via UART, 1
Example Projects via BGAP| and not 1o the link layer via HCI

View Project Documentation 5
(@ what are Dema and Example Projects?

~ Technology Type © Caear Filter

Bluetooth - NCP Host

Blustoath (11) Reference | nitation of an NCP (Network Co-Proces

%

host. which ks Typically run on
5 1he Blu

5 My Products i+ X BEER= O

e

ec 1o an MCP target via UART 1o 2

W stack of the tanget and 1o

L Bluetaath Mesh (6) hout
control it using BGAPI

:E'\It' product name
O eooticader i)

View Project Documentation 3
] mlatfomn (32)

» Provider @ Clear Filler
Blueteoth - SoC DTM

[Gecko 50K Suite v3.1.0 (11) This example demonsirates the direct test mode application

D Peripheral Examngles (0) View Project Documentation 5
~ Quality @ Ciear Filter
O ALPHA (o) Bluetooth - SoC Empty

This example demonstrates the bare minkmum needed for a Bluetooth C application that allows Owerthe-Air
O Hone Specified (0) i it : = o B 5

Device Firmware Upgrading (OTA DFU). The application starts advertising after boot and restarts advertising
O] PRODUCTION (11) after a connection is closed

View Project Documentation 5

Logln = T EeMciEEn & 2020 Sikcon Labs

silabs.com | Building a more connected world. Rev. 0.3 |29

AN1255: Transitioning from the v2.x to the v3.x Bluetooth® SDK
Migration Summary

Familiarize yourself with the functionality available through the Component Library. Then install components that correspond to func-
tions in your original project (section 3 Software Components).

soc_empty VERVIEV SOFTWARE COMPONENTS

Y Filter: Configurable Components D Installed Components |:| Components Installed by You E]

» Advanced Configurators . | iBeacon m

v Bluetooth

ords, component's name

v Application
Description

iBeacon iBeacon component for beacon advertising

» GATT Quality

> NCP PRODUCTION
» NVM

» OTA

» RTOS

» Sensor

» Service ‘ View Dependencies ‘

Cbmal -

If your application was RTOS-based, add the Micrium Kernel component (section 4.2 RTOS).

Remove all the initialization code from app.c and instead add the corresponding software components to your project (section 7.2
Initialization).

Edit any configuration parameters, either in sl_bluetooth_config.h using a text editor, or in the Component Editor in SSv5. Changes
there are automatically saved (section 7.1 Configuration).

a

B _gltt_cunfiguutiun.blcn-rrl ok soc_emptyskep 21| @ readme

soc_empty . SOFTWARE COMPONENTS

Y Filter: Configurable Components E] Installed Components [:] Components Installed by You [j Q, search keywords, component's name

AT

» RTOS | Bluetooth Core

» Sensor

» Service
Description

w Stack

» DTM

Test Quality
PRODUCTION
AFH

@ Advertiser
@ Bluetooth Core o
@ Connection
DFU »

Even Connection Scheduling Algorithm % Uninsta [view Dependnsinies

GAP -

silabs.com | Building a more connected world. Rev. 0.3 | 30

AN1255: Transitioning from the v2.x to the v3.x Bluetooth® SDK
Migration Summary

6. Copy the Bluetooth event handlers from appMain () into s1 bt on event () defined in app.c. If your application is RTOS-
based, the parallel application task must be started in app init (), which is also defined in app.c (section 4.1 Bluetooth Event
Handling).

7. Review the Bluetooth API changes detailed in section 5 Bluetooth API. Edit your application code accordingly. Most function names
are just renamed from gecko _cmd to sl bt While there are exceptions, the compiler will give a verbose error message giving
the name of the replacement function when compiling with the old API.

8. If your new project uses AppLoader, rebuild the bootloader in GSDK v3.0, and update your device with the compatible bootloader
(section 8 AppLoader).

9. Import the GATT database from your old project by opening the GATT Configurator, clicking Import, and selecting the gatt.xml file of
your old project. If your old database contains an OTA service, remove it from the database. It is defined by the new OTA DFU

component.
2 soc_emptysicp | [gatt_configuration btconf (1 == m
Bluetooth GATT Configurator [E] custom BLE GATT View Manual |
B [@) [v] [+] =] [+ (x) «

| E] F_ifngl:ic Access o

[F] custom BLE GATT
I + [5] Generic Access =

Mame D nfio
[C] pevice Mame Generic Access 1800 Abstract: The generic_access
- service contains generic

e information about the device.
M ing (o org bluetooth.service gen All available Characteristics
[£] Manufacturer Name String are readonly,
by p;lmay i - B Advertise service
~ [5] silicon Labs OTA
[C] silicon Labs OTA Control R - s 12

= Device Name - device_name

== org.bluetooth.characteristic.gap.device_name [P0

r—l;*l Appearance

= org.bluetooth.characteristic.gap.appearance JEST

Device Information
I Service 0
Device Information 1804 Abstract: The Device =
| Information Service ¥

10. If the application uses a Host/NCP configuration, both the target and the host must be updated.

Target:
1. The target device must be programmed with the NCP — Empty sample app of the new SDK.
2. UART pins must be configured in the sample app.
3. The GATT database must be imported in the sample app.

Host:
1. The host device must include the new BGAPI header files, so that it can communicate with the target.
2. Deprecated API calls must be updated, if there are any.

See section 9 Migrating NCP projects for more information.

silabs.com | Building a more connected world. Rev. 0.3 | 31

Simplicity Studio

One-click access to MCU and wireless
tools, documentation, software, source
code libraries & more. Available for
Windows, Mac and Linux!

loT Portfolio SW/HW Quality Support & Community

www.silabs.com/loT www.silabs.com/simplicity www.silabs.com/quality www.silabs.com/community

Disclaimer

Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software

implementers using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to

each specific device, and “Typical” parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only.
Silicon Labs reserves the right to make changes without further notice to the product information, specifications, and descriptions herein, and does not give warranties as
to the accuracy or completeness of the included information. Without prior notification, Silicon Labs may update product firmware during the manufacturing process for
security or reliability reasons. Such changes will not alter the specifications or the performance of the product. Silicon Labs shall have no liability for the consequences
of use of the information supplied in this document. This document does not imply or expressly grant any license to design or fabricate any integrated circuits. The

products are not designed or authorized to be used within any FDA Class Il devices, applications for which FDA premarket approval is required, or Life Support Systems

without the specific written consent of Silicon Labs. A “Life Support System” is any product or system intended to support or sustain life and/or health, which, if it fails,
can be reasonably expected to result in significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs
products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable

of delivering such weapons. Silicon Labs disclaims all express and implied warranties and shall not be responsible or liable for any injuries or damages related to use of a

Silicon Labs product in such unauthorized applications.

Trademark Information

Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, ClockBuilder®, CMEMS®, DSPLL®, EFM®,
EFM32¢, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, “the world’s most energy friendly microcontrollers”, Ember®, EZLink®, EZRadio®,
EZRadioPRO®, Gecko®, Gecko OS, Gecko OS Studio, ISOmodem®, Precision32°®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress®, Zentri,
the Zentrilogo and Zentri DMS, Z-Wave®, and others are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or
registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. Wi-Fi is a registered trademark of the Wi-Fi Alliance. All other products or brand
names mentioned herein are trademarks of their respective holders.

Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701

USA

SILICON LABS nupswwwsiabscom

	1 Introduction
	2 Project Structure
	3 Software Components
	4 Software Architecture
	4.1 Bluetooth Event Handling
	4.2 RTOS

	5 Bluetooth API
	5.1 Functionality Breaks
	5.2 Error Code Changes
	5.3 Changes in the BGAPI Classes
	5.4 Changes in BGAPI Commands
	5.5 Changes in BGAPI events
	5.6 Enums and Defines
	5.7 Changes in the C API
	5.8 Migration Example

	6 GATT Configurator
	7 Stack Configuration and Initialization
	7.1 Configuration
	7.2 Initialization

	8 AppLoader
	9 Migrating NCP projects
	10 Migration Summary

