

silabs.com | Building a more connected world. Rev. 0.3

AN1255: Transitioning from the v2.x to the
v3.x Bluetooth® SDK

Bluetooth Software Development Kit (SDK) v3.0 contains a number of changes com-
pared to Bluetooth SDK v2.x. Many of these changes are due to an underlying framework
redesign that results in an improved developer experience within the new Simplicity Stu-
dio 5. Projects are now built on a component architecture. Simplicity Studio 5 includes
project configuration tools that provide an enhanced level of software component discov-
erability, configurability, and dependency management. These include a Component Ed-
itor, and a redesigned GATT configurator.

In Bluetooth SDK v3.0, sample applications have a new software architecture, the Blue-
tooth API is updated, and the GATT configurator is completely redesigned. Additionally
the stack can now be configured in separate header files, and platform components can
be added to the project with the Component Editor instead of copying and including files
manually. While these changes are a result of overall improvements in the SDK and in
Simplicity Studio 5 it also means that migrating projects from Bluetooth SDK v2.x to v3.0
is not trivial. This document explains the steps needed to move your Bluetooth v2.x project
into the v3.0 environment.

KEY POINTS

Reviews differences in:
• Software architecture
• The API
• GATT configurator
• Stack configuration
• Adding platform components

 AN1255: Transitioning from the v2.x to the v3.x Bluetooth® SDK
 Introduction

silabs.com | Building a more connected world. Rev. 0.3 | 2

1 Introduction

Silicon Labs has introduced both a complete update to its Simplicity Studio tool suite, as well as a new, component-based Gecko Platform
architecture.

Version 5 of the Simplicity Studio tool suite represents a ground-up redesign of the underlying architecture. The Simplicity Studio 5 (SSv5)
framework includes a new user interface engine that enables attractive and responsive web-like user interfaces. The integrated develop-
ment environment (IDE) was also upgraded with the latest versions of Eclipse and the C/C++ Development Tooling (CDT). This added
robustness, performance improvements, and enables developers to customize their experience using the latest plug-ins from the Eclipse
Marketplace.

Gecko Software Development Kit suite version 3.0.0.0 (GSDK v3.0) is released with SSv5. It introduces a new underlying Gecko Platform
architecture based on components. Both the Bluetooth and the Flex v3.x SDKs are based on this new component-based architecture.
With SSv5 and GSDK v3.0, Bluetooth developers will benefit from the following component-based project configuration features:
• Search and filter to find and discover software components that work with the target device
• Automatically pull in all component dependencies and initialization code
• Configurable software components including peripheral inits, drivers, middleware, and stacks
• All configuration settings in C header files for usage outside of Simplicity Studio
• Configuration validation to alert developers to errors or issues
• Easily manage all project source via git or other SCM tools
• Managed migration to future component and SDK versions
• Simplified transitions from Silicon Labs development kits to custom hardware

Other features of the SSv5/GSDK v3.0 development environment include:
• Project source management options (link to SDK sources or copy all contents to user folder)
• Graphical pin configuration
• Redesigned Bluetooth Configurator with a fresh UI that’s more intuitive for Bluetooth and GATT customization
• Redesigned Radio Configurator with a fresh UI that’s more intuitive for single- and multi-PHY customization
• Iterative development (configure components, edit sources, compile, debug) using SSv5 configuration tools and third-party IDEs
• GNU makefiles as a build option

Other changes are specific to the SDK. Bluetooth SDK v3.0 contains a number of changes compared to Bluetooth SDK v2.x. The main
changes are as follows:
1. The project structure of the sample applications has changed. Many autogenerated files and unified configuration files help adding

and configuring software components.
2. The entire project generation is now based on software components. This makes it possible to add functionality to the project with

only a click, instead of copying files manually and looking for dependencies.
3. The sample applications have a completely new software architecture to align with the concept of software components. Adding RTOS

to your project is also simplified.
4. The Bluetooth API has changed. The API commands and events use a new nomenclature to comply with Silicon Labs standards.

Additionally, some new classes and commands are introduced and some of them are removed to make the API more transparent and
consistent.

5. The GATT configurator is completely redesigned. The new user interface is more modern, while the generator tool makes it possible
to add partial extensions to the GATT database. This means that the GATT database can be easily extended programmatically.

6. The stack can now be configured in a separate header file (instead of main.c). A Component Configurator tool in SSv5 is available to
configure all the parameters, which makes it easy to use predefined values, and to validate custom values.

7. The AppLoader application has new features which requires the update of the bootloader.

This document guides you through these changes, and describes the migration steps necessary to move a project from Bluetooth SDK
v2.x to v3.0.

For details about the release, see the release notes provided with the SDK.

 AN1255: Transitioning from the v2.x to the v3.x Bluetooth® SDK
 Project Structure

silabs.com | Building a more connected world. Rev. 0.3 | 3

2 Project Structure

In Bluetooth SDK v2.x a Bluetooth project contains the following folders:

/app Application specific files
/hardware Development board configuration files and drivers for external peripherals
/platform Device configuration files and drivers for the MCU peripherals
/protocol Bluetooth stack files
/util Utilities

When a new project is generated, a subset of the SDK files (source files, headers, configuration headers) is copied from the SDK folder
into the project folders based on hardware type and on the needs of the sample application. Additionally, some files (for example
init_mcu.c, hal-config.h, and so on) are generated from templates into the root folder of the project. Again, the output is based on the
hardware type and on the needs of the sample application.

In Bluetooth SDK v3.0 auto-generated files and configurations headers are clearly separated from the static SDK files and gathered into
separate folders:

/autogen Automatically generated files based on the installed software components
/config Editable configuration files for the software components
/gecko_sdk_3.0.0
 /app Application specific files
 /hardware Development board configuration files and drivers for external peripherals
 /platform Device configuration files and drivers for the MCU peripherals
 /protocol Bluetooth stack files
 /util Utilities

Developers can now easily see which files can be modified by the generator script and it is easy to access all configuration files. This is
especially important, because in Bluetooth SDK v3.0 many more files are generated by the addition of software components (see Sec-
tion 3 Software Components).

 AN1255: Transitioning from the v2.x to the v3.x Bluetooth® SDK
 Project Structure

silabs.com | Building a more connected world. Rev. 0.3 | 4

Due to the new project structure – and due to the new auto-generated files required by the Bluetooth stack – migrating a v2.x
project into Bluetooth SDK v3.0 must begin by creating a new SoC-Empty project in the new SDK. Application logic should be
pulled into this new project. After you select a compatible part on SSv5’s Welcome page, an SoC-Empty project can be created
from the Part-specific Launcher perspective. The Technology filter makes it easy to find applicable projects.

 AN1255: Transitioning from the v2.x to the v3.x Bluetooth® SDK
 Project Structure

silabs.com | Building a more connected world. Rev. 0.3 | 5

In the project configuration dialog you can rename the project, change the project location, and define how to handle project files.

Note: In Bluetooth SDK v2.x all SDK files are copied into the project by default. In Bluetooth SDK v3.0 SDK files, considered to be
static, are linked by default. If you want to version-control your full project, it is recommended to change this setting to “Copy contents”
in the Project Configuration wizard, when you create the new project to have all content needed by the project in one folder.

Bluetooth Projects automatically open on a ‘readme’ tab that describes the example. Other tabs are the Project Configurator (<project
name>.slcp and the GATT configurator (gatt_configuration.btconf) (see section 6 GATT Configurator for more information).

 AN1255: Transitioning from the v2.x to the v3.x Bluetooth® SDK
 Software Components

silabs.com | Building a more connected world. Rev. 0.3 | 6

3 Software Components

To add a new software component, for example a UART driver, in Bluetooth SDK v2.x the user must:
1. Copy the corresponding SDK files from the SDK folder into the project folder.
2. Copy all the dependencies of the given component into the project folder.
3. Add new include directories to the project settings.

And additionally:
4. Write the initialization code manually in the application.
5. Configure the component manually in the config files.
6. Use the API of the component in the application.

This is quite a cumbersome process, especially when figuring out the dependencies between components.

In Bluetooth SDK v3.0 software components can be added easily by installing them from the Component Library. The installation pro-
cess will automatically execute the first three steps listed above, and it also modifies the corresponding auto-generated files to integrate
the component into the application (“glue logic”).

Additionally the Component Configurator provides the possibility of:
1. Adding an “init” type component that initializes the software component
2. Configuring the component with a GUI

Some software components (like OTA DFU) will fully integrate into the application to perform a specific task without the need of any
additional code, while other components provide an API to be used in the application. The only task left for the developer is to use the
API of those component in the application.

It is important to note that in Bluetooth SDK v3.0 the Bluetooth stack itself is also just a collection of software components that can be
added to and removed from the project.

When migrating a project into Bluetooth SDK v3.0, start by finding out which functionality can be provided by installing a
software component from the Component Library. Although this means you must become familiar with the software compo-
nents first, it will save time later. Generally speaking, if you would have copied an additional SDK file into your project, you will
probably find a software component that solves the integration of that file.

 AN1255: Transitioning from the v2.x to the v3.x Bluetooth® SDK
 Software Components

silabs.com | Building a more connected world. Rev. 0.3 | 7

To see the component library, click the <project-name>.slcp tab of your project, and click Software Components. A number of filters
as well as a keyword search are available to help you explore the various component categories. Note that components for all installed
SDKs are presented.

 AN1255: Transitioning from the v2.x to the v3.x Bluetooth® SDK
 Software Components

silabs.com | Building a more connected world. Rev. 0.3 | 8

Components installed in the project are checked (1), and can be uninstalled. Configurable components are indicated by a gear symbol
(2). To display only installed components or only configurable components, use the checkboxes at the top of the editor.

Click Configure to see a configurable component’s parameters in the Component Configurator.

See QSG169: Bluetooth® SDK v3.x Quick Start Guide and the online Simplicity Studio 5 User’s Guide for more information about the
SSv5 project interface and the Bluetooth SDK.

https://www.silabs.com/documents/public/quick-start-guides/qsg169-bluetooth-sdk-v3x-quick-start-guide.pdf
https://docs.silabs.com/simplicity-studio-5-users-guide/latest/

 AN1255: Transitioning from the v2.x to the v3.x Bluetooth® SDK
 Software Architecture

silabs.com | Building a more connected world. Rev. 0.3 | 9

4 Software Architecture

4.1 Bluetooth Event Handling

In Bluetooth SDK v2.x the sample applications were written with simplicity in mind. Although many platform files are included in the project
– to make the features provided by the hardware available for the application – the application itself has a simple and transparent archi-
tecture. Taking the SoC-Empty project as an example:
• The stack configuration is defined in main.c
• MCU, board and app are initialized in main.c
• Stack is initialized in app.c
• There is a simple loop in app.c to fetch and handle Bluetooth events

main.c app.c
int main(void)
{
 /* Initialize device */
 initMcu();
 /* Initialize board */
 initBoard();
 /* Initialize application */
 initApp();

 /* Start application */
 appMain(&config);

}

void appMain(gecko_configuration_t *pconfig)
{
 /* Initialize stack */
 gecko_init(pconfig);

 while (1) {
 /* Event pointer for handling events */
 struct gecko_cmd_packet* evt;

 /* Check for stack event. */
 evt = gecko_wait_event();

 /* Handle events */
 switch (BGLIB_MSG_ID(evt->header)) {

 case gecko_evt_system_boot_id:
 printLog("system booted\r\n");
 break;

 case gecko_evt_le_connection_opened_id:
 printLog("connection opened\r\n");
 break;

 default:
 break;
 }
 }

}

This software architecture is very easy to understand. However, it has drawbacks:
• Sleep is managed by the Bluetooth stack. gecko_wait_event() puts the device into sleep mode, and processing continues only

when a Bluetooth event is triggered. If your application implements processes that should run regularly you must rely on the Bluetooth
stack software timers.

• The application is totally Bluetooth-event-driven. If your application needs custom events, you have to use the external signals of the
Bluetooth stack to extend the Bluetooth events with custom events.

• If your application needs a state machine, it may be challenging to merge the states of the state machine with the Bluetooth event
handlers / connection states.

• Since different software components (for example one that is reading your sensors, one that blinks the LEDs, and so on) may have
different needs, you always have to adjust your software architecture to these needs.

• While all of these problems can be addressed by using RTOS, RTOS may consume too many resources for your application.

 AN1255: Transitioning from the v2.x to the v3.x Bluetooth® SDK
 Software Architecture

silabs.com | Building a more connected world. Rev. 0.3 | 10

In contrast to this, the sample applications of Bluetooth SDK v3.0 were written with flexibility in mind. Although this makes the code a bit
less transparent, at the same time it makes it easy to extend the software with a new software component.
• Each software component has an init and a process function. The process functions are run in an infinite loop, and the device

is sent into sleep mode when neither of them needs the CPU. Sleep is automatically handled by the power manager. Here, the
Bluetooth stack is just one of the software components, it does not have a distinguished role.

• To regularly run a process the common sleeptimer can be used instead of the soft timers of the Bluetooth stack.
• When an interrupt wakes up the device, you do not need to trigger an external signal to get out of the wait_event phase. All the

process functions will be called and can catch their respective events triggered by interrupts.

Furthermore:
• Due to the unified software architecture software components can easily be integrated into the code by adding the proper function

calls to predefined places in the code. This process is automatically handled by the Component Editor, which makes the addition of
a software component as easy as ticking a checkbox.

• Software components define their dependencies, therefore whenever a new component is added, all of its dependencies are also
automatically added to your project.

• In the new software architecture all configuration is put into header files. On one hand this separates functionality from config, and on
the other hand it makes it possible to provide a Component Editor for all configurations. Software components, including the Bluetooth
stack, can be easily configured within SSv5.

For these reasons, the new SoC-Empty example project is a bit more complicated. Main.c calls a generic init and process function,
which then calls the init and process functions of each installed component. The Bluetooth component implements the Bluetooth
event fetching in its own process function and ultimately calls the event handler function (sl_bt_on_event), which is to be imple-
mented in the application (app.c). Note: some components (like OTA DFU) may also handle some Bluetooth events before the application.

main.c sl_system_process_action.c app.c
int main(void)
{
 sl_system_init();
 app_init();

 while (1) {
 sl_system_process_action();
 app_process_action();
 sl_power_manager_sleep();
 }
}

void
sl_system_process_action(void)
{
 sl_platform_process_action();
 sl_service_process_action();
 sl_stack_process_action();
sl_internal_app_process_action();
}

void
sl_bt_on_event(sl_bt_msg_t*
evt)
{
 // Handle stack events
}

sl_event_handler.c
void
sl_stack_process_action(void)
{
 sl_bt_step();
}

sl_bluetooth.c

void sl_bt_step()
{
 sl_bt_msg_t evt;

 sl_status_t status =
 sl_bt_pop_event(&evt);

 if(status != SL_STATUS_OK){
 return;
 }
 sl_bt_process_event(&evt);
}

void
sl_bt_process_event(sl_bt_msg_t
*evt)
{
 sl_bt_ota_dfu_on_event(evt);
 sl_bt_on_event(evt);
}

 AN1255: Transitioning from the v2.x to the v3.x Bluetooth® SDK
 Software Architecture

silabs.com | Building a more connected world. Rev. 0.3 | 11

However, in the end implementing Bluetooth handlers is the same as in Bluetooth SDK v2.x. You can add all your event handlers in a
switch-case statement of sl_bt_on_event() defined in app.c:

void sl_bt_on_event(sl_bt_msg_t* evt)
{
 // Handle stack events
 switch (SL_BT_MSG_ID(evt->header)) {

 case sl_bt_evt_system_boot_id:
 app_log("System booted\r\n");

 break;

 case sl_bt_evt_connection_opened_id:
 app_log("Connection opened\r\n");

 break;
 default:
 break;
 }
}

When migrating a Bluetooth application from v2.x to v3.0, copy the Bluetooth event handlers from appMain() into
sl_bt_on_event().

4.2 RTOS

The new unified software architecture is written so that adding RTOS to your application is as simple as possible. For example, the
Micrium OS Kernel can be added to your project with a click:

 AN1255: Transitioning from the v2.x to the v3.x Bluetooth® SDK
 Software Architecture

silabs.com | Building a more connected world. Rev. 0.3 | 12

The Bluetooth event handler function looks the same as in the RTOS-less version, therefore migrating your RTOS-based application is
as easy as migrating your RTOS-less application. Move the Bluetooth event handlers into sl_bt_on_event() defined in app.c. The
application task, which runs parallel to the Bluetooth event handler task, must be started in app_init(), which is also defined in app.c:

SL_WEAK void app_init(void)
{
 RTOS_ERR err;

 OSTaskCreate(&myAppTaskTCB,
 "MY App Task",
 myAppTask,
 0u,
 MY_APP_TASK_PRIO,
 &myAppTaskStk[0u],
 (MY_APP_TASK_STACK_SIZE / 10u),
 MY_APP_TASK_STACK_SIZE,
 0u,
 0u,
 0u,
 (OS_OPT_TASK_STK_CHK | OS_OPT_TASK_STK_CLR),
 &err);

}

 AN1255: Transitioning from the v2.x to the v3.x Bluetooth® SDK
 Bluetooth API

silabs.com | Building a more connected world. Rev. 0.3 | 13

5 Bluetooth API

The Bluetooth API changes in Bluetooth SDK v3.0. The most apparent change is the renaming of all the BGAPI commands and events
to align with the unified Silicon Labs coding standard. However, there are also new and removed commands and also new BGAPI classes
to make the API more logical and transparent. This section describes all the changes related to the API.

5.1 Functionality Breaks

Advertising Set Management

While in Bluetooth SDK v2.x advertisement set handles were assigned by the developer arbitrarily, in Bluetooth SDK v3.0, advertising
set allocation is managed by the stack. Before any advertising operations, use the API command sl_bt_advertiser_cre-
ate_set() to create an advertising set. This command returns the handle of the created set. Thereafter, any advertiser commands
(sl_bt_advertiser_....) performing advertising operations can be called by passing the assigned advertising set handle. If a
command is called with a non-allocated handle, it will return an error. To free an advertising set, use command sl_bt_adver-
tiser_delete_set(handle).

OTA Configuration and OTA Advertising Data

OTA configuration (flags and OTA device name) is removed from Bluetooth configuration structure. To set OTA flags and the OTA device
name, use sl_bt_ota_set_configuration() and sl_bt_ota_set_device_name() respectively. Use the new com-
mand sl_bt_ota_set_advertising_data() to set OTA advertising data.

Some devices have multiple antenna ports. If you do not use the default port, the appropriate port should be set by
sl_bt_ota_set_rf_path() to ensure that the AppLoader uses the same port as the application.

5.2 Error Code Changes

In Bluetooth SDK v3.0 Bluetooth error codes (such as bg_err_invalid_conn_handle) become part of the unified SL_STATUS
codes, which provide unique error codes for the whole software platform. This means that the values of the Bluetooth error codes change.
New definitions (such as SL_STATUS_INVALID_HANDLE) are introduced to cover the new codes. You can, however, also use the
old definitions in your code, as they are automatically mapped to the new values in the v3.0 SDK. In case your code contains hard-coded
error codes, they must be changed. The Bluetooth error codes can now be found in sl_status.h.

5.3 Changes in the BGAPI Classes

The BGAPI classes are slightly restructured in Bluetooth SDK v3.0. Most importantly the le_gap class, which accommodated many
functions, is split into three new classes: gap, scanner and advertiser. The legacy hardware class, which accommodated only
two functions, is removed. The soft timer functions are moved into the system class. le_gap, le_connection, and flash classes
are renamed as shown in Table 1. A new ota class is created to accommodate functions configuring OTA upgrade (with Apploader),
since OTA configuration is now removed from the Bluetooth configuration structure.

Table 5-1. Changes in the BGAPI Classes

API 2.x API 3.0 Notes
le_gap gap Prefix "le_" is redundant as the stack supports LE only.
- scanner Split from le_gap. Provides API for scanning functions. Enables better size optimization.
- advertiser Split from le_gap. Provides APIs for advertising functions. Enables better size

optimization.
le_connection connection Prefix "le_" is redundant.
hardware - Removed. Soft timer commands are moved to system class.
flash nvm Renamed for aligning with functionality it provides.
- ota New class for OTA configurations

 AN1255: Transitioning from the v2.x to the v3.x Bluetooth® SDK
 Bluetooth API

silabs.com | Building a more connected world. Rev. 0.3 | 14

5.4 Changes in BGAPI Commands

BGAPI command functions change both their name, to align with Silicon Labs standards, and their structure, to make the error checking
and the handling of return values simpler.

In Bluetooth SDK v3.0 BGAPI command function names start with sl_bt_ instead of gecko_cmd_ used in Bluetooth SDK v2.x. This
means that all function name should be changed according to this rule, when migrating a project from v2.x to v3.0.

No compatibility layer is provided due to the additional changes listed below. However, a “Bluetooth API migration helper” component
can be found in the Component Library. If this component is installed, a header file is added to the project that provides verbose compiler
errors when an old API call is found in the code. A suggestion for the new API is also present in the error message.

In Bluetooth SDK v2.x command functions returned a complex structure, providing both error code and return values. In Bluetooth SDK
v3.0 only a status code is returned, and the return values are passed back using pointer arguments. If the output of a command contains
variable size data, the application needs to give the destination for the data as well as the maximum size of the destination. See an
example below.

Command functions in v2.x

/* Function */
struct gecko_msg_gatt_server_read_attribute_value_rsp_t*
gecko_cmd_gatt_server_read_attribute_value(uint16 attribute, uint16 offset);

/* Response structure */
struct gecko_msg_gatt_server_read_attribute_value_rsp_t
{
 uint16 result,
 uint8array value
}

Command functions in v3.0

sl_status sl_bt_gatt_server_read_attribute_value(uint16 attribute, uint16 offset, size_t
max_value_size, size_t *value_len, void *value);

While for most commands the renaming means only changing gecko_cmd_ to sl_bt_, many functions are renamed due to changed
functionality, changed API class or simply to make the API more logical. Furthermore, some API functions are split into multiple ones,
and some functions are merged. These name changes are listed in Table 5-2. Changes in the BGAPI Commands. For other functions
not in this table, you only need to change the beginning of the function name from gecko_cmd_ to sl_bt_.

The following table below was created based on Bluetooth SDK v3.0. If you are using Bluetooth SDK v3.1, additional changes apply. The
additional changes are listed in the Bluetooth SDK 3.1.0.0 Release Notes.

Table 5-2. Changes in the BGAPI Commands

API 2.x API 3.0 Notes
gecko_cmd_le_gap_enable_whitelisting sl_bt_gap_enable_whitelisting le_gap class renamed to gap
gecko_cmd_le_gap_set_data_channel_
classification

sl_bt_gap_set_data_channel_
classification

gecko_cmd_le_gap_set_privacy_mode sl_bt_gap_set_privacy_mode

- sl_bt_advertiser_create_set

New API for creating an advertising set.
Call this command to create an
advertising set before any advertising
operations on an advertising set. The
returned handle of the created
advertising can then be used in other
commands for advertising operations.
A created advertising set can be
released by command
sl_bt_advertiser_delete_set.

- sl_bt_advertiser_delete_set New API for deleting an advertising set.

https://www.silabs.com/documents/public/release-notes/bt-software-release-notes-3.1.0.0.pdf

 AN1255: Transitioning from the v2.x to the v3.x Bluetooth® SDK
 Bluetooth API

silabs.com | Building a more connected world. Rev. 0.3 | 15

API 2.x API 3.0 Notes

gecko_cmd_le_gap_bt5_set_adv_
parameters

sl_bt_advertiser_set_timing
sl_bt_advertiser_set_channel_map
sl_bt_advertiser_set_report_scan_request

gecko_cmd_le_gap_set_mode sl_bt_advertiser_start
sl_bt_advertiser_stop

gecko_cmd_le_gap_bt5_set_mode

sl_bt_advertiser_start
sl_bt_advertiser_stop
sl_bt_advertiser_set_timing
sl_bt_advertiser_set_configuration

gecko_cmd_le_gap_set_adv_data
gecko_cmd_le_gap_bt5_set_adv_data

sl_bt_advertiser_set_data
sl_bt_ota_set_advertising_data

New command
sl_bt_ota_set_advertising_data for setting
OTA advertising data.
sl_bt_advertiser_set_data no longer
supports setting OTA advertising data.

gecko_cmd_le_gap_set_adv_parameters
sl_bt_advertiser_set_timing
sl_bt_advertiser_set_channel_map

gecko_cmd_le_gap_set_adv_timeout sl_bt_advertiser_set_timing

gecko_cmd_le_gap_set_advertise_timing sl_bt_advertiser_set_timing

gecko_cmd_le_gap_set_advertise_report
_scan_request sl_bt_advertiser_set_report_scan_request

gecko_cmd_le_gap_set_advertise_phy sl_bt_advertiser_set_phy

gecko_cmd_le_gap_set_advertise_
channel_map sl_bt_advertiser_set_channel_map

gecko_cmd_le_gap_set_advertise_
configuration sl_bt_advertiser_set_configuration

gecko_cmd_le_gap_clear_advertise_
configuration sl_bt_advertiser_clear_configuration

gecko_cmd_le_gap_set_advertise_tx_po
wer sl_bt_advertiser_set_tx_power

gecko_cmd_le_gap_set_long_advertising
_data sl_bt_advertiser_set_long_data

sl_bt_set_long_data_set_long_data data
does not support setting OTA advertising
data.

gecko_cmd_le_gap_start_advertising sl_bt_advertiser_start

gecko_cmd_le_gap_stop_advertising sl_bt_advertiser_stop

gecko_cmd_le_gap_start_periodic_
advertising

sl_bt_advertiser_start_periodic_
advertising

gecko_cmd_le_gap_stop_periodic_
advertising

sl_bt_advertiser_stop_periodic_
advertising

gecko_cmd_le_gap_set_advertise_
random_address sl_bt_advertiser_set_random_address

gecko_cmd_le_gap_clear_advertise_
random_address sl_bt_advertiser_clear_random_address

gecko_cmd_le_gap_open
gecko_cmd_le_gap_connect

sl_bt_connection_open Moved to connection class.

gecko_cmd_le_gap_set_scan_parameter
s

sl_bt_scanner_set_timing
sl_bt_scanner_set_type

gecko_cmd_le_gap_set_discovery_timing sl_bt_scanner_set_timing

gecko_cmd_le_gap_set_discovery_type sl_bt_scanner_set_mode

gecko_cmd_le_gap_start_discovery
gecko_cmd_le_gap_discover sl_bt_scanner_start

gecko_cmd_le_gap_end_procedure sl_bt_scanner_stop

 AN1255: Transitioning from the v2.x to the v3.x Bluetooth® SDK
 Bluetooth API

silabs.com | Building a more connected world. Rev. 0.3 | 16

API 2.x API 3.0 Notes

gecko_cmd_le_gap_set_discovery_
extended_scan_response -

Removed.
A single event API
(sl_bt_evt_scanner_scan_report) for
advertising reports.

gecko_cmd_le_gap_set_conn_phy sl_bt_connection_set_default_preferred_
phy

gecko_cmd_le_gap_set_conn_
parameters
gecko_cmd_le_gap_set_conn_timing_
parameters

sl_bt_connection_set_default_parameters

gecko_cmd_le_connection_close sl_bt_connection_close

gecko_cmd_le_connection_disable_slave
_latency sl_bt_connection_disable_slave_latency

gecko_cmd_le_connection_get_rssi sl_bt_connection_get_rssi

gecko_cmd_le_connection_read_channel
_map sl_bt_connection_read_channel_map

gecko_cmd_le_connection_set_
parameters
gecko_cmd_le_connection_set_timing_
parameters

sl_bt_connection_set_parameters

gecko_cmd_le_connection_set_phy
gecko_cmd_le_connection_set_preferred
_phy

sl_bt_connection_set_preferred_phy

gecko_cmd_system_get_bt_address sl_bt_system_get_identity_address

gecko_cmd_system_set_bt_address sl_bt_system_set_identity_address
gecko_cmd_system_set_tx_power sl_bt_system_set_max_tx_power

gecko_cmd_system_set_device_name sl_bt_ota_set_device_name

gecko_cmd_hardware_get_time - Use sleeptimer API
gecko_cmd_hardware_set_lazy_soft_
timer sl_bt_system_set_lazy_soft_timer Moved to system class

gecko_cmd_hardware_set_soft_timer sl_bt_system_set_soft_timer Moved to system class
gecko_cmd_flash_ps_erase sl_bt_nvm_erase Class renamed from flash to nvm
gecko_cmd_flash_ps_erase_all sl_bt_nvm_erase_all Class renamed from flash to nvm
gecko_cmd_flash_ps_load sl_bt_nvm_load Class renamed from flash to nvm
gecko_cmd_flash_ps_save sl_bt_nvm_save Class renamed from flash to nvm

gecko_cmd_<class_name>_
<cmd_name> sl_bt_<class_name>_<cmd_name>

For rest of the commands that aren't
mentioned in this table, prefix change
from gecko_cmd to sl_bt

 AN1255: Transitioning from the v2.x to the v3.x Bluetooth® SDK
 Bluetooth API

silabs.com | Building a more connected world. Rev. 0.3 | 17

5.5 Changes in BGAPI events

Just like BGAPI commands, BGAPI events are also renamed. In Bluetooth SDK v3.0 event IDs start with sl_bt_evt_ instead of
gecko_evt_. Similarly, the event struct types start with sl_bt_evt_ instead of gecko_msg_evt_, although these types are rarely
referenced in the application.

Additionally, some events are renamed because of changing BGAPI class. Table 5-3 contains all the events that have more than just the
name change.

Table 5-3. Changes in the BGAPI events

API 2.x API 3.0 Notes
gecko_evt_le_gap_scan_response_id

struct gecko_msg_le_gap_scan_response_evt_t

sl_bt_evt_scanner_scan_report_id

sl_bt_evt_scanner_scan_report_t

Moved to scanner class

gecko_evt_le_gap_extended_scan_response_id

struct
gecko_msg_le_gap_extended_scan_response_evt_t

sl_bt_evt_scanner_scan_report_id

sl_bt_evt_scanner_scan_report_t

Moved to scanner class

gecko_evt_le_gap_adv_timeout_id

struct gecko_msg_le_gap_adv_timeout_evt_t

sl_bt_evt_advertiser_timeout_id

sl_bt_evt_advertiser_timeout_t

Moved to advertiser
class

gecko_evt_le_gap_scan_request_id

struct gecko_msg_le_gap_scan_request_evt_t

sl_bt_evt_advertiser_scan_request_id

sl_bt_evt_advertiser_scan_request_t

Moved to advertiser
class

gecko_evt_hardware_soft_timer_id

struct gecko_msg_evt_hardware_soft_timer_t

sl_bt_evt_system_soft_timer_id

sl_bt_evt_system_soft_timer_t

Moved to system class

gecko_evt_le_connection_opened_id

struct gecko_msg_evt_le_connection_opened_t

sl_bt_evt_connection_opened_id

sl_bt_evt_connection_opened_t

Renamed to connection
class

gecko_evt_le_connection_closed_id

struct gecko_msg_evt_le_connection_closed_t

sl_bt_evt_connection_closed_id

sl_bt_evt_connection_closed_t

Renamed to connection
class

gecko_evt_le_connection_rssi_id

struct gecko_msg_evt_le_connection_rssi_t

sl_bt_evt_connection_rssi_id

sl_bt_evt_connection_rssi_t

Renamed to connection
class

gecko_evt_le_connection_parameters_id

struct gecko_msg_evt_le_connection_parameters_t

sl_bt_evt_connection_parameters_id

sl_bt_evt_connection_parameters_t

Renamed to connection
class

gecko_evt_le_connection_phy_status_id

struct gecko_msg_evt_le_connection_phy_status_t

sl_bt_evt_connection_phy_status_id

sl_bt_evt_connection_phy_status_t

Renamed to connection
class

gecko_evt_<class_name>_<event_name>_id

struct
gecko_msg_<class_name>_<event_name>_evt_t

sl_bt_evt_<class_name>_<event_name>_id

sl_bt_evt_<class_name>_<event_name>_t

For the rest of the
events that aren't
mentioned in this table

 AN1255: Transitioning from the v2.x to the v3.x Bluetooth® SDK
 Bluetooth API

silabs.com | Building a more connected world. Rev. 0.3 | 18

5.6 Enums and Defines

Due to the renamed classes some enumerations and definitions used by the Bluetooth API also change. The following table summarizes
these changes.

Table 5-4. Changes in the BGAPI enumerations and definitions

API 2.x API 3.0 Notes
le_gap_address_type_public
le_gap_address_type_random
le_gap_address_type_public_identity
le_gap_address_type_random_identity

gap_public_address
gap_static_address
gap_random_resolvable_address
gap_random_nonresolvable_address

Class renamed.
le_gap_address_type_public_identity
and
le_gap_address_type_random_identity
removed

le_gap_phy_1m
le_gap_phy_2m
le_gap_phy_coded

gap_1m_phy
gap_2m_phy
gap_coded_phy

Class renamed.
enum items renamed.

le_gap_non_discoverable
le_gap_limited_discoverable
le_gap_general_discoverable
le_gap_broadcast
le_gap_user_data

advertiser_non_discoverable
advertiser_limited_discoverable
advertiser_general_discoverable
advertiser_broadcast
advertiser_user_data

Moved to advertiser class

le_gap_non_connectable
le_gap_directed_connectable
le_gap_undirected_connectable
le_gap_connectable_scannable
le_gap_scannable_non_connectable
le_gap_connectable_non_scannable

advertiser_non_connectable
advertiser_directed_connectable
advertiser_connectable_scannable
advertiser_scannable_non_connectable
advertiser_connectable_non_scannable

Moved to advertiser class.
le_gap_undirected_connectable
removed. Corresponding enum value is
advertiser_connectable_scannable

le_gap_discover_limited
le_gap_discover_generic
le_gap_discover_observation

scanner_discover_limited
scanner_discover_generic
scanner_discover_observation

Moved to scanner class.

FLASH_PS_KEY_CTUNE NVM_KEY_CTUNE

 AN1255: Transitioning from the v2.x to the v3.x Bluetooth® SDK
 Bluetooth API

silabs.com | Building a more connected world. Rev. 0.3 | 19

5.7 Changes in the C API

The Bluetooth API has some commands that are not part of the BGAPI classes. They can be used in SoC applications only, for example
to fetch events. These commands are part of the so-called C API. Due to the unified nomenclature these commands are also renamed
in Bluetooth SDK v3.0, and some of them will not exist anymore due to the new software architecture. Return values are also unified
similar to the BGAPI commands.

Table 5-5. Changes in the C API

API 2.x API 3.0 Notes
struct gecko_cmd_packet sl_bt_msg_t
BGLIB_MSG_ID SL_BT_MSG_ID
struct gecko_cmd_packet* gecko_wait_event() sl_status_t sl_bt_wait_event(sl_bt_msg_t* evt) In API 3.0, an event object is

copied into the memory
provided by application. struct gecko_cmd_packet* gecko_peek_event() sl_status_t sl_bt_pop_event(sl_bt_msg_t* evt)

int gecko_event_pending() bool sl_bt_event_pending()
errorcode_t gecko_stack_init(const
gecko_configuration_t *config)

sl_status_t sl_bt_init_stack(const
sl_bt_configuration_t *config)

errorcode_t gecko_init(const
gecko_configuration_t *config)

- Component Configurator calls
the init functions. If not using
SSv5, call sl_bt_init_stack()
and the BGAPI class init
functions

uint32_t gecko_can_sleep_ms() - Power manager takes care of
sleeping uint32_t gecko_can_sleep_ticks(void) -

uint32_t gecko_sleep_for_ms(uint32 max) -
void gecko_priority_handle(void) void sl_bt_priority_handle(void)
void gecko_external_signal(uint32 signals) void sl_bt_external_signal(uint32_t signals)
void gecko_send_system_awake() void sl_bt_send_system_awake()
void gecko_send_system_error(uint16 reason,
uint8 data_len, const uint8* data)

void sl_bt_send_system_error(uint16_t
reason, uint8_t data_len, const uint8_t* data)

gecko_send_evt_user_message_to_host sl_bt_send_evt_user_message_to_host
gecko_send_rsp_user_message_to_target sl_bt_send_rsp_user_message_to_target

 AN1255: Transitioning from the v2.x to the v3.x Bluetooth® SDK
 Bluetooth API

silabs.com | Building a more connected world. Rev. 0.3 | 20

5.8 Migration Example

The following code snippets show an example how a v2.x application is to be updated to work in the v3.0 environment, considering all
the changes mentioned above. The sample code simply starts advertising on boot and restarts advertising on connection close.

Code written in Bluetooth SDK v2.x Code in Bluetooth SDK v3.0

#include "native_gecko.h"

void appMain(gecko_configuration_t* pconfig)
{
 initLog();
 gecko_init(pconfig);

 while (1)
 {
 struct gecko_cmd_packet* evt;
 evt = gecko_peek_event();

 // Handle stack events
 switch (BGLIB_MSG_ID(evt->header)) {
 case gecko_evt_system_boot_id:
 gecko_cmd_le_gap_set_advertise_timing(0,
 160, 160,
 0, 0);

 gecko_cmd_le_gap_start_advertising(0,
 le_gap_general_discoverable,
 le_gap_connectable_scannable);

 printLog("Started advertising\n");
 break;

 case gecko_evt_le_connection_opened_id:
 printLog("Connection opened\n");
 break;

 case gecko_evt_le_connection_closed_id:
 printLog("Connection closed\n");
 if (boot_to_dfu) {
 // Enter to OTA DFU mode.
 gecko_cmd_system_reset(2);
 } else {
 gecko_cmd_le_gap_start_advertising(0,
 le_gap_general_discoverable,
 le_gap_connectable_scannable);
 printLog("Started advertising\n");
 }
 break;

 default:
 break;
 }
 }
}

#include "sl_bt_api.h"
static uint8_t adv_h = 255; //adv. handle

void sl_bt_on_event(sl_bt_msg_t* evt)
{
 // Handle stack events
 switch (SL_BT_MSG_ID(evt->header)) {
 case sl_bt_evt_system_boot_id:
 err= sl_bt_advertiser_create_set(&adv_h);
 app_assert(err == SL_STATUS_OK,
 "[E: 0x%04x] Failed to create advertising
 set\n", (int)err);

 err = sl_bt_advertiser_set_timing(adv_h,
 160, 160,
 0, 0);
 app_assert(err == SL_STATUS_OK,
 "[E: 0x%04x] Failed to set advertising
 timing\n", (int)err);

 err = sl_bt_advertiser_start(adv_h,
 advertiser_general_discoverable,
 advertiser_connectable_scannable);
 app_assert(err == SL_STATUS_OK,
 "[E: 0x%04x] Failed to start
 advertising\n", (int)err);

 app_log("Started advertising\n");
 break;

 case sl_bt_evt_connection_opened_id:
 app_log("Connection opened\n");
 break;

 case sl_bt_evt_connection_closed_id:
 app_log("Connection closed\n");

 err = sl_bt_advertiser_start(adv_h,
 advertiser_general_discoverable,
 advertiser_connectable_scannable);
 app_assert(err == SL_STATUS_OK,
 "[E: 0x%04x] Failed to start
 advertising\n", (int)err);

 app_log("Started advertising\n");
 break;

 default:
 break;
 }
}

 AN1255: Transitioning from the v2.x to the v3.x Bluetooth® SDK
 GATT Configurator

silabs.com | Building a more connected world. Rev. 0.3 | 21

6 GATT Configurator

In Bluetooth SDK v3.0 the GATT Configurator is completely redesigned. The new user interface is more modern, while the generator tool
makes it possible to add partial extensions to the GATT database.

New projects automatically open a GATT configurator tab. If the tab isn’t open when modifying an existing project, go to the Project
Configurator Configuration Tools tab. Click Open next to GATT Configurator. Alternatively you can double-click the gatt_configura-
tion.btconf file in the Project Explorer view.

While the user interface design is completely new, the underlying functionality stays the same as in Bluetooth SDK v2.x: you can add
predefined and custom services/characteristics to your GATT database and configure them.

The GATT Configurator menu is:

1) Add an item.
2) Duplicate the selected item.
3) Move the selected item up.
4) Move the selected item down.
5) Import a GATT database.
6) Add Predefined.
7) Delete the selected item.

To add a custom service, click the Profile (Custom BLE GATT), and then click Add (1). To add a custom characteristic, select a service
and then click Add (1). To add a predefined service/characteristic click Add Predefined (6). To learn more about the configurator see
UG438: GATT Configurator User’s Guide for Bluetooth SDK v3.x.

2 3 4 5 6 7 1

 AN1255: Transitioning from the v2.x to the v3.x Bluetooth® SDK
 GATT Configurator

silabs.com | Building a more connected world. Rev. 0.3 | 22

A new GATT configurator feature is that it can accept partial database extensions from additional .xml files. This is important, because
some software components may need to contribute to the GATT database with its custom service. For example, the OTA DFU component
adds the OTA service to the GATT database by adding an ota_dfu.xml file, which defines the service, next to the .btconf file:

Another important innovation is that the GATT database-related files (gatt_db.c, gatt_db.h) are automatically regenerated as you edit and
save the file (changes are not autosaved). There is no need to manually start the generator script as in Bluetooth SDK v2.x.

Migrating the GATT database is easy. You can import the database from your old project by clicking Import (6), and selecting
the gatt.xml file of your old project. If your old database contains an OTA service, remove it from the database. It is defined by
the new OTA DFU component.

 AN1255: Transitioning from the v2.x to the v3.x Bluetooth® SDK
 Stack Configuration and Initialization

silabs.com | Building a more connected world. Rev. 0.3 | 23

7 Stack Configuration and Initialization

7.1 Configuration

The Bluetooth stack can be configured by passing a configuration structure to the stack init function. In Bluetooth SDK v2.x the configu-
ration structure is defined in gecko_configuration.h, and the default configuration is usually defined in main.c, like this:

static gecko_configuration_t config = {
 .config_flags = 0, /* Check flag options from UG136 */
#if defined(FEATURE_LFXO) || defined(PLFRCO_PRESENT)
 .sleep.flags = SLEEP_FLAGS_DEEP_SLEEP_ENABLE, /* Sleep is enabled */
#else
 .sleep.flags = 0,
#endif
 .bluetooth.max_connections = MAX_CONNECTIONS, /* Maximum number of simultaneous
 * connections */
 .bluetooth.max_advertisers = MAX_ADVERTISERS, /* Maximum number of advertisement sets */
 .bluetooth.heap = bluetooth_stack_heap, /* Bluetooth stack memory for connection
 * management */
 .bluetooth.heap_size = sizeof(bluetooth_stack_heap),/* Bluetooth stack memory for connection
 * management */
#if defined(FEATURE_LFXO)
 .bluetooth.sleep_clock_accuracy = 100, /* Accuracy of the Low Frequency Crystal
 * Oscillator in ppm. *
 * Do not modify if you are using a module */
#elif defined(PLFRCO_PRESENT)
 .bluetooth.sleep_clock_accuracy = 500, /* In case of internal RCO the sleep clock
accuracy is 500 ppm */
#endif
 .gattdb = &bg_gattdb_data, /* Pointer to GATT database */
 .ota.flags = 0, /* Check flag options from UG136 */
 .ota.device_name_len = 3, /* Length of the device name in OTA DFU mode */
 .ota.device_name_ptr = "OTA", /* Device name in OTA DFU mode */
 .pa.config_enable = 1, /* Set this to be a valid PA config */
#if defined(FEATURE_PA_INPUT_FROM_VBAT)
 .pa.input = GECKO_RADIO_PA_INPUT_VBAT, /* Configure PA input to VBAT */
#else
 .pa.input = GECKO_RADIO_PA_INPUT_DCDC, /* Configure PA input to DCDC */
#endif // defined(FEATURE_PA_INPUT_FROM_VBAT)
 .rf.flags = GECKO_RF_CONFIG_ANTENNA, /* Enable antenna configuration. */
 .rf.antenna = GECKO_RF_ANTENNA, /* Select antenna path! */

};

In Bluetooth SDK v3.0 the configuration structure is defined in sl_bt_stack_config.h with slightly renamed type definitions:

Table 7-1. Changes in Bluetooth Configuration Types

API 2.x API 3.0 Notes
gecko_configuration_t sl_bt_configuration_t
gecko_bluetooth_config_t sl_bt_stack_config_t
gecko_* sl_bt_*

The configuration structure itself does not change much between v2.x and v3.0. Only the OTA config is removed from the structure. New
runtime commands are provided for setting OTA flags and device name.

In Bluetooth SDK v3.0 the default configuration is defined in the sl_bluetooth_config.h header file instead of main.c. Moving the default
configuration out of main.c separates config from functionality, and it also makes it possible to configure the stack using the Component
Editor.

To edit the configuration parameters using a normal text editor, open sl_bluetooth_config.h.

 AN1255: Transitioning from the v2.x to the v3.x Bluetooth® SDK
 Stack Configuration and Initialization

silabs.com | Building a more connected world. Rev. 0.3 | 24

To edit the configuration parameters using the Component Editor in SSv5, go to the Software Components tab, find the Bluetooth Core
component, and click Configure:

Set the configuration values in the input fields. The values will be automatically verified and saved into the header file without any fur-
ther action needed.

 AN1255: Transitioning from the v2.x to the v3.x Bluetooth® SDK
 Stack Configuration and Initialization

silabs.com | Building a more connected world. Rev. 0.3 | 25

7.2 Initialization

To initialize the Bluetooth stack, many functions have to be called: one for initializing the stack in general with the configuration structure
and one for each BGAPI class (such as gap, gatt, connection, and so on) to initialize the classes. Furthermore, additional stack features
(such as AFH) have to be initialized with a feature init function. All of these functions are slightly renamed in Bluetooth SDK v3.0.

Table 7-2. Changes in Bluetooth init functions

API 2.x API 3.0 Notes
gecko_stack_init(config) sl_bt_init_stack(config)
gecko_bgapi_class_*_init() sl_bt_class_*_init() For initializing BGAPI classes for NCP mode, add definition (-

D) SL_BT_API_FULL in application project.
gecko_init_<feature> sl_bt_init_<feature>

In Bluetooth SDK v2.x, gecko_init(*config) can be used to initialize the stack. This function calls gecko_stack_init(con-
fig) and all the BGAPI class init functions that are usually needed in a general Bluetooth application. Unnecessary classes can be
removed (to free up memory) and additional class init functions can be added based on the needs of the application. If a class is not
initialized the BGAPI commands of that class cannot be called. Additional features always have to be initialized after the stack init if they
are needed.

In Bluetooth SDK v3.0 each BGAPI class has a corresponding software component. This means that classes can be initialized by adding
their respective software component. When adding the “Bluetooth” component to your project, most BGAPI classes are also added by
default. To initialize additional classes, go to the Software Components tab and install the corresponding component. To remove unnec-
essary classes, uninstall the corresponding components. Filter on installed components to make the search easier. This may help make
your application size smaller.

Additional features, such as Adaptive Frequency Hopping, Periodic Advertising, and so on can be initialized the same way as BGAPI
classes, by installing the corresponding software component:

When migrating your project from v2.x to v3.0 it is recommended to remove all the initialization code from app.c and to add the
proper software components to your project instead.

 AN1255: Transitioning from the v2.x to the v3.x Bluetooth® SDK
 AppLoader

silabs.com | Building a more connected world. Rev. 0.3 | 26

8 AppLoader

Beginning with Bluetooth SDK v3.0 the AppLoader uses a new feature of the bootloader: parsing GBL headers in RAM. This means that
GBL headers do not have to be stored in flash during application update, which makes the process a bit faster, and more importantly it
does not make the old application image corrupt if the GBL headers are incorrect.

However, this also means that the AppLoader in Bluetooth SDK v3.0 is incompatible with older bootloader versions. Therefore,
if you migrate your project to Bluetooth SDK v3.0, and you use the AppLoader in the newly created project, rebuild the boot-
loader in v3.0 by selecting the bootloader example and building it, and update your device with the resulting compatible boot-
loader.

For information about building and using bootloaders, see UG266: Silicon Labs Gecko Bootloader User’s Guide and online content at
docs.silabs.com.

https://www.silabs.com/documents/public/user-guides/ug266-gecko-bootloader-user-guide.pdf
https://docs.silabs.com/bluetooth/latest/

 AN1255: Transitioning from the v2.x to the v3.x Bluetooth® SDK
 Migrating NCP projects

silabs.com | Building a more connected world. Rev. 0.3 | 27

9 Migrating NCP projects

Migrating an NCP application is usually easy, since the stack and the application are well-separated. While the stack is running on the
NCP target, the application is running on the NCP host. Therefore, a stack update usually does not affect the application except that the
API changes must be respected.

An SDK update in the NCP use case means that:
1. The NCP target device must be programmed with the NCP – Empty sample app of the new SDK.
2. UART pins must be configured in the sample app.
3. The GATT database must be imported in the sample app.

Furthermore,
4. The NCP host device must include the new BGAPI header files, so that it can communicate with the target.
5. Deprecated API calls must be updated, if there are any.

Upgrading the NCP target code from Bluetooth SDK v2.x to v3.0 is easy. A new NCP – Empty project must be generated with Bluetooth
SDK v3.0. The UART pins can be easily configured with the Pin Tool, and the GATT database can be easily imported with the GATT
Configurator. Should you use deep sleep mode in the NCP target, you must install the Wake Lock component and configure it. For more
information see AN1259: Using the Silicon Labs v3.x Bluetooth® Stack in Network Co-Processor Mode.

The NCP host update involves more changes. After updating the header files, not only the full Bluetooth API has to be updated but also
some BGLIB commands and macros.

An NCP host code using Bluetooth SDK v2.x must contain the following header files:
• bg_errorcodes.h
• bg_types.h
• host_gecko.h
• gecko_bglib.h
and the following source file:
• gecko_bglib.c

An NCP host code using Bluetooth SDK v3.0 must contain the following header files:
• sl_status.h (in SDK_DIR/platform/common/inc)
• sl_bt_types.h (in SDK_DIR/protocol/bluetooth/inc)
• sl_bt_api.h (in SDK_DIR/protocol/bluetooth/inc)
• sl_bt_ncp_host.h (in SDK_DIR/protocol/bluetooth/inc)
and the following source files:
• sl_bt_ncp_host_api.c (in SDK_DIR/protocol/bluetooth/src)
• sl_bt_ncp_host.c (in SDK_DIR/protocol/bluetooth/src)

The new header files use the new nomenclature (commands/events starting with sl_bt_...) even if the underlying BGAPI packet content,
which is sent to the target device via UART, may be unchanged in some cases. Therefore NCP host code must be completely updated
according the description in section 5 Bluetooth API, using the new BGAPI.

Beside the changes in BGAPI (Bluetooth commands and events), the host API is also changed similarly to the changes in C API detailed
in section 5.7 Changes in the C API. The following table summarizes the changes in the host API:

Table 9-1. Changes in the Host API

API 2.x API 3.0 Notes
BGLIB_DEFINE SL_BT_API_DEFINE
BGLIB_INITIALIZE SL_BT_API_INITIALIZE
BGLIB_INITIALIZE_NONBLOCK SL_BT_API_INITIALIZE_NONBLOCK
struct gecko_cmd_packet sl_bt_msg_t
BGLIB_MSG_ID SL_BT_MSG_ID

https://www.silabs.com/documents/public/application-notes/an1259-bt-ncp-mode-sdk-v3x.pdf

 AN1255: Transitioning from the v2.x to the v3.x Bluetooth® SDK
 Migrating NCP projects

silabs.com | Building a more connected world. Rev. 0.3 | 28

API 2.x API 3.0 Notes
struct gecko_cmd_packet* gecko_wait_event() sl_status_t sl_bt_wait_event(sl_bt_msg_t* evt) In API 3.0, an event object is

copied into the memory
provided by application. struct gecko_cmd_packet* gecko_peek_event() sl_status_t sl_bt_pop_event(sl_bt_msg_t* evt)

int gecko_event_pending() bool sl_bt_event_pending()

The NCP host code must be updated according to these changes. For example fetching an event changes from:

struct gecko_cmd_packet *p;
p = gecko_wait_event();
switch (BGLIB_MSG_ID(p->header)) {…}

to:

sl_bt_msg_t evt;
sl_bt_msg_t *p = &evt;
sl_bt_wait_event(&evt);
switch (SL_BT_MSG_ID(p->header)) {…}

Regarding the software architecture, the empty host example created for PCs (in SDK_DIR/app/bluetooth/example_host/empty) is up-
dated to align with the new SoC software architecture (see section 4 Software Architecture). While it is not necessary to update the
architecture on the NCP host, it is recommended to use this new architecture on newly created NCP host projects, so that it aligns with
SoC code.

The NCP – host example created for EFR devices (find it among the example projects in SSv5) is also updated to the new software
architecture. If the host runs on a Silicon Labs device, it is highly recommended to start a new NCP – host project with the new software
architecture, and migrate your code into it, just as for an SoC project.

 AN1255: Transitioning from the v2.x to the v3.x Bluetooth® SDK
 Migration Summary

silabs.com | Building a more connected world. Rev. 0.3 | 29

10 Migration Summary

This section summarizes the steps required to migrate a project from Bluetooth SDK v2.x with Simplicity Studio 4 to Bluetooth SDK v3.0
with Simplicity Studio 5.
1. Create a new SoC-Empty project in the new SDK from the SSv5 Launcher view (section 2 Project Structure).

 AN1255: Transitioning from the v2.x to the v3.x Bluetooth® SDK
 Migration Summary

silabs.com | Building a more connected world. Rev. 0.3 | 30

2. Familiarize yourself with the functionality available through the Component Library. Then install components that correspond to func-
tions in your original project (section 3 Software Components).

3. If your application was RTOS-based, add the Micrium Kernel component (section 4.2 RTOS).
4. Remove all the initialization code from app.c and instead add the corresponding software components to your project (section 7.2

Initialization).
5. Edit any configuration parameters, either in sl_bluetooth_config.h using a text editor, or in the Component Editor in SSv5. Changes

there are automatically saved (section 7.1 Configuration).

 AN1255: Transitioning from the v2.x to the v3.x Bluetooth® SDK
 Migration Summary

silabs.com | Building a more connected world. Rev. 0.3 | 31

6. Copy the Bluetooth event handlers from appMain() into sl_bt_on_event() defined in app.c. If your application is RTOS-
based, the parallel application task must be started in app_init(), which is also defined in app.c (section 4.1 Bluetooth Event
Handling).

7. Review the Bluetooth API changes detailed in section 5 Bluetooth API. Edit your application code accordingly. Most function names
are just renamed from gecko_cmd_ to sl_bt_ While there are exceptions, the compiler will give a verbose error message giving
the name of the replacement function when compiling with the old API.

8. If your new project uses AppLoader, rebuild the bootloader in GSDK v3.0, and update your device with the compatible bootloader
(section 8 AppLoader).

9. Import the GATT database from your old project by opening the GATT Configurator, clicking Import, and selecting the gatt.xml file of
your old project. If your old database contains an OTA service, remove it from the database. It is defined by the new OTA DFU
component.

10. If the application uses a Host/NCP configuration, both the target and the host must be updated.

Target:
1. The target device must be programmed with the NCP – Empty sample app of the new SDK.
2. UART pins must be configured in the sample app.
3. The GATT database must be imported in the sample app.

Host:
1. The host device must include the new BGAPI header files, so that it can communicate with the target.
2. Deprecated API calls must be updated, if there are any.

See section 9 Migrating NCP projects for more information.

IoT Portfolio
www.silabs.com/IoT

SW/HW
www.silabs.com/simplicity

Quality
www.silabs.com/quality

Support & Community
www.silabs.com/community

Simplicity Studio

One-click access to MCU and wireless
tools, documentation, software, source
code libraries & more. Available for
Windows, Mac and Linux!

Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
USA

http://www.silabs.com

Disclaimer
Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software
implementers using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to

of use of the information supplied in this document. This document does not imply or expressly grant any license to design or fabricate any integrated circuits. The
products are not designed or authorized to be used within any FDA Class III devices, applications for which FDA premarket approval is required, or Life Support Systems

products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable
of delivering such weapons. Silicon Labs disclaims all express and implied warranties and shall not be responsible or liable for any injuries or damages related to use of a
Silicon Labs product in such unauthorized applications.

Trademark Information
Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, ClockBuilder®, CMEMS®, DSPLL®, EFM®,
EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, “the world’s most energy friendly microcontrollers”, Ember®, EZLink®, EZRadio®,
EZRadioPRO®, Gecko®, Gecko OS, Gecko OS Studio, ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress®, Zentri,
the Zentri logo and Zentri DMS, Z-Wave®, and others are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or
registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. Wi-Fi is a registered trademark of the Wi-Fi Alliance. All other products or brand
names mentioned herein are trademarks of their respective holders.

	1 Introduction
	2 Project Structure
	3 Software Components
	4 Software Architecture
	4.1 Bluetooth Event Handling
	4.2 RTOS

	5 Bluetooth API
	5.1 Functionality Breaks
	5.2 Error Code Changes
	5.3 Changes in the BGAPI Classes
	5.4 Changes in BGAPI Commands
	5.5 Changes in BGAPI events
	5.6 Enums and Defines
	5.7 Changes in the C API
	5.8 Migration Example

	6 GATT Configurator
	7 Stack Configuration and Initialization
	7.1 Configuration
	7.2 Initialization

	8 AppLoader
	9 Migrating NCP projects
	10 Migration Summary

