

silabs.com | Building a more connected world. Copyright © 2023 by Silicon Laboratories Rev. 0.2

AN1320: Building a Customized NCP
Application with Zigbee EmberZNet 7.x

The ability to build a customized NCP application image was
introduced in EmberZNet PRO 5.4.1. Version 7.0 of the Zigbee
EmberZNet SDK, used with Simplicity Studio 5, inroduced a
component-based project architecture that replaced AppBuilder.
This application note provides instructions for configuring various
aspects of a component-based NCP application using the tools
included in Simplicity Studio 5.

If you are working with Zigbee EmberZNet SDK v 6.10.x or lower, see AN1010: Building
a Customized NCP Application for this information.

KEY POINTS

• Instructions cover starting from an exam-
ple or from a new file.

• Customizations include target hardware,
initialization, main loop processing, event
definition and handling, and host/NCP
command extensions.

 AN1320: Building a Customized NCP Application with Zigbee EmberZNet 7.x and Higher
 Introduction

silabs.com | Building a more connected world. Rev. 0.2 | 2

1 Introduction

The Zigbee EmberZNet stack supports the ability to build NCP applications in the Simplicity Studio IDE, with customizations for target
hardware, initialization, main loop processing, event definition and handling, and host/NCP command extensions. This application note
describes how to configure a customized NCP application using the Zigbee EmberZNet 7x stack for EFR32 devices.

If you are not familiar with using Simplicity Studio to configure an example application and then build the application image and load it
and a bootloader onto a device, refer to QSG180: Zigbee EmberZNet Quick-Start Guide for SDK 7.x and Higher and the online Simplicity
Studio 5 User’s Guide.

A PIN tool is available that allows you to modify peripheral configurations, including pin settings. You can access the tool through the
Project Configurator Tools tab. See the Simplicity Studio 5 User’s Guide for more information.

https://docs.silabs.com/simplicity-studio-5-users-guide/latest/ss-5-users-guide-overview/
https://docs.silabs.com/simplicity-studio-5-users-guide/latest/ss-5-users-guide-overview/
https://docs.silabs.com/simplicity-studio-5-users-guide/latest/ss-5-users-guide-overview/

 AN1320: Building a Customized NCP Application with Zigbee EmberZNet 7.x and Higher
 Theory of Operation

silabs.com | Building a more connected world. Rev. 0.2 | 3

2 Theory of Operation

The Zigbee EmberZNet stack includes example applications that can be configured to work over either SPI or UART. Silicon Labs rec-
ommends that you use either the NCP SPI or NCP UART (HW) example applications as a starting point for building a customized NCP
application. Starting in GSDK version 4.1.0.0 or EmberZNet version 7.1.0.0, Host and NCP applications can be configured to work over
a Co-Processor Communication (CPC) link, whereby CPC handles the physical UART or SPI connection. CPC provides reliable and
secure transport across either SPI or UART serial lines. In addition, CPC supports multiprotocol operation by allowing multiple endpoints
on either side of the serial line. For more information on how CPC works, see AN1351: Using the Co-Processor
Communication Daemon (CPCd). For information on using CPC with multiprotocol RCP and NCP applications, see AN1333: Running
Zigbee, OpenThread, and Bluetooth Concurrently on a Linux Host with a Multiprotocol Co-Processor.

The following instructions show how to build a standard NCP SPI or NCP UART (HW) application. More information is provided later in
this document on how to build an NCP CPC application, or an NCP that is meant to interface with CPC in order to communicate to the
host processor.

To override the default stack settings for the NCP, find and select the Pro Stack component, and click Configure. For example, to change
the maximum number of supported end device children from the default of 32, under the Child Table Size parameter, enter the desired

https://www.silabs.com/documents/public/application-notes/an1351-using-co-processor-communication_daemon.pdf
https://www.silabs.com/documents/public/application-notes/an1351-using-co-processor-communication_daemon.pdf
https://www.silabs.com/documents/public/application-notes/an1333-concurrent-protocols-with-802-15-4-rcp.pdf
https://www.silabs.com/documents/public/application-notes/an1333-concurrent-protocols-with-802-15-4-rcp.pdf

 AN1320: Building a Customized NCP Application with Zigbee EmberZNet 7.x and Higher
 Theory of Operation

silabs.com | Building a more connected world. Rev. 0.2 | 4

maximum number of end device children that you can join directly to the NCP. Note that the maximum value is 64. The precompiled NCP
binaries are limited to 32 children.

 AN1320: Building a Customized NCP Application with Zigbee EmberZNet 7.x and Higher
 Component Customizations

silabs.com | Building a more connected world. Rev. 0.2 | 5

3 Component Customizations

One way to customize your NCP design is through the component configuration. Examples of common customizations follow. On the
Software Components tab, use Search and the filters to find the referenced components.

3.1 Default Pins

For EFR32 platforms, to change the default pins used for EZSP-SPI or EZSP-UART communication, use the following instructions:
• For SPI NCP designs:

• Install the SPI NCP Configuration component. This should already be installed if you are starting from the NCP SPI example
application. In the component configuration options, check that the Selected Module setting matches your desired USART for
SPI NCP communication and that the LEGACY_NCP_SPI_WAKE_INT and LEGACY_NCP_SPI_HOST_INT pin settings match
your desired signal pinout for SPI communication.

• For UART NCP designs:
• Select the vcom component and install it if it is not already installed. In the Component Editor, on the

SL_IOSTREAM_USART_VCOM card, verify that the Selected Module setting matches your desired USART Port for UART
NCP communication.

• For CPC NCP designs, no action is needed, as configuration is handled by the CPC instance.

3.2 Network and Stack Parameters

• In the Binding Table Library component, change the Binding Table Size parameter to the max desired binding table size used by
the NCP.

• In the Security Link Keys Library component, change the Link Key Table Size parameter to the desired maximum number of
unique APS link keys used by the NCP. Note that if you are configuring your NCP to act as a Trust Center with Zigbee 3.0 Security
(as set in the Network Creator Security component), it is not necessary to have a unique key table entry for every device. Instead,
a single security key known as a Master Key is used to compute unique keys via an AES-HMAC hash function for each device.
However, supporting install-code-based keys requires a link key table with as many entries as the number of install-code-based keys
you wish to support simultaneously for joining devices with install code support.

• In the Pro Stack component, change the Child Table Size parameter to the desired maximum number of end device children joined
directly to the NCP. Note that, while the on-screen text says the value range is 0-127, you cannot build the app if you enter a value
greater than 64. The precompiled images are limited to 32 children.

• In the Pro Stack component, increase/decrease other option parameters to meet your needs. You may need to reduce values like
Packet Buffer Count, which has a high RAM overhead, if your build fails due to lack of available RAM in the memory map. However,
note that most memory-related parameters here simply represent defaults when the NCP boots, and these settings can be overridden
by the host during run-time configuration when the NCP is initialized.

3.3 Security

For devices implementing Trust Center functionality (either as a coordinator providing centralized trust center responsibilities for the
network or a router in a decentralized trust center configuration), you may wish to override the EZSP Trust Center policy’s decisions about
when and how to provide the current network security key to a joining or rejoining device. The following callback provides this feature:

EmberJoinDecision emberAfPluginEzspSecurityTrustCenterJoinCallback(EmberNodeId newNodeId,
 const EmberEUI64 newNodeEui64,
 EmberDeviceUpdate status,
 EmberNodeId parentOfNewNode,
 EzspDecisionId decisionId,
 EmberJoinDecision joinDecision)

3.4 NCP Event Definition and Handling

Event definitions and handlers must be defined directly in the source code. More details can be found in UG491: Application Framework
Developer’s Guide for SDK 7.x.

 AN1320: Building a Customized NCP Application with Zigbee EmberZNet 7.x and Higher
 Component Customizations

silabs.com | Building a more connected world. Rev. 0.2 | 6

3.5 Custom Messaging

To implement custom messages between NCP and host, the developer defines and implements the format, parsing, and serialization of
the message set. The serialized messages are conveyed between NCP and host as opaque byte strings. This “extensible network co-
processor” functionality is provided by the XNCP component.

To send a custom message to the host, construct and serialize the message, then send the resulting byte string to the host using the
EmberZNet PRO API function emberAfPluginXncpSendCustomEzspMessage().

After installing the XNCP component, the following callback definitions are provided through the component for custom 2-way messaging
over EZSP. They should be implemented in the project callbacks file.

emberAfPluginXncpIncomingCustomFrameCallback - Processing of custom incoming serial frames from the EZSP host

emberAfIncomingMessageCallback - Custom processing of received Zigbee application layer messages before passing these
(through Incoming Message Callback frames) to the EZSP host

Note that custom outgoing serial frames from the NCP to the EZSP host should be provided as response frames to the host in reply to a
Callbacks EZSP command or some custom host-to-NCP EZSP command, where they can be handled by the following host-side callback:
void ezspCustomFrameHandler(int8u payloadLength, int8u* payload).

3.6 Serial Transport

In GSDK version 4.1.0.0 or EmberZNet version 7.1.0.0, users have several options for handling the serial transport of commands between
the host application and NCP application. The NCP SPI and NCP UART (HW) applications have code that handles the serialization of
data across the SPI or UART connection. These applications do not use CPC. In order to have the application utilize CPC to communicate
to the host application, the following changes can easily be made to an existing NCP application.

Begin by creating either the NCP SPI or NCP UART (HW) application in Simplicity Studio. The project name may be changed to ncp-cpc
if desired. Once the project landing page loads, open the Software Components tab, and click the Quality filter. Make sure that Production
and Evaluation components are visible. An example is shown below.

 AN1320: Building a Customized NCP Application with Zigbee EmberZNet 7.x and Higher
 Component Customizations

silabs.com | Building a more connected world. Rev. 0.2 | 7

All that remains is to update the following components:
• Unselect NCP UART Hardware Flow Control, if selected. This will also remove dependencies.
• Unselect NCP UART Software Flow Control, if selected. This will also remove dependencies.
• Unselect NCP SPI, if selected. This will also remove dependencies.
• Unselect the IO Stream: USART component and its VCOM instance, if installed.
• Select and install either the CPC Secondary – SPI (USART) or CPC Secondary – UART (USART) component based on the configured

serial line. A popup will appear prompting for an instance name. After choosing an instance name, click Done.
• Select and install NCP CPC.

Once this is complete, the project is configured. The project can now be built and flashed to an EFR32, which will allow the device to
connect with a CPC-capable host application.

Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
USA

www.silabs.com

IoT Portfolio
www.silabs.com/IoT

SW/HW
www.silabs.com/simplicity

Quality
www.silabs.com/quality

Support & Community
www.silabs.com/community

Simplicity Studio
One-click access to MCU and wireless
tools, documentation, software,
source code libraries & more. Available
for Windows, Mac and Linux!

Disclaimer
Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software imple-
menters using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each
specific device, and “Typical” parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon
Labs reserves the right to make changes without further notice to the product information, specifications, and descriptions herein, and does not give warranties as to the
accuracy or completeness of the included information. Without prior notification, Silicon Labs may update product firmware during the manufacturing process for security or
reliability reasons. Such changes will not alter the specifications or the performance of the product. Silicon Labs shall have no liability for the consequences of use of the infor-
mation supplied in this document. This document does not imply or expressly grant any license to design or fabricate any integrated circuits. The products are not designed or
authorized to be used within any FDA Class III devices, applications for which FDA premarket approval is required or Life Support Systems without the specific written consent
of Silicon Labs. A “Life Support System” is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in
significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used
in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. Silicon Labs disclaims
all express and implied warranties and shall not be responsible or liable for any injuries or damages related to use of a Silicon Labs product in such unauthorized applications.
Note: This content may contain offensive terminology that is now obsolete. Silicon Labs is replacing these terms with inclusive language wherever possible. For more
information, visit www.silabs.com/about-us/inclusive-lexicon-project

Trademark Information
Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy
Micro logo and combinations thereof, “the world’s most energy friendly microcontrollers”, Redpine Signals®, WiSeConnect , n-Link, ThreadArch®, EZLink®, EZRadio®, EZRadioPRO®,
Gecko®, Gecko OS, Gecko OS Studio, Precision32®, Simplicity Studio®, Telegesis, the Telegesis Logo®, USBXpress® , Zentri, the Zentri logo and Zentri DMS, Z-Wave®, and others
are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered
trademark of ARM Limited. Wi-Fi is a registered trademark of the Wi-Fi Alliance. All other products or brand names mentioned herein are trademarks of their respective holders.

	1 Introduction
	2 Theory of Operation
	3 Component Customizations
	3.1 Default Pins
	3.2 Network and Stack Parameters
	3.3 Security
	3.4 NCP Event Definition and Handling
	3.5 Custom Messaging
	3.6 Serial Transport

