SILICON LABS

AN1322: Dynamic Multiprotocol Development
with Bluetooth® and Zigbee EmberZNet SDK
7.0 and Higher

This application note provides details on developing Dynamic
Multiprotocol applications using Bluetooth and Zigbee in GSDK 4.0
and higher. It describes how to configure applications in Simplicity « Generating and loading dynamic multi-
Studio using Zigbee EmberZNet SDK v. 7.0 and higher. It then protocol example applications.
provides a detailed walkthrough on how the underlying code | * {ing yraine suibroiocs functional
functions. For details on Dynamic Multiprotocol Application « Details on the application User Interface.
development that apply to all protocol combinations see UG305: « How the Zigbee example applications

Dynamic Multiprotocol User’s Guide. function.

* How the Bluetooth application functions.

KEY POINTS

Zigbee EmberZNet SDK v7.0 introduced a component-based project architecture that re-
placed AppBuilder. If you are working with Zigbee EmberZNet SDK v 6.10.x or lower, see
AN1133: Dynamic Multiprotocol Developer with Bluetooth and Zigbee EmberZNet SDK 6.x
and Lower for this information.

silabs.com | Building a more connected world. Copyright © 2023 by Silicon Laboratories

AN1322: Dynamic Multiprotocol Development with Bluetooth and Zigbee EmberZNet SDK 7.0 and Higher
Introduction

1 Introduction

The example applications referenced here can be controlled either from a protocol-specific switch application or from a Bluetooth-enabled
smartphone app. This application note provides details on how these examples are designed and implemented. It also describes how to
generate, compile, and load example application code, and how to add dynamic multiprotocol functionality to an existing Zigbee project.
The application note is intended to be used when developing your own Zigbee/Bluetooth dynamic multiprotocol implementations.

Note: The Zigbee dynamic multiprotocol solution is currently only supported for SoC architectures. Support for NCP architectures has
been deprecated in favor of DMP RCP. Please contact Silicon Labs Sales for more information on our multiprotocol software roadmap.

1.1 Resources

e UG305: Dynamic Multiprotocol User's Guide provides details on:

e Dynamic Multiprotocol Architecture
e Radio Scheduler operation (with examples)
e Task Priority management

e AN1135: Using Third Generation Non-Volatile Memory (NVM3) Data Storage explains how NVM3 can be used as non-volatile data
storage in Dynamic Multiprotocol applications with Zigbee and Bluetooth.

1.2 Development Environment Requirements

e Simplicity Studio 5

e GSDK 4.0 or higher, which includes Zigbee EmberZNet SDK version 7.0.0 or higher and Bluetooth SDK 3.3 or higher.
e An EFR32 chip with at least 512 kB of flash (required to run all the necessary software components)

To work with the demos, download the EFR Connect app from Google Play Store or App Store.

silabs.com | Building a more connected world.

AN1322: Dynamic Multiprotocol Development with Bluetooth and Zigbee EmberZNet SDK 7.0 and Higher
Working with the Zigbee/Bluetooth Examples

2 Working with the Zigbee/Bluetooth Examples

This section describes
e How to build and flash the dynamic multiprotocol applications supplied with the Zigbee EmberZNet SDK.
e How to add Bluetooth to a Zigbee project and turn it into a dynamic multiprotocol project.

21 Application Generation

To work with Zigbee/Bluetooth dynamic multiprotocol applications as decribed in this application note, you must install GSDK 4.0 or
higher. The applications can be built with GCC (The GNU Compiler Collection) or IAR-EWARM. See QSG180: Getting Started with
EmberZNet PRO for information on installing the SDKs and setting up compilers.

Dynamic multiprotocol applications are generated, built, and uploaded in the same way as other applications. If you are not familiar with
these procedures, see QSG180: Zighee EmberZNet Quick-Start Guide for SDK 7.0 and Higher for details. The dynamic multiprotocol
applications included with the EmberZNet SDK are:

¢ DynamicMultiprotocolLight is an application designed to demonstrate a DMP device with Zigbee 3.0 coordinator capabilities.
¢ DynamicMultiprotocolLightSed is an application designed to demonstrate a DMP device with SED capabilities.

The following summary procedure uses the DynamicMultiprotocolLight example application.

1. In Simplicity Studio, start a new project based on the DynamicMultiprotocolLight example. It is easiest to select Zigbee as the
Technology Type and filter on the word “dynamic.”

EFR32MG12 2.4 GHz 10 dBm RB, WSTK Mainboard (ID: 000440126221)

OVERVIEW EXAMPLE PROJECTS & DEMOS DOCUMENTATION COMPATIBLE TOOLS

Run a pre-compiled demo or create a new project based on a software example.

20 resources found

Filter on keywords

DynamicMultiprotocolLight DynamicMultiprotocolLightSed
. . This is a sample application demonstrating a light application This is a sample application demonstrating a sleepy light
using dynamic multipretocel (ZigBee + BLE) and NVM3 for CREATE application using dynamic multiprotocol (ZigBee + BLE) and CREATE
Example Projects . persistent storage. NVM3 for persistent storage.
View Project Documentation [£ View Project Documentation [4
Solution Examples .
o What are Demo and Example Projects?
GPD Sensor GPD Switch
~ Technoloqy Type @ Clear Filter This is a Green Power Sensor Device that pairs with a GP This is a Green Power On/Off Switch Device that pairs with a -
CREATE CREATE
I:, Bluetooth Mesh (&) Combo or Sink device and sends gpd reports periodically. GP Combo or Sink Light and controls its operation.
View Project Documentation 2 View Project Documentation 5
[Bootloader (13)
[Platform (47)
[Proprietary (25) StandardizedRfTesting WireFreeController
This is a pre-standardization implementation of Zigbee's RF This is a WireeFree Controller PoC application demonstrating
D Thread (8) testing standard. It utilizes the TIS (Total Isotropic Sensivity)/ a controller device. Requires IAR. CREATE

Zigbee (20) TRP (Total Radiated Power) testing interfaces and is optional CREATE View Project Documentation 4

for Zigbee certifications. This application adheres to the

- Provider € Clear Filter Zigbee RF Performance Test Spec v1.0
D Gecko SDK Suite v4.0.0 (20) View Project Documentation [£
~ Quality © Clear Filter
] ALPHA (0) WireFreeShades Z3 Door Lock With Wwah

This is a WireeFree Shades PoC application demonstrating a This is a Zigbee 3.0 end device door-lock application with the CREATE
[C] INTERNAL (11) CREATE

shades device. Requires IAR Works With All Hubs cluster enabled.

[[] None Specified (40) View Project Documentation [

PRODUCTION (20)

[J TesT(0) . . .
Z3 Light With Wwah Z3 Sleepy Door Lock With Wwah
This is a Zigbee 3.0 router light application with the Works This is a Zigbee 3.0 sleepy end device door-lock application
With All Hubs cluster enabled. CREATE with the Works With All Hubs cluster enabled. CREATE
View Project Documentation [£ View Project Documentation [4

silabs.com | Building a more connected world.

AN1322: Dynamic Multiprotocol Development with Bluetooth and Zigbee EmberZNet SDK 7.0 and Higher
Working with the Zigbee/Bluetooth Examples

2. Once the project is created, files are generated automatically. Click Build (hammer icon) to build the application image.
3. To flash the application image, in Project Explorer view right-click the application .s37 file and select Flash to Device.

11 Project Explorer &2 l EE YL § = 0O ||Q readme [ﬂ[
v = GNUARMv10.2.1 - Default A .
& autogen Dynamich

(= gecko_sdk_4.0.0

app.o - [arm/le]

%5 DynamicMultiprotocallight.axf - [arm/le] .
2 DynamicMultiprotocollight.bin - [unknown/le] TarQEt <
2 DynamicMultiprotocollight.hex - [unknown/le]

2 DynamicMultiprotocollight.s3™ .

main.o - [arm/le] Rl i
sl_ble_event_handler.o - [arm/ Open
Eappd _ Show In Alt+Shift+W >
|=| DynamicMultiprotocollight.m)
2 maind Open With y
Lg makefile = Copy Ctrl+C
bjects.mk

L,@ oreets Paste Ctrl+V
|=| sl_ble_event_handler.d
| @ sources.mk Delete Delete
@& subdir.mk Move...

l¢] app.c Rename... F2

<

Import >
B Debug Adapters 52 | B Outline

% B 0S5 4 Build Project

EFR32MG12 24 GHz 19 dBm RB (ID:¢ - R=resh Fs
@ FRunks N

45 DebugAs 3

Profile As 3

Team N

Compare With s

Replace With N

Browse Files Here

Open Command Line Here

ECH IR

Flash to Device...

Properties Alt+Enter
uas

If you have more than one device connected, select the target. The Flash Programmer opens.

silabs.com | Building a more connected world.

AN1322: Dynamic Multiprotocol Development with Bluetooth and Zigbee EmberZNet SDK 7.0 and Higher
Working with the Zigbee/Bluetooth Examples

4. The path of the .s37 file should be auto populated. Click Program to flash the file to the target.

E Flash Programmer O *

T ——
Device
Board Name: Wireless Starter Kit Mainboard
Board Name: EFR32MG12 2.4 GHz 19 dBm Radio Board
MCU Mame: EFR32ZMG12P432F1024GL125

Adapter
Mame: J-Link Silicon Labs (440085390)

Flash Part

FileType ®hex Obin Baseaddiess 0x0

File

| 107 DynamicMultiprotocolLight'GNU ARM v10.2.1 - Default\DynamicMultiprotecollight.s37 | | Browse...

Advanced Settings...

Erase Program
Flash Erase/Write Protection
(®) Select flash range v A =S v ~
(O Select default sections Lock Main Flash Lock User Page
Protect Remove Protection

Debug Lock Tools

The unlock function only works using Silicon Labs EFM32 and EFR32 boards.
Unlocking the chip will erase all data on flash and SRAM.

Unlock Debug Access | | Lock Debug Access

® Close

5. Application load success indicators are code-dependent. If the example projects are being used on a development board that sup-
ports LCD functionality, the LCD displays the following screen on power up. Press button PBO to change to the light display. On other
development boards that do not have additional peripherals to support a fully featured user interface, use the command line interface
to run various commands.

Leaue MWK

Note: Silicon Labs examples require a bootloader. If the bootloader gets erased, an easy way to load a bootloader is to run the Dynamic
Multiprotocol Light demo. This installs a combined bootloader/application image. Then you can flash your own application image
to update only the application area. If you are using a board that is not compatible with the available demos, then you can load
a bootloader by selecting an example, such as SPI Flash Storage Bootloader (single image), and building it and flashing it as
described above.

silabs.com | Building a more connected world.

AN1322: Dynamic Multiprotocol Development with Bluetooth and Zigbee EmberZNet SDK 7.0 and Higher
Working with the Zigbee/Bluetooth Examples

2.2 Converting a Zigbee Application to a Zigbee/Bluetooth LE Dynamic Multiprotocol Application

This section describes the configuration changes required to convert a working Zigbee application into a Zigbee/Bluetooth LE Dynamic
Multiprotocol application. The instructions present the generic steps for the conversion, with specific examples based on turning the
Z3Light example into the equivalent of DynamicMultiprotocolLight.

Requirements:

e Zigbee application set up to build with IAR ARM or GCC (these instructions use Z3 Light)

e Any EFR32 part with a minimum of 512 kB of flash and 64 kB of RAM (these instructions assume BRD4161
(EFR32MG12P432F 1024GL125)

Note: The Dynamic Multiprotocol examples do not support OTA updates out of the box. To support OTA updates, uninstall the Zigbee
LCD component. This frees up the port pins that are multiplexed with the external flash.

2.21 Generate and Build the Zigbee Application

The purpose of this step is to verify that the base Zigbee application had loaded and is working correctly, and that output is printing to the
console. This example uses the Z3Light sample application. It begins with the default settings, so that the configuration changes are
clear. Generate and build the project, load it to the board and check the Serial 1 output to make sure it is up and running.

&4 z3todmp.slcp &2 J-Link Silicon Labs (440126221) &3 |

@ Mo translation H Line terminator: | CR-LF (DOS, 05/2, M

23Light>Reset info: 0x03 (EXT)

Extended Reset info: 0x0301 (PIN)

211CommInit - device is not joined to a network
Setting rx on period to 300000

Setting default channel teo 11

23Light>NWE Steering: issuing scan on primary channels (mask 0x031BCEOO)
HNWE Steering: Start: 0x00

Join network start: 0=x00

NWE Steering scan complete. Beacons heard: 0
HNWE Steering: issuing scan on secondary channels (mask 0x04ET73000)
HWE Steering scan complete. Beacons heard: 0
NWE Steering Stop. Cleaning up.

Join network complete: OxAB

Form network start: 0x00

HNWE Creator Security: Start: 0x00

EMEER METWORK_UP OxDBEC

NWE Steering stack status 0x90

NWE Creator: Form. Channel: 20. Status: 0x00
Form distributed network complete: 0x00

NWE Creator: Stop. Status: 0x00. State: 0x00
Find and Bind Target: Start target: 0x00

Find and bind target start: 0x00

silabs.com | Building a more connected world.

AN1322: Dynamic Multiprotocol Development with Bluetooth and Zigbee EmberZNet SDK 7.0 and Higher

Working with the Zigbee/Bluetooth Examples

2.2.2 Configure the project

To convert the Z3Light application into a Zigbee-Bluetooth LE multiprotocol application similar to the DMP Light, follow the steps below:
1. Navigate to the SOFTWARE COMPONENTS tab on the Z3Light project and search for and add the following components.
e Bluetooth > Stack > Bluetooth Core - Reason: This is the Bluetooth stack core component

Note: Installing this enables multiple protocol stacks on the project and thereby also enables the CMSIS RTOS2 layer and Micrium
OS Kernel, which is the default RTOS implementation. FreeRTOS is also supported.

P & Launcher |{} Simplicity IDE | | % i#! fy Welcome D Recent HiTools ¥, install KX Preferences

L lightTODMP:slcp &3 }

=0

lightTODMP SOFTWARE COMPONENTS

Installed C

O

Y Filter: Configurable Components]

Search keywords, component's name

Installed by You [~] SDK extensions [|

¥ Bluetooth
v RTOS
Bluetooth Core
Bluetooth Core
v Stack
Bluetooth Core

Bluetooth Core Crypto

I Bluetooth Core

bluetooth core €

Description
Bluetooth Low Energy stack and configurations

In addition to this core componment, select features needed by the applicatien.

Quality
PRODUCTION

View Dependencies

e Bluetooth > Stack > GATT Client, GATT Server, Security Manager, System - Reason: Basic Bluetooth building blocks.

ok lightTODMP.slcp 52 ‘

lightTODMP SOFTWARE COMPONENTS

Installed C:

Search keywords, component’s name

Installed by You [[] SDK extensions [

O

Y Filter : Configurable Components [

Environment Sensing - Relative Humidity and Temperature GATT
Service

Environment Sensing - Sound Level GATT Service
Hall Effect GATT Service
Inertial Measurement Unit GATT Service
RGB LED GATT Service
Specific
¥ NCP
¥ Host
NCP GATT
¥ Stack
@ Bluetooth GATT database structure definition
Dynamic GATT Database
GATT Client

GATT Server

v Bluetooth Mesh

v Stack Classes

GATT Provisioning Bearer

silabs.com | Building a more connected world.

% | GATT Client

&4 8 4 &

gatt @
Install

Description
GATT Client feature

n a remote GATT server.

es the ability to browse and man

Enal age attributes i

Quality
PRODUCTION

View Dependencies

AN1322: Dynamic Multiprotocol Development with Bluetooth and Zigbee EmberZNet SDK 7.0 and Higher
Working with the Zigbee/Bluetooth Examples

i lightTODMP.slcp L’{I = 0
lightTODMP SOFTWARE COMPONENTS
earch keywords, co nent's name
Y Filter: Configurable Components D Installed Components D Components Installed by You D SDK extensions D bgat‘ls e Q
Environment Sensing - Relative Humidity and Temperature GATT
o o | GATT server —
Environment Sensing - Sound Level GATT Service o
Hall Effect GATT Service £ Description
Inertial Measurement Unit GATT Service o] GATT Server feature
Enables the ability to browse and manage attributes in a local GATT database.
RGB LED GATT Service o
Quality
Specific PRODUCTION
v NCP
¥ Host
NCP GATT
¥ Stack
@ Bluetooth GATT database structure definition
Dynamic GATT Database £
GATT Client
GATT Server

v Bluetooth Mesh

¥ Stack Classes

GATT Provisioning Bearer o View Dependencies

st lightTODMP.slcp ?.ﬂ = B
lightTODMP SOFTWARE COMPONENTS
earch keywords, col 's name
Y Filter : Configurable Components D Installed Compenents D Components Installed by You D SDK extensions D bL:eL;u:;;mé fomponents neme a
elictocth | Security Manager m
w NCP
v Target
NCP Security Interface Description
Bluetooth security manager (SM) feature
v Stack .
Quality
Security Manager PRODUCTION
¥ Connect

AES Security

AES Security (Library)

AES Security (Source)
v Services

v Co-Processor Communication
CPC Main template for test

CPC SECURITY

v Test

Security CLI Commands

e
security_cli_utils

silabs.com | Building a more connected world.

AN1322: Dynamic Multiprotocol Development with Bluetooth and Zigbee EmberZNet SDK 7.0 and Higher
Working with the Zigbee/Bluetooth Examples

L lightTODMP.slcp x;\ =0
lightTODMP SOFTWARE COMPONENTS
warch keywords, co ‘s name
Y Filter : Configurable Components [] Installed Comp O Comp Installed by You [] SDK extensions [_] m;y;‘l:::g Fempenent]
v Bluetooth I System m
¥ Stack
System
Description
v Platform Local device configruation and software timers
w Peripheral Quality
@ SYSTEM PRODUCTION
¥ Utilities

¥ SystemView
SEGGER SystemView for FreeRTOS
SEGGER SystemView for Micrium 0S &
SEGGER SystemView for No OS on Cortex-M

SEGGER SystemView for No OS on Cortex-M0

¥ Runtime
w Test

System test

¥ Services

i) View Dependencies
¥ Co-Processor Communication

e Bluetooth > Feature > Legacy Advertising, Connection, Scanner. Reason: Basic Bluetooth features.

&L lightTODMP.slcp Xé} =0
lightTODMP SOFTWARE COMPONENTS
Y Filter: Configurable Components [| Installed C O C Installed by You [] SDK extensions || Q, search keywords, component's name
v Bluetooth L.
I Legacy Advertising Install
» Application
» CLI
B EnETD Description
This component, corresponding te the "legacy advertiser" class in Blueteoth APIs, provides the legacy
» Controller advertising feature. Specifically, this component enables a ements that use legacy advertising PDUs.
Common advertising ticnalities, e.g., advertising set creation, and address settings ete., are provided
v Feature by its base component <bluctooth feature advertisers.
AFH
Quality
Advertising Base Feature o PRODUCTION
Connection o3

Even Connection Scheduling Algorithm

Extended Advertising

Legacy Advertising

Periodic Advertising o3
Periodic Advertising

Periodic Advertising Synchronization Ee]
Periodic Advertising using PAWR trains

Periodic advertising synchronization by receiving PAST

- . View Dependencies
Periodic advertising synchronization by scanning

silabs.com | Building a more connected world.

AN1322: Dynamic Multiprotocol Development with Bluetooth and Zigbee EmberZNet SDK 7.0 and Higher
Working with the Zigbee/Bluetooth Examples

ok lightTODMP.sicp Sﬂ = B8

lightTODMP SOFTWARE COMPONENTS
Y Filter: Configurable Components [] Installed C O G Installed by You [_] SDK extensions [] Q, Search keywords, component's name

AFH i

I Connection Install
@ Advertising Base Feature o
Connection o3
Description

Ewven Connection Scheduling Algorithm

Bluetoath connection feature

Extended Advertising
Quality

© Legacy Advertising PRODUCTION

Periodic Advertising 3

Periodic Advertising

Periodic Advertising Synchronization o

Periodic Advertising using PAWR trains

Periadic advertising synchronization by receiving PAST

Periodic advertising synchronization by scanning

PowerControl Ee

Scanner

Synchronization to Periodic Advertising trains

Synchronization to Periodic Advertising with Responses trains

Transfer periodic synchronization information by initiating PAST

¥ GATT
i lightTODMP.slcp Z{I =0
lightTODMP SOFTWARE COMPONENTS
Y Filter: Configurable Components [] Installed Comp O Comp Installed by You [] SDK extensions] Q, Search keywords, component's hame

& Advertising Base Feature

e

I Scanner m

@ Connection]
Even Connection Scheduling Algorithm
Description
Extended Advertising Bluetooth Low Energy scanning feature

@ Legacy Advertising Quality

Periodic Advertising o PRODUCTION

Periodic Advertising

Periodic Advertising Synchronization o
Periodic Advertising using PAWR trains

Periodic advertising synchronization by receiving PAST

Periodic advertising synchronization by scanning

PowerControl o3
Scanner

Synchronization to Periodic Advertising trains

Synchronization to Periodic Advertising with Responses trains

Transfer periodic synchronization information by initiating PAST

Air Nuality GATT Qarvina r

silabs.com | Building a more connected world. Rev. 0.3 |10

AN1322: Dynamic Multiprotocol Development with Bluetooth and Zigbee EmberZNet SDK 7.0 and Higher
Working with the Zigbee/Bluetooth Examples

¢ If your application uses Free RTOS, configure FreeRTOS component and increase Timer task priority to 53. Reason: Due
to the usage of RTOS event flags in the Bluetooth stack, the timer task priority must be higher than all of the Bluetooth RTOS task
priorities.
& =g
lightTODMP SOFTWARE COMPONENTS
Y Filter components by £ Configurable D @ Installed D 2 Installed by you D SDK Extensions D ST;;Z:;ZOSS' SR
v Service
Simple timer service for FreeRTOS
Simple timer service for FreeRTOS with static memory Description
aIIocation FreeRTOS kernel
Quality
v RTOS PRODUCTION
v FreeRTOS
Q@ FreeRTOS o :
Dependencies v
FreeRTOS Heap 1 freertos requires 3 components
FreeRTOS Heap 2 » Platform
FreeRTOS Heap 3 A
» Services
@ FreeRTOS Heap 4
Dependents
FreeRTOS Heap 5 R) L
v Third Party X Uninstall
% lightTODMP.slcp X ﬂiﬁiﬁﬁi i = 3
Freerig:“:logw/"gMTODMPASICP | Pin Tool | <[> View Source X
»
General

Minimal stack size [words] Total heap size [bytes]

160 ~

v

8192

v

Timer task priority Timer queue length

: :

Idle should yield

Check for stack overflow
Method two v
Use deamon task startup hook Use malloc failed hook

Kernel tick frequency [Hz]

1000

v

Preemption interrupt priority
~

48

v

Use idle hook

Queue registry size

~
10

v

Timer task stack depth [words]

~ 160

v

Use time slicing

Use tick hook

Use Threadsafe Errno

I Port Specific Features

2. Addanimplementationof s1 bt on event (sl bt msg t* evt) inyourapp.cfile. The following is an example implemen-
tation of the Bluetooth LE event handler that starts advertisements on boot and prints out information as some of the most common

events occur:

#include "sl bluetooth.h"
#include "sl bluetooth advertiser config.h"
#include "sl bluetooth connection config.h"

silabs.com | Building a more connected world.

Rev. 0.3 | 11

AN1322: Dynamic Multiprotocol Development with Bluetooth and Zigbee EmberZNet SDK 7.0 and Higher
Working with the Zigbee/Bluetooth Examples

#include "gatt db.h"

uint8 t adv_handle;

#define DEVNAME LEN 8

#define UUID LEN 16 // 128-bit UUID

// to convert hex number to its ascii character
uint8_t ascii_lut[] = { 'O', 'l', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E',
"B}

void zb ble dmp print ble address(uint8 t *address)
{
emberAfCorePrint ("\nBLE address: [%X %X %X %X %X %X]\n",
address[5], address[4], address[3],
address[2], address([l], address[0]);
}
void enableBleAdvertisements (void)

{

sl status t status;

/* Create the device Id and name based on the 16-bit truncated bluetooth address
Copy to the local GATT database - this will be used by the BLE stack
to put the local device name into the advertisements, but only if we are
using default advertisements */

uint8 t type;

bd addr ble address;

static char devName [DEVNAME LEN];

status = sl bt system get identity address(&ble address, &type);

if (status != SL STATUS OK) ({
emberAfCorePrintln ("Unable to get BLE address. Errorcode: 0x%x", status);
return;

}

devName [0] = 'D';
devName[1l] = 'M';
devName[2] = 'P';

(ble address.addr[1] & OxFO) >> 4)];
ble address.addr[1l] & OxOF)];

(ble address.addr[0] & OxFO) >> 4)];
ble address.addr[0] & OxOF)];

= ascii lut]
= ascii lut]
= ascii lut]
ascii lut|[
= "\0';

devName [3
devName [4
devName [5
devName [6
devName [7

]
]
]
]
]
]
]
]

emberAfCorePrintln ("devName = %s", devName) ;

status = sl bt gatt server write attribute value(gattdb device name,
0,
strlen (devName) ,
(uint8 t *)devName);

if (status != SL STATUS OK) ({
emberAfCorePrintln ("Unable to sl bt gatt server write attribute value device name. Errorcode:
0x%x", status);
return;

}

status = sl bt advertiser set timing(adv_handle,
(100 / 0.625), //100ms min adv interval in terms of 0.625ms
(100 / 0.625), //100ms max adv interval in terms of 0.625ms
0, // duration : continue advertisement until stopped
0); // max_events :continue advertisement until stopped
if (status != SL STATUS OK) {
return; - -

}

/* Start advertising in user mode and enable connections*/
status = sl bt legacy advertiser start(adv_handle,
advertiser connectable scannable);

silabs.com | Building a more connected world. Rev. 0.3 [12

AN1322: Dynamic Multiprotocol Development with Bluetooth and Zigbee EmberZNet SDK 7.0 and Higher
Working with the Zigbee/Bluetooth Examples

if (status) {

emberAfCorePrintln("sl bt legacy advertiser start ERROR : status = 0x%0X", status);
} else {

emberAfCorePrintln ("BLE custom advertisements enabled");

}

void sl bt on event(sl bt msg t* evt)
{
switch (SL BT MSG ID(evt->header)) {
case sl bt evt system boot id: {
bd addr ble address;
uint8 t type;
sl status t status = sl bt system hello();
emberAfCorePrintln ("BLE hello: %s",
(status == SL STATUS OK) ? "success" : "error");

status = sl bt system get identity address(&ble address, &type);
zb ble dmp print ble address(ble address.addr);

status = sl bt advertiser create set (&adv_handle);
if (status) {
emberAfCorePrintln("sl bt advertiser create set status 0x%x", status);
}
// start advertising
enableBleAdvertisements () ;
}

break;

case sl bt evt connection opened id: {
emberAfCorePrintln("sl bt evt connection opened id \n");
sl bt evt connection opened t *conn evt =
(sl bt evt connection opened t*) & (evt->data);

//preferred phy 1: 1M phy, 2: 2M phy, 4: 125k coded phy, 8: 500k coded phy
//accepted phy 1: 1M phy, 2: 2M phy, 4: coded phy, ff: any
sl bt connection set preferred phy(conn evt->connection, test phy Im, O0xff);

emberAfCorePrintln ("BLE connection opened") ;

}

break;

case sl bt evt connection phy status id: {
sl bt evt connection phy status t *conn evt =
(sl bt evt connection phy status t *)é&(evt->data);
// indicate the PHY that has been selected
emberAfCorePrintln ("now using the %dMPHY\r\n",
conn_evt->phy) ;
}

break;

case sl bt evt connection closed id: {
sl bt evt connection closed t *conn evt =
(sl bt evt connection closed t*) & (evt->data);

// restart advertising
enableBleAdvertisements () ;

emberAfCorePrintln (
"BLE connection closed, handle=0x%x, reason=0x%2x",
conn_evt->connection, conn evt->reason);
}

break;

silabs.com | Building a more connected world. Rev. 0.3 |13

AN1322: Dynamic Multiprotocol Development with Bluetooth and Zigbee EmberZNet SDK 7.0 and Higher

Working with the Zigbee/Bluetooth Examples

3.

default:
break;

Save your new Z3Light project and click Force Generation in the project overview pane.

ik lightTODMP.slcp 53 I

=B

lightTODMP OVERVIEW
I Target and SDK Selection I Project Details

light TODMP

This is a ZigBee 3.0 light application using NVM3 as the persistent
storage.

Category
> ZigBee Application

Preferred SDK

Gecko SDK Suite: "Find, Amazoen, Bluetooth 3.3.0, Bluetooth Mesh
2.2.0,EmberZNet 7.0.0.0, Flex 3.3.0.0, HomeKit 1.1.0.0, MCU
6.2.0.0, Micrium OS Kernel, My", OpenThread 2.0.0.0 (GitHub-
dlae6ea2), Platform 3.3.0.0, Wi-SUN 1.2.0.0, Z-Wave SDK 7.17.0.0

EFR32MG12P432F1024GL125 Import Mode

Wireless Starter Kit Mainboard (BRDAOOTA Rev A1) Link sdk and copy project sources -

EFR32ZMG1Z 2.4 GHz 19 dBm Radio Board (BRD41671A Rev AD2)

=] I Project Generators

Simplicity IDE Project

A Simplicity IDE project supporting builds for MCUs using
C/C++ and assembly files.

Change Target/SDK l Force Generation

|

Project generation is automatic. Force generation is
needed only in advanced use cases such as

processing of manually edited project configuration
files.

silabs.com | Building a more connected world.

Rev.0.3 | 14

AN1322: Dynamic Multiprotocol Development with Bluetooth and Zigbee EmberZNet SDK 7.0 and Higher
Working with the Zigbee/Bluetooth Examples

4. Build and flash the project and look for the device in the “Connected Lighting demo” screen of the EFR Connect smartphone app.

= -41dBm

Develop

©® | Browser

DMPFFA1Exam...

— : ; — i=lo 1 Connections
i=Log ¥ 0 Connections Y Filter = Sort | 9 b "
Browser Advertiser DMPFFA1.. % ®©102ms i Device Information
View info about nearby Utilize this device as a Z0DE33CE:7417:8CDESEDS:001EBCE35267 | 0x180A ;:
devices and their Bluetooth Low Energy S 3 : | faseints
properties. peripheral. - ® I
Connectable -23 RSSI Unspecified d
J - Manufacturer Name String <
| UUID: 0x2A29 EV
® maco0is. k ©soms | o j
651C96B7-B5AB-E4B5-3C45-B10A97558686 [
GATT Configurator Interoperability Test
P~ @ l System ID
Allows you to create a Exercise common > i n;
local GATT database. Bluetooth operations Connectable -48 RSSI Unspecified) UuID: 0x2A23]
with Silicon Labs g
hardware and software. [© read
Y, y i
wa ok omm R ||
A8B6863A-A0D8-53C7-A102-0E14130162B9 1
= ® i
Connectable -74 RSSI Unspecified |
J
;
||
Aok o N
2AE6A668-76C0-8457-C4C0-4F636BDEFEA3 r
Connectable -45 RSSI Unspecified I
N L
i =
a ¢ E——— = a
=
Demo Develop top canning ! Remote (Client) Local (Server) I
!
| ————————— il

You can also see Bluetooth LE activity related printing in the Serial 1 tab of the console.

&2 J-Link Silicon Labs (440126221) 53 |

@ Mo translation [CR-LF (DOS, 05/2, MS Windows)

<

Line terminator:

i Serial 0 = e Admin =, Debug

BLE hello: success

devName = DMPFFAL

BLE custom advertisements enabled

Reset info: 0x03 (EXT)

Extended Reset info: 0x030L (PIN)
EMBER_NETWORE UP 0x35871

NWE Steering stack status 0x90

Find and Bind Target: Start target: 0x00
Find and bind target start: 0x00
Z3Light>s]l_bt_evt_connection_opened_id

BLE connection opened
now using the 1MPHY

now using the 1MPHY

now using the 2ZMPHY

This is very basic Bluetooth functionality. To learn more about programming Bluetooth LE functionality, see Getting Started with Silicon
Labs Bluetooth LE Development.

silabs.com | Building a more connected world.

Rev.0.3 |15

https://docs.silabs.com/bluetooth/6.2.0/bluetooth-getting-started-overview/
https://docs.silabs.com/bluetooth/6.2.0/bluetooth-getting-started-overview/

AN1322: Dynamic Multiprotocol Development with Bluetooth and Zigbee EmberZNet SDK 7.0 and Higher
About the Zigbee/Bluetooth LE Examples

3 About the Zigbee/Bluetooth LE Examples

The Zigbee/Bluetooth LE Dynamic Multiprotocol examples demonstrate a light that can be controlled via Bluetooth LE and Zigbee. Soft-
ware examples may be compiled using the sample SoC appliations in the EmberZNet SDK. The purpose of the examples is to show how
to implement a dynamic multiprotocol application using the Silicon Labs EmberZNet stack.

The Dynamic Multiprotocol Demo application has these main components.
1. Mainboard User Interface (LCD, Buttons, LEDs (optional for parts with these peripherals)
Zigbee application (Coordinator or Sleepy End Device)

2.
3. Bluetooth application
4. CLl interface

3.1 Mainboard User Interface

The mainboard-interface application code has three main components. These help to enhance the user experience, but are not essential
to the core DMP functionality. If your demo radio board does not support LCD, a minimal version of these applications is automatically
chosen and the buttons, LED and LCD components are automatically removed from the project.

3.1.1 Buttons

The DynamicMultiprotocol sample applications use two buttons on the mainboard. This functionality is provided using two instances of
the Simple Button component and can be easily uninstalled if the mainboard does not have buttons. Button PBO toggles the local state
of the light. Button PB1 controls network operations such as form, join, and leave.

3.1.2 LED

The sample app displays the current state of the On/Off light using the two LEDs on the mainboard. This application code is provided
using two instances of the Simple LED component.

3.13 LCD

The LCD enhances the overall user experience by providing helpful instructions and displaying the state of the node. This functionality is
provided using the Zigbee LCD Display component. This component provides APIs to update the text and graphic on the LCD. These
APIs are invoked from the application’s Zigbee callbacks and Bluetooth event handlers.

3.2 Command Line Interface Task (CLI)

The CLI task runs as a relatively low priority task and processes commands and displays output. Since the CLI task may potentially
execute functions that are not thread safe, task switching is locked in the pre-command hook function (sli_cli_pre_cmd_hook) before it is
executed. RTOS task switching is restored in the post-command hook function (sli_cli_post_cmd_hook). CLI commands also post the
semaphore and allow the Zigbee RTOS task to run by invoking the function s1 zigbee common rtos wakeup stack task()
in the post command hook.

silabs.com | Building a more connected world. Rev. 0.3 | 16

AN1322: Dynamic Multiprotocol Development with Bluetooth and Zigbee EmberZNet SDK 7.0 and Higher
About the Zigbee/Bluetooth LE Examples

3.3 Zigbee Application

The DynamicMultiprotocolLight sample application is a Zigbee coordinator and DyamicMultiprotocolLightSed is a Zigbee sleepy end
device. Both sample applications demonstrate a wireless light that can be controlled locally using a button or wirelessly using a Zigbee
switch or a Bluetooth LE mobile application.

The following cluster set is supported by both the DynamicMultiprotocolLight and DynamicMultiprotocolLightSed applications:

e Basic

e Identify
e Scenes
e Groups
e On/Off

e ZLL Commissioning

The DynamicMultiprotocolLight example also supports Green Power Proxy Basic endpoint. Note that the examples were developed
with a focus on demonstrating dynamic multiprotocol features and may not be Zigbee-certifiable.

The On/Off cluster controls the LEDs and the bulb icon on the mainboard LCD to represent the state of the light.

3.3.1 Zigbee RTOS Task

The DMP sample applications utilize CMSIS-RTOS2 constructs and therefore are structured to support either Micrium OS or FreeRTOS.
Micrium OS is set up as default RTOS. Free RTOS is also supported. The RTOS tasks are:

e Bluetooth link layer task (priority: 52)

e Bluetooth host stack task (priority: 51)

e Bluetooth event handler task (priority: 50)

e Zigbee stack and application task (priority: 49)
e Command Line Interface task (priority: 16)

These tasks are all created independently of each other. Zigbee RTOS task-related configuration is in the Zigbee Application Framework
Common component.

ok lightTODMP.slcp &2 J-Link Silicon Labs (440126221) A Application Framework Common 53 = 8

Application Framework Common <[> View Source Files ~ X

»

I Zigbee stack RTOS task configuration

Zigbee stack task stack size in bytes Zigbee Task RTOS priority

~
1400 49

~ v

Note that the Zigbee and Bluetooth task priorities must not be changed from their defaults in order to ensure that the application works
as intended. Any application RTOS tasks must be lower priority than the Zigbee stack RTOS task and may be created in an application
file following the example code in this section. The Zigbee stack RTOS task is created in the sli_zigbee_common_rtos_init_callback,
which is in turn invoked from the stack_init event handler, which is an autogenerated file.

void sli zigbee common rtos init callback(void)
{
App OS SetAllHooks();

// Create ZigBee task.

zigbee task attr.name = "Zigbee task";

zigbee task attr.stack mem = &zigbee task stack[0];
zigbee task attr.stack size = sizeof (zigbee task stack);
zigbee task attr.cb mem = zigbee task cb;

zigbee task attr.cb size = osThreadCbSize;

zigbee task attr.priority = ZIGBEE STACK TASK PRIORITY;
zigbee task attr.attr bits = 0;

silabs.com | Building a more connected world. Rev.0.3 [17

AN1322: Dynamic Multiprotocol Development with Bluetooth and Zigbee EmberZNet SDK 7.0 and Higher
About the Zigbee/Bluetooth LE Examples

zigbee task attr.tz module = 0;

zigbee task id = osThreadNew (zigbee task,
NULL,
&zigbee task attr);
assert (zigbee task id != NULL);

zigbee task event flags id = osEventFlagsNew (&zigbee task event flags attr);
assert (zigbee task event flags id != NULL);
}

The Zigbee task invokes stack and application framework initialization callbacks before running the while loop. Tick callbacks are executed
in the loop, following which the Zigbee task yields, if it is able, in order to allow the microcontroller to go into low power mode.

static void zigbee task(void *p arg)
{
(void)p_arg;

sli zigbee stack init callback();
sli zigbee app framework init callback();

while (true) {
sli zigbee stack tick callback();
sli zigbee app framework tick callback();

// Yield the ZigBee stack task if possible.
zigbee stack task yield();
}
}

Several application override mechanisms control whether the microcontroller is allowed to enter sleep (EM2) or idle (EM1) modes. These
flags, in combination with the time to the closest application or stack event, control how long the Zigbee RTOS task yields for. These
options are also configured in the Zigbee Application Framework Common component.

& lightTODMP.slcp |é’§ J-Link Silicon Labs (440126221) ‘H Application Framework Common 53 | = 5

Application Framework Common <[> View Source Files ~ X
»

I Zigbee stack RTOS task configuration

Zigbee stack task stack size in bytes Zigbee Task RTOS priority

~
1400 49

~ ~

I Zigbee Sleep configuration

Minimum Sleep Duration Sleep Backoff time Stay awake when NOT joined Use button to force wakeup or allow sleep

5 T ® »

silabs.com | Building a more connected world. Rev.0.3 |18

AN1322: Dynamic Multiprotocol Development with Bluetooth and Zigbee EmberZNet SDK 7.0 and Higher
About the Zigbee/Bluetooth LE Examples

3.3.2 Application Code

On either DMP light application, once the Zigbee stack is set up to run, subsequent interactions with the stack occur via event handlers.
The following figure shows the event handlers in the full function light application.

| Local button ISR handler ’

sl _button_on_change -> sl_zighee common_rtos wakeup_stack task

:

[NRNT]

(- Q - |_bt_on_event
emberAfPostAttributeChangeCallback . IEIII r
Lightbulb
Zighee Attribute
BLE Event Handler
Changed callback

Each enabled cluster must have a corresponding component that handles the callbacks for the cluster. Alternatively, this can be provided
by a custom implementation in the project callbacks file. In addition, the Zigbee callbacks file subscribes to optional stack callbacks, such
as stack status callbacks, to show the network state and perform other operations based on change of state.

TTTTT

LLILL

Whenever the coordinator sample application starts pjoin, it starts identifying and also puts all the connected lights in identify mode. This
helps the joining switch to identify all the lights present in the network. The sleepy sample application does the same on the steering
status callback.

EMBER_NETWORK_DOWN

I
Set up Reporting on On/Off attribute
Permit join for 180 seconds
Start Identify operation

EMBER_NETWORK_UP

The On/Off attribute can be changed locally using the button PBO. The button_on_change ISR routine fires on change of the button state.
Note that, since this routine is executed from an interrupt context, printing messages in this routine is not recommended. For this reason,
once time stamps are recorded and states are set, a separate event handler is set to active to further process the button press. Since the
event handler runs from the Zigbee task context, the semaphore must be posted by invoking the function s1 zigbee com-

mon rtos wakeup stack task().

The On/Off attribute may also be changed by receiving a Zigbee on-off toggle command from a remote device like the Z3Switch. This
path follows the emberAfPostAttributeChangeCallback. Any change to the attribute will also trigger a notification over a Bluetooth LE
connection, if one is open. In addition to the state, the trigger source and the EUI of the trigger source are recorded for tracking.

The On/Off attribute may also be modified using the EFR Connect mobile application. The light displays on the app as “DMPxxxx” where
xxxx are the last four digits of the Bluetooth LE MAC address. The characteristic can be read and written using the mobile application.
This triggers a change to the Zigbee attribute.

CAUTION: The Zigbee stack is not thread-safe and is not designed to be thread-safe. As such, all calls to EmberZNet functions
should be made from the Zigbee task to avoid the risk of concurrency issues. To avoid the risk of shared resources, if you want
to send Zigbee messages or use EmberZNet functions from a task other than the Zigbee Stack Task, you must schedule a
custom event from within the non-Zigbee Stack task. In the corresponding event handler function for the custom event the
Zigbee stack APIs can be used, as the event handler will be called from the Zigbee Stack Task context.

silabs.com | Building a more connected world. Rev. 0.3 [19

AN1322: Dynamic Multiprotocol Development with Bluetooth and Zigbee EmberZNet SDK 7.0 and Higher
About the Zigbee/Bluetooth LE Examples

34 Bluetooth Application

The Bluetooth application supports following services and characteristics. These are pre-selected in the GATT editor during project gen-

eration.
Service Characteristic

Manufacturer Name String
Model Number String
Serial Number String
Firmware Revision String

Device Information

Device Name
Appearance
Light

Trigger Source

Generic Access

Silabs DMP Light

3.4.1 Silabs DMP Light Service

In the above table the ‘Silabs DMP Light’ is a custom service with a UUID of bae55b96-7d19-458d-970c-50613d801bc9. This
custom UUID is used to uniquely identify the Light by the EFR Connect application.

The Service has two characteristics,

Characteristic Data Type Description

Light 8bit Boolean Usedl to get and set the light state
1 = Light On
0 = Light Off

Indicates the source of the Light state
change command.

0 = Bluetooth
1 = Zigbee
2 = Button Press

Trigger Source 8bit enum

3.4.2 Beacons

The application implements both an iBeacon as well as an Eddystone beacon. The default behavior is to transmit each beacon at 100 mS
intervals.

z 2 2
2 H
e o= =
= = =
Ll E Ll
OmS 100mS 200mS

Rev. 0.3 | 20

silabs.com | Building a more connected world.

AN1322: Dynamic Multiprotocol Development with Bluetooth and Zigbee EmberZNet SDK 7.0 and Higher
About the Zigbee/Bluetooth LE Examples

3.4.3 Bluetooth Event Handling

The Bluetooth stack is initialized as part of the Bluetooth task. The Bluetooth task handles the Bluetooth LE link layer messaging and
management. A number of events that are called in the context of the Zigbee task allow the user application to interact with the Bluetooth
stack. The following diagram describes the Bluetooth-related events..

Note: Bluetooth event handling is same for both DMP demos.

087 wew Create BLE Advertising handles ENASlBeLtIZ/:ED \I/)EeSi.(I;IeS:::InEeNTS
— (custom, iBeacon, Eddystone) .
anetet TTahtinG sl_bt_evt_gatt_server_user_read_request_id ENABLE ADVERTISEMENTS sIasnei32::,:1“22&?1?5?2:;?:”d
7 beacons

s|_bt_evt _system_boot _id
Read Light state

sl_bt_evt_connection_opened _id

_/ \ Store connection information in

table
sl_bt_evt_gatt_server_user write_request_id IDLE Adjust number of active

connections
v ENABLE ADVERTISEMENTS

T

Q v

Lost v
Lghtoff

Write Light state

\

sl_bt_evt_connection_closed_id

6C27-CEFEFF6F0D00

Remove connection information
from table
Adjust number of active
connections
ENABLE ADVERTISEMENTS

Figure 3-1. DMP Bluetooth Event Handler Definition

silabs.com | Building a more connected world. Rev. 0.3 |21

AN1322: Dynamic Multiprotocol Development with Bluetooth and Zigbee EmberZNet SDK 7.0 and Higher
About the Zigbee/Bluetooth LE Examples

3.4.4 Bluetooth and Zigbee Interaction

The primary purpose of the example applications is to show Zigbee and Bluetooth working together on a device. For this purpose, when
the Light receives a command to change its state through one protocaol, it executes the command and sends out a notification to the other
devices using the other protocol to keep everything in sync. Their interaction is the same in both examples.

Two basic operations are described below, first a write to Light characteristics from a Bluetooth connected device (shown in the following
figure) and then a change in the Light state from a Zigbee device.

10:67 T . g i
Write Characteristic
o Light ON / OFF gN ! bOFF Cluster
Connected Lighting \ / ttribute report

Dynamic Multiprotocal
Application

BLE Zighee

Zigbee
Z3Switch

fr——

O v
Light off

60:27.CEFEFF6F-0D.00

I o=
\ / @er Toggle Command

Indicate Characteristic
Light & Trigger source [EUI

Write from the Bluetooth Connected Device

The application’s services and characteristics are pre-selected in the GATT configurator in Simplicity Studio. On generation the charac-
teristics are #define in the gatt_db.h. Using the #define reference, the characteristics can then be coupled to read and write Bluetooth
requests. For example, the Light characteristic is reference from GATT as gatt_light_state which is then tied to an application-specific
write API of writeLightState in the AppCfgGattServerUserWriteRequest in sl_bt_event_handler.c.

The application implements the Zigbee attribute write and a Bluetooth write response in the writeLightState function. Since ember func-
tions are not thread-safe, the application posts a Zigbee event and a semaphore to wake the Zigbee task and invoke the ember-
AfWriteAttribute function.

The emberAfWriteAttribute () function is used to write the attribute table of the Zigbee application with the value supplied by

the Bluetooth connected device above. Since the on-off attribute of the on-off server cluster is a reportable attribute, it is reported to all
devices setup in the binding table of the Light.

The emberAfPostAttributeChangeCallback() function is then used to change the state of the LEDs and the LCD to indicate
the state of the light on the WSTK main board.

Write from the Zigbee Connected Device

Any on-off client on the same network as the Light can send an on-off cluster's On, Off or Toggle command to the Light to change its
state. Once such a command is received over the Zigbee interface, the Silicon Labs Zigbee framework interprets it and calls an appro-
priate handler to change the value of the on-off attribute of the on-off server cluster. In the example Z3Switch application, the on-off client
sends a Toggle command to the Light, which toggles the value of the on-off attribute and triggers the emberAfPostAttributeChan-
geCallback. The callback is then used to change the state of the light as well as send notifications for both Trigger Source and Light
characteristics to the connected Bluetooth devices and to update the LEDs and the LCD to indicate the change in the Light state. Example
code for the callback can be found in the project callbacks file.

silabs.com | Building a more connected world. Rev. 0.3 |22

AN1322: Dynamic Multiprotocol Development with Bluetooth and Zigbee EmberZNet SDK 7.0 and Higher
Document Revision History

4 Document Revision History

Revision 0.2

March, 2023
e Added a caution on thread safety to section 3.2.2

Revision 0.1

December, 2021
e I|nitial release

silabs.com | Building a more connected world. Rev. 0.3 |23

Simplicity Studio

One-click access to MCU and wireless
tools, documentation, software,
source code libraries & more. Available
for Windows, Mac and Linux!

loT Portfolio SW/HW Quality Support & Community

www.silabs.com/IoT www.silabs.com/simplicity www.silabs.com/quality www.silabs.com/community

Disclaimer

Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software imple-
menters using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each
specific device, and “Typical” parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon
Labs reserves the right to make changes without further notice to the product information, specifications, and descriptions herein, and does not give warranties as to the
accuracy or completeness of the included information. Without prior notification, Silicon Labs may update product firmware during the manufacturing process for security or
reliability reasons. Such changes will not alter the specifications or the performance of the product. Silicon Labs shall have no liability for the consequences of use of the infor-
mation supplied in this document. This document does notimply or expressly grant any license to design or fabricate any integrated circuits. The products are not designed or
authorized to be used within any FDA Class Il devices, applications for which FDA premarket approval is required or Life Support Systems without the specific written consent
of Silicon Labs. A “Life Support System” is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in
significant personalinjury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used
in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. Silicon Labs disclaims
allexpress and implied warranties and shall not be responsible or liable for any injuries or damages related to use of a Silicon Labs product in such unauthorized applications.
Note: This content may contain offensive terminology thatis now obsolete. Silicon Labs is replacing these terms with inclusive language wherever possible. For more
information, visit www.silabs.com/about-us/inclusive-lexicon-project

Trademark Information

Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labs®, SiLabs®and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy
Micro logo and combinations thereof, “the world’s most energy friendly microcontrollers”, Redpine Signals®, WiSeConnect, n-Link, ThreadArch®, EZLink®, EZRadio®, EZRadioPRO®,
Gecko®, Gecko OS, Gecko OS Studio, Precision32®, Simplicity Studio®, Telegesis, the Telegesis Logo® USBXpress®, Zentri, the Zentri logo and Zentri DMS, Z-Wave®, and others
are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered
trademark of ARM Limited. Wi-Fiis a registered trademark of the Wi-Fi Alliance. All other products or brand names mentioned herein are trademarks of their respective holders.

Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701

USA

SILICON LABS www.silabs.com

	1 Introduction
	1.1 Resources
	1.2 Development Environment Requirements

	2 Working with the Zigbee/Bluetooth Examples
	2.1 Application Generation
	2.2 Converting a Zigbee Application to a Zigbee/Bluetooth LE Dynamic Multiprotocol Application
	2.2.1 Generate and Build the Zigbee Application
	2.2.2 Configure the project

	3 About the Zigbee/Bluetooth LE Examples
	3.1 Mainboard User Interface
	3.1.1 Buttons
	3.1.2 LED
	3.1.3 LCD

	3.2 Command Line Interface Task (CLI)
	3.3 Zigbee Application
	3.3.1 Zigbee RTOS Task
	3.3.2 Application Code

	3.4 Bluetooth Application
	3.4.1 Silabs DMP Light Service
	3.4.2 Beacons
	3.4.3 Bluetooth Event Handling
	3.4.4 Bluetooth and Zigbee Interaction

	4 Document Revision History

