

silabs.com | Building a more connected world. Copyright © 2023 by Silicon Laboratories Rev. 0.3

AN1322: Dynamic Multiprotocol Development
with Bluetooth® and Zigbee EmberZNet SDK
7.0 and Higher

This application note provides details on developing Dynamic
Multiprotocol applications using Bluetooth and Zigbee in GSDK 4.0
and higher. It describes how to configure applications in Simplicity
Studio using Zigbee EmberZNet SDK v. 7.0 and higher. It then
provides a detailed walkthrough on how the underlying code
functions. For details on Dynamic Multiprotocol Application
development that apply to all protocol combinations see UG305:
Dynamic Multiprotocol User’s Guide.

Zigbee EmberZNet SDK v7.0 introduced a component-based project architecture that re-
placed AppBuilder. If you are working with Zigbee EmberZNet SDK v 6.10.x or lower, see
AN1133: Dynamic Multiprotocol Developer with Bluetooth and Zigbee EmberZNet SDK 6.x
and Lower for this information.

KEY POINTS

• Generating and loading dynamic multi-
protocol example applications.

• Adding dynamic multiprotocol functional-
ity to an existing Zigbee project.

• Details on the application User Interface.
• How the Zigbee example applications

function.
• How the Bluetooth application functions.

 AN1322: Dynamic Multiprotocol Development with Bluetooth and Zigbee EmberZNet SDK 7.0 and Higher
 Introduction

silabs.com | Building a more connected world. Rev. 0.3 | 2

1 Introduction

The example applications referenced here can be controlled either from a protocol-specific switch application or from a Bluetooth-enabled
smartphone app. This application note provides details on how these examples are designed and implemented. It also describes how to
generate, compile, and load example application code, and how to add dynamic multiprotocol functionality to an existing Zigbee project.
The application note is intended to be used when developing your own Zigbee/Bluetooth dynamic multiprotocol implementations.

Note: The Zigbee dynamic multiprotocol solution is currently only supported for SoC architectures. Support for NCP architectures has
been deprecated in favor of DMP RCP. Please contact Silicon Labs Sales for more information on our multiprotocol software roadmap.

1.1 Resources

• UG305: Dynamic Multiprotocol User's Guide provides details on:
• Dynamic Multiprotocol Architecture
• Radio Scheduler operation (with examples)
• Task Priority management

• AN1135: Using Third Generation Non-Volatile Memory (NVM3) Data Storage explains how NVM3 can be used as non-volatile data
storage in Dynamic Multiprotocol applications with Zigbee and Bluetooth.

1.2 Development Environment Requirements

• Simplicity Studio 5
• GSDK 4.0 or higher, which includes Zigbee EmberZNet SDK version 7.0.0 or higher and Bluetooth SDK 3.3 or higher.
• An EFR32 chip with at least 512 kB of flash (required to run all the necessary software components)

To work with the demos, download the EFR Connect app from Google Play Store or App Store.

 AN1322: Dynamic Multiprotocol Development with Bluetooth and Zigbee EmberZNet SDK 7.0 and Higher
 Working with the Zigbee/Bluetooth Examples

silabs.com | Building a more connected world. Rev. 0.3 | 3

2 Working with the Zigbee/Bluetooth Examples

This section describes
• How to build and flash the dynamic multiprotocol applications supplied with the Zigbee EmberZNet SDK.
• How to add Bluetooth to a Zigbee project and turn it into a dynamic multiprotocol project.

2.1 Application Generation

To work with Zigbee/Bluetooth dynamic multiprotocol applications as decribed in this application note, you must install GSDK 4.0 or
higher. The applications can be built with GCC (The GNU Compiler Collection) or IAR-EWARM. See QSG180: Getting Started with
EmberZNet PRO for information on installing the SDKs and setting up compilers.

Dynamic multiprotocol applications are generated, built, and uploaded in the same way as other applications. If you are not familiar with
these procedures, see QSG180: Zigbee EmberZNet Quick-Start Guide for SDK 7.0 and Higher for details. The dynamic multiprotocol
applications included with the EmberZNet SDK are:

• DynamicMultiprotocolLight is an application designed to demonstrate a DMP device with Zigbee 3.0 coordinator capabilities.
• DynamicMultiprotocolLightSed is an application designed to demonstrate a DMP device with SED capabilities.

The following summary procedure uses the DynamicMultiprotocolLight example application.
1. In Simplicity Studio, start a new project based on the DynamicMultiprotocolLight example. It is easiest to select Zigbee as the

Technology Type and filter on the word “dynamic.”

 AN1322: Dynamic Multiprotocol Development with Bluetooth and Zigbee EmberZNet SDK 7.0 and Higher
 Working with the Zigbee/Bluetooth Examples

silabs.com | Building a more connected world. Rev. 0.3 | 4

2. Once the project is created, files are generated automatically. Click Build (hammer icon) to build the application image.
3. To flash the application image, in Project Explorer view right-click the application .s37 file and select Flash to Device.

If you have more than one device connected, select the target. The Flash Programmer opens.

 AN1322: Dynamic Multiprotocol Development with Bluetooth and Zigbee EmberZNet SDK 7.0 and Higher
 Working with the Zigbee/Bluetooth Examples

silabs.com | Building a more connected world. Rev. 0.3 | 5

4. The path of the .s37 file should be auto populated. Click Program to flash the file to the target.

5. Application load success indicators are code-dependent. If the example projects are being used on a development board that sup-

ports LCD functionality, the LCD displays the following screen on power up. Press button PB0 to change to the light display. On other
development boards that do not have additional peripherals to support a fully featured user interface, use the command line interface
to run various commands.

Note: Silicon Labs examples require a bootloader. If the bootloader gets erased, an easy way to load a bootloader is to run the Dynamic
Multiprotocol Light demo. This installs a combined bootloader/application image. Then you can flash your own application image
to update only the application area. If you are using a board that is not compatible with the available demos, then you can load
a bootloader by selecting an example, such as SPI Flash Storage Bootloader (single image), and building it and flashing it as
described above.

 AN1322: Dynamic Multiprotocol Development with Bluetooth and Zigbee EmberZNet SDK 7.0 and Higher
 Working with the Zigbee/Bluetooth Examples

silabs.com | Building a more connected world. Rev. 0.3 | 6

2.2 Converting a Zigbee Application to a Zigbee/Bluetooth LE Dynamic Multiprotocol Application

This section describes the configuration changes required to convert a working Zigbee application into a Zigbee/Bluetooth LE Dynamic
Multiprotocol application. The instructions present the generic steps for the conversion, with specific examples based on turning the
Z3Light example into the equivalent of DynamicMultiprotocolLight.

Requirements:
• Zigbee application set up to build with IAR ARM or GCC (these instructions use Z3 Light)
• Any EFR32 part with a minimum of 512 kB of flash and 64 kB of RAM (these instructions assume BRD4161

(EFR32MG12P432F1024GL125)

Note: The Dynamic Multiprotocol examples do not support OTA updates out of the box. To support OTA updates, uninstall the Zigbee
LCD component. This frees up the port pins that are multiplexed with the external flash.

2.2.1 Generate and Build the Zigbee Application

The purpose of this step is to verify that the base Zigbee application had loaded and is working correctly, and that output is printing to the
console. This example uses the Z3Light sample application. It begins with the default settings, so that the configuration changes are
clear. Generate and build the project, load it to the board and check the Serial 1 output to make sure it is up and running.

 AN1322: Dynamic Multiprotocol Development with Bluetooth and Zigbee EmberZNet SDK 7.0 and Higher
 Working with the Zigbee/Bluetooth Examples

silabs.com | Building a more connected world. Rev. 0.3 | 7

2.2.2 Configure the project

To convert the Z3Light application into a Zigbee-Bluetooth LE multiprotocol application similar to the DMP Light, follow the steps below:
1. Navigate to the SOFTWARE COMPONENTS tab on the Z3Light project and search for and add the following components.

• Bluetooth > Stack > Bluetooth Core - Reason: This is the Bluetooth stack core component

Note: Installing this enables multiple protocol stacks on the project and thereby also enables the CMSIS RTOS2 layer and Micrium
OS Kernel, which is the default RTOS implementation. FreeRTOS is also supported.

• Bluetooth > Stack > GATT Client, GATT Server, Security Manager, System - Reason: Basic Bluetooth building blocks.

 AN1322: Dynamic Multiprotocol Development with Bluetooth and Zigbee EmberZNet SDK 7.0 and Higher
 Working with the Zigbee/Bluetooth Examples

silabs.com | Building a more connected world. Rev. 0.3 | 8

 AN1322: Dynamic Multiprotocol Development with Bluetooth and Zigbee EmberZNet SDK 7.0 and Higher
 Working with the Zigbee/Bluetooth Examples

silabs.com | Building a more connected world. Rev. 0.3 | 9

• Bluetooth > Feature > Legacy Advertising, Connection, Scanner. Reason: Basic Bluetooth features.

 AN1322: Dynamic Multiprotocol Development with Bluetooth and Zigbee EmberZNet SDK 7.0 and Higher
 Working with the Zigbee/Bluetooth Examples

silabs.com | Building a more connected world. Rev. 0.3 | 10

 AN1322: Dynamic Multiprotocol Development with Bluetooth and Zigbee EmberZNet SDK 7.0 and Higher
 Working with the Zigbee/Bluetooth Examples

silabs.com | Building a more connected world. Rev. 0.3 | 11

• If your application uses Free RTOS, configure FreeRTOS component and increase Timer task priority to 53. Reason: Due
to the usage of RTOS event flags in the Bluetooth stack, the timer task priority must be higher than all of the Bluetooth RTOS task
priorities.

2. Add an implementation of sl_bt_on_event(sl_bt_msg_t* evt) in your app.c file. The following is an example implemen-
tation of the Bluetooth LE event handler that starts advertisements on boot and prints out information as some of the most common
events occur:

#include "sl_bluetooth.h"
#include "sl_bluetooth_advertiser_config.h"
#include "sl_bluetooth_connection_config.h"

 AN1322: Dynamic Multiprotocol Development with Bluetooth and Zigbee EmberZNet SDK 7.0 and Higher
 Working with the Zigbee/Bluetooth Examples

silabs.com | Building a more connected world. Rev. 0.3 | 12

#include "gatt_db.h"
uint8_t adv_handle;
#define DEVNAME_LEN 8
#define UUID_LEN 16 // 128-bit UUID

// to convert hex number to its ascii character
uint8_t ascii_lut[] = { '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E',
'F' };

void zb_ble_dmp_print_ble_address(uint8_t *address)
{
 emberAfCorePrint("\nBLE address: [%X %X %X %X %X %X]\n",
 address[5], address[4], address[3],
 address[2], address[1], address[0]);
}

void enableBleAdvertisements(void)
{
 sl_status_t status;

 /* Create the device Id and name based on the 16-bit truncated bluetooth address
 Copy to the local GATT database - this will be used by the BLE stack
 to put the local device name into the advertisements, but only if we are
 using default advertisements */
 uint8_t type;
 bd_addr ble_address;
 static char devName[DEVNAME_LEN];

 status = sl_bt_system_get_identity_address(&ble_address, &type);
 if (status != SL_STATUS_OK) {
 emberAfCorePrintln("Unable to get BLE address. Errorcode: 0x%x", status);
 return;
 }

 devName[0] = 'D';
 devName[1] = 'M';
 devName[2] = 'P';
 devName[3] = ascii_lut[((ble_address.addr[1] & 0xF0) >> 4)];
 devName[4] = ascii_lut[(ble_address.addr[1] & 0x0F)];
 devName[5] = ascii_lut[((ble_address.addr[0] & 0xF0) >> 4)];
 devName[6] = ascii_lut[(ble_address.addr[0] & 0x0F)];
 devName[7] = '\0';

 emberAfCorePrintln("devName = %s", devName);
 status = sl_bt_gatt_server_write_attribute_value(gattdb_device_name,
 0,
 strlen(devName),
 (uint8_t *)devName);

 if (status != SL_STATUS_OK) {
 emberAfCorePrintln("Unable to sl_bt_gatt_server_write_attribute_value device name. Errorcode:
0x%x", status);
 return;
 }

 status = sl_bt_advertiser_set_timing(adv_handle,
 (100 / 0.625), //100ms min adv interval in terms of 0.625ms
 (100 / 0.625), //100ms max adv interval in terms of 0.625ms
 0, // duration : continue advertisement until stopped
 0); // max_events :continue advertisement until stopped
 if (status != SL_STATUS_OK) {
 return;
 }

 /* Start advertising in user mode and enable connections*/
 status = sl_bt_legacy_advertiser_start(adv_handle,
 advertiser_connectable_scannable);

 AN1322: Dynamic Multiprotocol Development with Bluetooth and Zigbee EmberZNet SDK 7.0 and Higher
 Working with the Zigbee/Bluetooth Examples

silabs.com | Building a more connected world. Rev. 0.3 | 13

 if (status) {
 emberAfCorePrintln("sl_bt_legacy_advertiser_start ERROR : status = 0x%0X", status);
 } else {
 emberAfCorePrintln("BLE custom advertisements enabled");
 }
}

void sl_bt_on_event(sl_bt_msg_t* evt)
{
 switch (SL_BT_MSG_ID(evt->header)) {
 case sl_bt_evt_system_boot_id: {
 bd_addr ble_address;
 uint8_t type;
 sl_status_t status = sl_bt_system_hello();
 emberAfCorePrintln("BLE hello: %s",
 (status == SL_STATUS_OK) ? "success" : "error");

 status = sl_bt_system_get_identity_address(&ble_address, &type);
 zb_ble_dmp_print_ble_address(ble_address.addr);

 status = sl_bt_advertiser_create_set(&adv_handle);
 if (status) {
 emberAfCorePrintln("sl_bt_advertiser_create_set status 0x%x", status);
 }
 // start advertising
 enableBleAdvertisements();
 }
 break;

 case sl_bt_evt_connection_opened_id: {
 emberAfCorePrintln("sl_bt_evt_connection_opened_id \n");
 sl_bt_evt_connection_opened_t *conn_evt =
 (sl_bt_evt_connection_opened_t*) &(evt->data);

 //preferred phy 1: 1M phy, 2: 2M phy, 4: 125k coded phy, 8: 500k coded phy
 //accepted phy 1: 1M phy, 2: 2M phy, 4: coded phy, ff: any
 sl_bt_connection_set_preferred_phy(conn_evt->connection, test_phy_1m, 0xff);

 emberAfCorePrintln("BLE connection opened");
 }
 break;

 case sl_bt_evt_connection_phy_status_id: {
 sl_bt_evt_connection_phy_status_t *conn_evt =
 (sl_bt_evt_connection_phy_status_t *)&(evt->data);
 // indicate the PHY that has been selected
 emberAfCorePrintln("now using the %dMPHY\r\n",
 conn_evt->phy);
 }
 break;

 case sl_bt_evt_connection_closed_id: {
 sl_bt_evt_connection_closed_t *conn_evt =
 (sl_bt_evt_connection_closed_t*) &(evt->data);

 // restart advertising
 enableBleAdvertisements();

 emberAfCorePrintln(
 "BLE connection closed, handle=0x%x, reason=0x%2x",
 conn_evt->connection, conn_evt->reason);
 }
 break;

 AN1322: Dynamic Multiprotocol Development with Bluetooth and Zigbee EmberZNet SDK 7.0 and Higher
 Working with the Zigbee/Bluetooth Examples

silabs.com | Building a more connected world. Rev. 0.3 | 14

 default:
 break;
 }

3. Save your new Z3Light project and click Force Generation in the project overview pane.

 AN1322: Dynamic Multiprotocol Development with Bluetooth and Zigbee EmberZNet SDK 7.0 and Higher
 Working with the Zigbee/Bluetooth Examples

silabs.com | Building a more connected world. Rev. 0.3 | 15

4. Build and flash the project and look for the device in the “Connected Lighting demo” screen of the EFR Connect smartphone app.

You can also see Bluetooth LE activity related printing in the Serial 1 tab of the console.

This is very basic Bluetooth functionality. To learn more about programming Bluetooth LE functionality, see Getting Started with Silicon
Labs Bluetooth LE Development.

https://docs.silabs.com/bluetooth/6.2.0/bluetooth-getting-started-overview/
https://docs.silabs.com/bluetooth/6.2.0/bluetooth-getting-started-overview/

 AN1322: Dynamic Multiprotocol Development with Bluetooth and Zigbee EmberZNet SDK 7.0 and Higher
 About the Zigbee/Bluetooth LE Examples

silabs.com | Building a more connected world. Rev. 0.3 | 16

3 About the Zigbee/Bluetooth LE Examples

The Zigbee/Bluetooth LE Dynamic Multiprotocol examples demonstrate a light that can be controlled via Bluetooth LE and Zigbee. Soft-
ware examples may be compiled using the sample SoC appliations in the EmberZNet SDK. The purpose of the examples is to show how
to implement a dynamic multiprotocol application using the Silicon Labs EmberZNet stack.

The Dynamic Multiprotocol Demo application has these main components.
1. Mainboard User Interface (LCD, Buttons, LEDs (optional for parts with these peripherals)
2. Zigbee application (Coordinator or Sleepy End Device)
3. Bluetooth application
4. CLI interface

3.1 Mainboard User Interface

The mainboard-interface application code has three main components. These help to enhance the user experience, but are not essential
to the core DMP functionality. If your demo radio board does not support LCD, a minimal version of these applications is automatically
chosen and the buttons, LED and LCD components are automatically removed from the project.

3.1.1 Buttons

The DynamicMultiprotocol sample applications use two buttons on the mainboard. This functionality is provided using two instances of
the Simple Button component and can be easily uninstalled if the mainboard does not have buttons. Button PB0 toggles the local state
of the light. Button PB1 controls network operations such as form, join, and leave.

3.1.2 LED

The sample app displays the current state of the On/Off light using the two LEDs on the mainboard. This application code is provided
using two instances of the Simple LED component.

3.1.3 LCD

The LCD enhances the overall user experience by providing helpful instructions and displaying the state of the node. This functionality is
provided using the Zigbee LCD Display component. This component provides APIs to update the text and graphic on the LCD. These
APIs are invoked from the application’s Zigbee callbacks and Bluetooth event handlers.

3.2 Command Line Interface Task (CLI)

The CLI task runs as a relatively low priority task and processes commands and displays output. Since the CLI task may potentially
execute functions that are not thread safe, task switching is locked in the pre-command hook function (sli_cli_pre_cmd_hook) before it is
executed. RTOS task switching is restored in the post-command hook function (sli_cli_post_cmd_hook). CLI commands also post the
semaphore and allow the Zigbee RTOS task to run by invoking the function sl_zigbee_common_rtos_wakeup_stack_task()
in the post command hook.

 AN1322: Dynamic Multiprotocol Development with Bluetooth and Zigbee EmberZNet SDK 7.0 and Higher
 About the Zigbee/Bluetooth LE Examples

silabs.com | Building a more connected world. Rev. 0.3 | 17

3.3 Zigbee Application

The DynamicMultiprotocolLight sample application is a Zigbee coordinator and DyamicMultiprotocolLightSed is a Zigbee sleepy end
device. Both sample applications demonstrate a wireless light that can be controlled locally using a button or wirelessly using a Zigbee
switch or a Bluetooth LE mobile application.

The following cluster set is supported by both the DynamicMultiprotocolLight and DynamicMultiprotocolLightSed applications:
• Basic
• Identify
• Scenes
• Groups
• On/Off
• ZLL Commissioning

The DynamicMultiprotocolLight example also supports Green Power Proxy Basic endpoint. Note that the examples were developed
with a focus on demonstrating dynamic multiprotocol features and may not be Zigbee-certifiable.

The On/Off cluster controls the LEDs and the bulb icon on the mainboard LCD to represent the state of the light.

3.3.1 Zigbee RTOS Task

The DMP sample applications utilize CMSIS-RTOS2 constructs and therefore are structured to support either Micrium OS or FreeRTOS.
Micrium OS is set up as default RTOS. Free RTOS is also supported. The RTOS tasks are:
• Bluetooth link layer task (priority: 52)
• Bluetooth host stack task (priority: 51)
• Bluetooth event handler task (priority: 50)
• Zigbee stack and application task (priority: 49)
• Command Line Interface task (priority: 16)

These tasks are all created independently of each other. Zigbee RTOS task-related configuration is in the Zigbee Application Framework
Common component.

Note that the Zigbee and Bluetooth task priorities must not be changed from their defaults in order to ensure that the application works
as intended. Any application RTOS tasks must be lower priority than the Zigbee stack RTOS task and may be created in an application
file following the example code in this section. The Zigbee stack RTOS task is created in the sli_zigbee_common_rtos_init_callback,
which is in turn invoked from the stack_init event handler, which is an autogenerated file.

void sli_zigbee_common_rtos_init_callback(void)
{
 App_OS_SetAllHooks();

 // Create ZigBee task.
 zigbee_task_attr.name = "Zigbee task";
 zigbee_task_attr.stack_mem = &zigbee_task_stack[0];
 zigbee_task_attr.stack_size = sizeof(zigbee_task_stack);
 zigbee_task_attr.cb_mem = zigbee_task_cb;
 zigbee_task_attr.cb_size = osThreadCbSize;
 zigbee_task_attr.priority = ZIGBEE_STACK_TASK_PRIORITY;
 zigbee_task_attr.attr_bits = 0;

 AN1322: Dynamic Multiprotocol Development with Bluetooth and Zigbee EmberZNet SDK 7.0 and Higher
 About the Zigbee/Bluetooth LE Examples

silabs.com | Building a more connected world. Rev. 0.3 | 18

 zigbee_task_attr.tz_module = 0;

 zigbee_task_id = osThreadNew(zigbee_task,
 NULL,
 &zigbee_task_attr);
 assert(zigbee_task_id != NULL);

 zigbee_task_event_flags_id = osEventFlagsNew(&zigbee_task_event_flags_attr);
 assert(zigbee_task_event_flags_id != NULL);
}

The Zigbee task invokes stack and application framework initialization callbacks before running the while loop. Tick callbacks are executed
in the loop, following which the Zigbee task yields, if it is able, in order to allow the microcontroller to go into low power mode.

static void zigbee_task(void *p_arg)
{
 (void)p_arg;

 sli_zigbee_stack_init_callback();
 sli_zigbee_app_framework_init_callback();

 while (true) {
 sli_zigbee_stack_tick_callback();
 sli_zigbee_app_framework_tick_callback();

 // Yield the ZigBee stack task if possible.
 zigbee_stack_task_yield();
 }
}

Several application override mechanisms control whether the microcontroller is allowed to enter sleep (EM2) or idle (EM1) modes. These
flags, in combination with the time to the closest application or stack event, control how long the Zigbee RTOS task yields for. These
options are also configured in the Zigbee Application Framework Common component.

 AN1322: Dynamic Multiprotocol Development with Bluetooth and Zigbee EmberZNet SDK 7.0 and Higher
 About the Zigbee/Bluetooth LE Examples

silabs.com | Building a more connected world. Rev. 0.3 | 19

3.3.2 Application Code

On either DMP light application, once the Zigbee stack is set up to run, subsequent interactions with the stack occur via event handlers.
The following figure shows the event handlers in the full function light application.

Each enabled cluster must have a corresponding component that handles the callbacks for the cluster. Alternatively, this can be provided
by a custom implementation in the project callbacks file. In addition, the Zigbee callbacks file subscribes to optional stack callbacks, such
as stack status callbacks, to show the network state and perform other operations based on change of state.

Whenever the coordinator sample application starts pjoin, it starts identifying and also puts all the connected lights in identify mode. This
helps the joining switch to identify all the lights present in the network. The sleepy sample application does the same on the steering
status callback.

The On/Off attribute can be changed locally using the button PB0. The button_on_change ISR routine fires on change of the button state.
Note that, since this routine is executed from an interrupt context, printing messages in this routine is not recommended. For this reason,
once time stamps are recorded and states are set, a separate event handler is set to active to further process the button press. Since the
event handler runs from the Zigbee task context, the semaphore must be posted by invoking the function sl_zigbee_com-
mon_rtos_wakeup_stack_task().

The On/Off attribute may also be changed by receiving a Zigbee on-off toggle command from a remote device like the Z3Switch. This
path follows the emberAfPostAttributeChangeCallback. Any change to the attribute will also trigger a notification over a Bluetooth LE
connection, if one is open. In addition to the state, the trigger source and the EUI of the trigger source are recorded for tracking.

The On/Off attribute may also be modified using the EFR Connect mobile application. The light displays on the app as “DMPxxxx” where
xxxx are the last four digits of the Bluetooth LE MAC address. The characteristic can be read and written using the mobile application.
This triggers a change to the Zigbee attribute.

CAUTION: The Zigbee stack is not thread-safe and is not designed to be thread-safe. As such, all calls to EmberZNet functions
should be made from the Zigbee task to avoid the risk of concurrency issues. To avoid the risk of shared resources, if you want
to send Zigbee messages or use EmberZNet functions from a task other than the Zigbee Stack Task, you must schedule a
custom event from within the non-Zigbee Stack task. In the corresponding event handler function for the custom event the
Zigbee stack APIs can be used, as the event handler will be called from the Zigbee Stack Task context.

 AN1322: Dynamic Multiprotocol Development with Bluetooth and Zigbee EmberZNet SDK 7.0 and Higher
 About the Zigbee/Bluetooth LE Examples

silabs.com | Building a more connected world. Rev. 0.3 | 20

3.4 Bluetooth Application

The Bluetooth application supports following services and characteristics. These are pre-selected in the GATT editor during project gen-
eration.

3.4.1 Silabs DMP Light Service

In the above table the ‘Silabs DMP Light’ is a custom service with a UUID of bae55b96-7d19-458d-970c-50613d801bc9. This
custom UUID is used to uniquely identify the Light by the EFR Connect application.

The Service has two characteristics,

3.4.2 Beacons

The application implements both an iBeacon as well as an Eddystone beacon. The default behavior is to transmit each beacon at 100 mS
intervals.

 AN1322: Dynamic Multiprotocol Development with Bluetooth and Zigbee EmberZNet SDK 7.0 and Higher
 About the Zigbee/Bluetooth LE Examples

silabs.com | Building a more connected world. Rev. 0.3 | 21

3.4.3 Bluetooth Event Handling

The Bluetooth stack is initialized as part of the Bluetooth task. The Bluetooth task handles the Bluetooth LE link layer messaging and
management. A number of events that are called in the context of the Zigbee task allow the user application to interact with the Bluetooth
stack. The following diagram describes the Bluetooth-related events..

Note: Bluetooth event handling is same for both DMP demos.

Figure 3-1. DMP Bluetooth Event Handler Definition

 AN1322: Dynamic Multiprotocol Development with Bluetooth and Zigbee EmberZNet SDK 7.0 and Higher
 About the Zigbee/Bluetooth LE Examples

silabs.com | Building a more connected world. Rev. 0.3 | 22

3.4.4 Bluetooth and Zigbee Interaction

The primary purpose of the example applications is to show Zigbee and Bluetooth working together on a device. For this purpose, when
the Light receives a command to change its state through one protocol, it executes the command and sends out a notification to the other
devices using the other protocol to keep everything in sync. Their interaction is the same in both examples.

Two basic operations are described below, first a write to Light characteristics from a Bluetooth connected device (shown in the following
figure) and then a change in the Light state from a Zigbee device.

Write from the Bluetooth Connected Device

The application’s services and characteristics are pre-selected in the GATT configurator in Simplicity Studio. On generation the charac-
teristics are #define in the gatt_db.h. Using the #define reference, the characteristics can then be coupled to read and write Bluetooth
requests. For example, the Light characteristic is reference from GATT as gatt_light_state which is then tied to an application-specific
write API of writeLightState in the AppCfgGattServerUserWriteRequest in sl_bt_event_handler.c.

The application implements the Zigbee attribute write and a Bluetooth write response in the writeLightState function. Since ember func-
tions are not thread-safe, the application posts a Zigbee event and a semaphore to wake the Zigbee task and invoke the ember-
AfWriteAttribute function.

The emberAfWriteAttribute() function is used to write the attribute table of the Zigbee application with the value supplied by
the Bluetooth connected device above. Since the on-off attribute of the on-off server cluster is a reportable attribute, it is reported to all
devices setup in the binding table of the Light.

The emberAfPostAttributeChangeCallback() function is then used to change the state of the LEDs and the LCD to indicate
the state of the light on the WSTK main board.

Write from the Zigbee Connected Device

Any on-off client on the same network as the Light can send an on-off cluster’s On, Off or Toggle command to the Light to change its
state. Once such a command is received over the Zigbee interface, the Silicon Labs Zigbee framework interprets it and calls an appro-
priate handler to change the value of the on-off attribute of the on-off server cluster. In the example Z3Switch application, the on-off client
sends a Toggle command to the Light, which toggles the value of the on-off attribute and triggers the emberAfPostAttributeChan-
geCallback. The callback is then used to change the state of the light as well as send notifications for both Trigger Source and Light
characteristics to the connected Bluetooth devices and to update the LEDs and the LCD to indicate the change in the Light state. Example
code for the callback can be found in the project callbacks file.

 AN1322: Dynamic Multiprotocol Development with Bluetooth and Zigbee EmberZNet SDK 7.0 and Higher
 Document Revision History

silabs.com | Building a more connected world. Rev. 0.3 | 23

4 Document Revision History

Revision 0.2

March, 2023
• Added a caution on thread safety to section 3.2.2

Revision 0.1

December, 2021
• Initial release

Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
USA

www.silabs.com

IoT Portfolio
www.silabs.com/IoT

SW/HW
www.silabs.com/simplicity

Quality
www.silabs.com/quality

Support & Community
www.silabs.com/community

Simplicity Studio
One-click access to MCU and wireless
tools, documentation, software,
source code libraries & more. Available
for Windows, Mac and Linux!

Disclaimer
Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software imple-
menters using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each
specific device, and “Typical” parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon
Labs reserves the right to make changes without further notice to the product information, specifications, and descriptions herein, and does not give warranties as to the
accuracy or completeness of the included information. Without prior notification, Silicon Labs may update product firmware during the manufacturing process for security or
reliability reasons. Such changes will not alter the specifications or the performance of the product. Silicon Labs shall have no liability for the consequences of use of the infor-
mation supplied in this document. This document does not imply or expressly grant any license to design or fabricate any integrated circuits. The products are not designed or
authorized to be used within any FDA Class III devices, applications for which FDA premarket approval is required or Life Support Systems without the specific written consent
of Silicon Labs. A “Life Support System” is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in
significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used
in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. Silicon Labs disclaims
all express and implied warranties and shall not be responsible or liable for any injuries or damages related to use of a Silicon Labs product in such unauthorized applications.
Note: This content may contain offensive terminology that is now obsolete. Silicon Labs is replacing these terms with inclusive language wherever possible. For more
information, visit www.silabs.com/about-us/inclusive-lexicon-project

Trademark Information
Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy
Micro logo and combinations thereof, “the world’s most energy friendly microcontrollers”, Redpine Signals®, WiSeConnect , n-Link, ThreadArch®, EZLink®, EZRadio®, EZRadioPRO®,
Gecko®, Gecko OS, Gecko OS Studio, Precision32®, Simplicity Studio®, Telegesis, the Telegesis Logo®, USBXpress® , Zentri, the Zentri logo and Zentri DMS, Z-Wave®, and others
are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered
trademark of ARM Limited. Wi-Fi is a registered trademark of the Wi-Fi Alliance. All other products or brand names mentioned herein are trademarks of their respective holders.

	1 Introduction
	1.1 Resources
	1.2 Development Environment Requirements

	2 Working with the Zigbee/Bluetooth Examples
	2.1 Application Generation
	2.2 Converting a Zigbee Application to a Zigbee/Bluetooth LE Dynamic Multiprotocol Application
	2.2.1 Generate and Build the Zigbee Application
	2.2.2 Configure the project

	3 About the Zigbee/Bluetooth LE Examples
	3.1 Mainboard User Interface
	3.1.1 Buttons
	3.1.2 LED
	3.1.3 LCD

	3.2 Command Line Interface Task (CLI)
	3.3 Zigbee Application
	3.3.1 Zigbee RTOS Task
	3.3.2 Application Code

	3.4 Bluetooth Application
	3.4.1 Silabs DMP Light Service
	3.4.2 Beacons
	3.4.3 Bluetooth Event Handling
	3.4.4 Bluetooth and Zigbee Interaction

	4 Document Revision History

