
AN1374: Series 2 TrustZone

ARMv8-M TrustZone is a technology that provides a foundation
for improved system security in embedded applications. It allows
the ARMv8-M to be aware of the security states of the system.
Series 2 devices use the Cortex-M33 core to implement the
ARMv8-M TrustZone security extension, which provides the abili-
ty to restrict access to peripherals and memory regions based on
the processor security attribute. TrustZone works with the MPU,
which controls privileged/unprivileged execution of code to pro-
vide a complete security solution.
ARMv8-M TrustZone is an extensive topic. The references below are publicly available
on the ARM Developer Documentation website.
• ARMv8-M Architecture Reference Manual
• ARMv8-M Architecture Technical Overview
• ARM Cortex-M33 Processor Technical Reference Manual
• System Design with ARMv8-M
• TrustZone technology for ARMv8-M Architecture
• ARM Cortex-M33 Devices Generic User Guide
• Secure software guidelines for ARMv8-M
• Software Development in ARMv8-M Architecture

Reading guides:
• Beginner - Minimal experience with TrustZone, starting with TrustZone Basics
• Intermediate - Have a basic understanding of the TrustZone technology, starting

with Bus Level Security
• Advanced - Developed experience on TrustZone, starting with TrustZone Implemen-

tation
• Demo - Starting with TrustZone Platform Examples

KEY POINTS

• TrustZone Basics
• Bus Level Security (BLS)
• Secure and Privileged Programming

Model
• TrustZone Implementation
• Upgrade Existing Application to TrustZone
• TrustZone Platform Examples

silabs.com | Building a more connected world. Copyright © 2023 by Silicon Laboratories Rev. 0.3

https://developer.arm.com/docs
https://developer.arm.com/documentation/ddi0553/latest
https://community.arm.com/cfs-file/__key/telligent-evolution-components-attachments/01-2142-00-00-00-00-66-90/Whitepaper-_2D00_-ARMv8_2D00_M-Architecture-Technical-Overview.pdf
https://developer.arm.com/documentation/100230/latest
https://developer.arm.com/documentation/100767/0100/System-Design-for-ARMv8-M
https://developer.arm.com/documentation/100690/latest/
https://developer.arm.com/documentation/100235/latest
https://developer.arm.com/documentation/100720/0300
https://community.arm.com/cfs-file/__key/telligent-evolution-components-attachments/01-2142-00-00-00-01-27-19/ARM-Cortex-_2D00_-session-11-_2D00_-Yiu-_2D00_-Software-Development-in-ARMv8_2D00_M-Architecture.pdf

1. Series 2 Device Security Features

Protecting IoT devices against security threats is central to a quality product. Silicon Labs offers several security options to help devel-
opers build secure devices, secure application software, and secure communication paths to manage those devices. Silicon Labs’ se-
curity offerings were significantly enhanced by the introduction of the Series 2 products that included a Secure Engine. The Secure
Engine is a tamper-resistant component used to securely store sensitive data and keys, and to execute cryptographic functions and
secure services.

On Series 2 devices, the security features are implemented by the Secure Engine and CRYPTOACC (if available). The Secure Engine
may be hardware-based or virtual (software-based). Throughout this document, the following abbreviations are used:
• HSE - Hardware Secure Engine
• VSE - Virtual Secure Engine
• SE - Secure Engine (either HSE or VSE)

Additional security features are provided by Secure Vault. Three levels of Secure Vault feature support are available, depending on the
part and SE implementation, as reflected in the following table:

Level (1) SE Support Part

Secure Vault High (SVH) HSE only (HSE-SVH) Refer to UG103.05: IoT Endpoint Security Fundamentals for de-
tails on supporting devices.

Secure Vault Mid (SVM) HSE (HSE-SVM) "

Secure Vault Mid (SVM) VSE (VSE-SVM) "

Secure Vault Base (SVB) N/A "

Note:
1. The features of different Secure Vault levels can be found in https://www.silabs.com/security.

Secure Vault Mid consists of two core security functions:
• Secure Boot: Process where the initial boot phase is executed from an immutable memory (such as ROM) and where code is au-

thenticated before being authorized for execution.
• Secure Debug Access Control: The ability to lock access to the debug ports for operational security, and to securely unlock them

when access is required by an authorized entity.

Secure Vault High offers additional security options:
• Secure Key Storage: Protects cryptographic keys by “wrapping” or encrypting the keys using a root key known only to the HSE-SVH.
• Anti-Tamper protection: A configurable module to protect the device against tamper attacks.
• Device authentication: Functionality that uses a secure device identity certificate along with digital signatures to verify the source or

target of device communications.

Series 2 devices require a specific SE firmware version to support the TrustZone implementation. Refer to AN1222: Production Pro-
gramming of Series 2 Devices to learn how to upgrade the SE firmware and UG103.05: IoT Endpoint Security Fundamentals for the
latest SE Firmware shipped with Series 2 devices and modules.

Series 2 devices use Cortex-M33 core to implement the ARMv8-M Mainline TrustZone security extension and refer to TrustZone as
Bus Level Security. The following table lists the configuration of TrustZone related components in the Series 2 Cortex-M33 core.

Component Series 2 Configuration Description

Security Extension (TrustZone) Enabled The security extension cannot be disabled, and the entire memory af-
ter RESET is Secure by default.

Memory Protection Unit (MPU) 16 regions (maximum) The MPU regions for both Secure and Non-secure MPUs.

Security Attribution Unit (SAU) 8 regions (maximum) The SAU regions for Non-secure and Non-secure Callable.

AN1374: Series 2 TrustZone
Series 2 Device Security Features

silabs.com | Building a more connected world. Rev. 0.3 | 2

https://www.silabs.com/security
https://www.silabs.com/documents/public/application-notes/an1222-efr32xg2x-production-programming.pdf
https://www.silabs.com/documents/public/application-notes/an1222-efr32xg2x-production-programming.pdf
https://www.silabs.com/documents/public/user-guides/ug103-05-fundamentals-security.pdf

2. TrustZone Basics

2.1 Introduction

TrustZone for ARMv8-M adds extra states to the Cortex-M processor operations to ensure there is a Secure and Non-secure state.
These security states are orthogonal to the existing Thread and Handler modes, thereby having both a Thread and Handler mode in
both Secure and Non-secure states. The Thread mode can also be either Privileged or Unprivileged.

Figure 2.1. Operation States and Modes of TrustZone Implementation

Image: https://documentation-service.arm.com/. Copyright © 1995-2022 Arm Limited (or its affiliates). All rights reserved.

TrustZone for ARMv8-M is an optional architecture extension. By default, the system starts up in a Secure state if the processor imple-
ments the TrustZone security extension. The division of Secure and Non-secure worlds is memory-map based (security state depends
on the address of the fetched instruction), and the transitions happen automatically. It is also possible to leave the Non-secure state
unused and execute the whole application in the Secure state.

2.2 Memory Security Attributes

TrustZone classifies memory into four security attributes as described in the following table.

Security Attribute Processor State Description

Non-secure (NS) Non-secure Non-secure and Secure software can access these memory regions.

Secure (S) Secure Secure software can access these memory regions. Non-secure software can-
not gain access to the Secure memory.

Non-secure Callable (NSC) Secure Secure memory with an NSC attribute provides entry points for Secure APIs that
can be called from a Non-secure space. It is a region of memory that contains
the Secure Gateway (SG) veneers that allow Non-secure code to call secure
functions that exist in Secure code. Non-secure software cannot read/write to an
NSC memory but can branch into it if the branch target is an SG instruction.

Exempted Secure/Non-secure Non-secure and Secure software can access these memory regions (exempted
from security checking). Exempted regions are typically used by debugging com-
ponents that do not pose any security risk (e.g., system ROM table) when ac-
cessed by the Non-secure software.

Note: The Non-secure Callable is also known as Secure Non-secure Callable (Secure NSC) to declare that this region resides in Se-
cure memory.

2.3 Banked Register

The concept of a banked register in ARMv8-M between Secure and Non-secure states means that there are two copies of the register,
and the core automatically uses the copy that belongs to the current security state. When a register is banked, the _S and _NS suffixes
are used in the ARMv8-M architecture to identify whether the resource is for the Secure state or Non-secure state.

AN1374: Series 2 TrustZone
TrustZone Basics

silabs.com | Building a more connected world. Rev. 0.3 | 3

https://documentation-service.arm.com/static/5ef7c218cafe527e86f55aa0?token=

2.3.1 General-Purpose Registers

The Cortex-M processors have 16 general-purpose registers (R0 - R15) for data processing (R0 - R12) and control. The following figure
shows the general-purpose register view of the ARMv8-M system with TrustZone. Refer to the ARM Cortex-M33 Devices Generic User
Guide for details about these registers.

Figure 2.2. General-Purpose Register View with TrustZone

Image: https://documentation-service.arm.com/. Copyright © 1995-2022 Arm Limited (or its affiliates). All rights reserved.

The Secure or Non-secure state can access the data processing registers R0 - R12 and special usage registers R13 - R15. The regis-
ter R13 (banked SP) is the stack pointer alias, and the actual stack pointer (MSP_NS, PSP_NS, MSP_S, PSP_S) accessed depends on the
state (Secure or Non-secure) and mode (Handler or Thread) as described in the following figure.

In addition, stack limit registers (special registers) enable hardware to detect stack overflow conditions. Two pairs of stack limit registers
(MSPLIM_NS and PSPLIM_NS, MSPLIM_S and PSPLIM_S) are implemented, one per security state, to protect the Main Stack Pointer
(MSP) and Process Stack Pointer (PSP).

Figure 2.3. Banked Registers in the General-Purpose Registers

Image: https://documentation-service.arm.com/. Copyright © 1995-2022 Arm Limited (or its affiliates). All rights reserved.

AN1374: Series 2 TrustZone
TrustZone Basics

silabs.com | Building a more connected world. Rev. 0.3 | 4

https://developer.arm.com/documentation/100235/0100/The-Cortex-M33-Processor/Programmer-s-model/Core-registers
https://developer.arm.com/documentation/100235/0100/The-Cortex-M33-Processor/Programmer-s-model/Core-registers
https://documentation-service.arm.com/static/5f86dc74f86e16515cdb6be4?token=
https://documentation-service.arm.com/static/5ef7c218cafe527e86f55aa4?token=

In Thread mode, execution can be privileged or unprivileged. The stack pointer used can be the MSP or PSP, depending on the SPSEL
bit in the CONTROL register. When in Handler mode, the processor is Privileged. The stack pointer is always MSP.

It is possible to directly access the stack pointers (MSP and PSP) and stack limit registers (MSPLIM and PSPLIM), providing that the
processor is in a privileged state. If the processor is in a Secure privileged state, the software can also access the Non-secure stack
pointers (MSP_NS and PSP_NS) through Core Register Access Functions in CMSIS-Core.

2.3.2 Special-Purpose Registers

Except for the general-purpose registers, there are several special-purpose registers for conditional flags, interrupt masking, control,
and stack pointer limit. The following figure shows the special-purpose registers view of the ARMv8-M system with TrustZone. Refer to
the ARM Cortex-M33 Devices Generic User Guide for details about these registers.

Figure 2.4. Special-purpose Registers View with TrustZone

Image: https://documentation-service.arm.com/. Copyright © 1995-2022 Arm Limited (or its affiliates). All rights reserved.

The Combined Program Status Register (xPSR) consists of the Application Program Status Register (APSR), Interrupt Program Status
Register (IPSR), and Execution Program Status Register (EPSR).

Some of the special-purpose registers are banked between Secure and Non-secure states. Special-purpose registers are not memory-
mapped and can be accessed using Core Register Access Functions in CMSIS-Core (except for EPSR in xPSR).

Secure privileged software can also access the Non-secure interrupt masking registers (PRIMASK_NS, FAULTMASK_NS, and BASEPRI_NS),
CONTROL register (CONTROL_NS), and stack limit registers (MSPLIM_NS and PSPLIM_NS) through Core Register Access Functions in
CMSIS-Core.

AN1374: Series 2 TrustZone
TrustZone Basics

silabs.com | Building a more connected world. Rev. 0.3 | 5

https://arm-software.github.io/CMSIS_5/Core/html/group__Core__Register__gr.html
https://arm-software.github.io/CMSIS_5/Core/html/group__coreregister__trustzone__functions.html
https://developer.arm.com/documentation/100235/0100/The-Cortex-M33-Processor/Programmer-s-model/Core-registers
https://documentation-service.arm.com/static/5e7cd7b67158f500bd5c4eea?token=
https://arm-software.github.io/CMSIS_5/Core/html/group__Core__Register__gr.html
https://arm-software.github.io/CMSIS_5/Core/html/group__coreregister__trustzone__functions.html

2.3.3 System Private Peripheral Bus (PPB)

The banking of registers is usually used to separate the Secure and Non-secure information of the system components inside the pro-
cessor. The following figure shows the System Private Peripheral Bus (PPB) registers view of the ARMv8-M system with TrustZone.
Refer to the ARM Cortex-M33 Devices Generic User Guide for details about the System PPB registers.

0xE0100000
0xE0040000

0xE000E000

Reserved

0xE0003000 – 0xE000DFFF (44 kB)
Reserved
0xE0000000 – 0xE0002FFF (12 kB)
ITM/DWT/FPB

0xE000E000 – 0xE000EFFF (4 kB)
Secure System Control Space (SCS)
Non-secure System Control Space (SCS)

0xE002F000 – 0xE003FFFF (68 kB)
Reserved

0xE002E000 – 0xE002EFFF (4 kB)
Non-secure Alias System Control Space (SCS)
allow Secure software to access the Non-secure
view of the SCS

TPIU/ETM/CTI/MTB/EPPB/ROM Table 0xE0040000 – 0xE00FFFFF (768 kB)
Debug or vendor specific components

0xE0100000

System Private Peripheral Bus (PPB)

System Vendor

In
te

rn
al

to
 p

ro
ce

ss
or

De
bu

g/
Ex

te
rn

al
to

 p
ro

ce
ss

or

0xE000F000 – 0xE002DFFF (124 kB)
Reserved

Not accessible

Not accessible

Not accessible

Not accessible

Not accessible

Figure 2.5. System Private Peripheral Bus (PPB) Registers View with TrustZone

System components for debugging and trace operations (0xE0000000 to 0xE0002FFF):
• Instrumentation Trace Macrocell (ITM)
• Data Watch point and Trace unit (DWT)
• Flash Patch and Breakpoint unit (FPB)

System Control Space (SCS):
• The registers in SCS address spaces are memory-mapped and can be accessed using pointers in software
• Secure SCS (0xE000E000 to 0xE000EFFF) - Secure software using this address space to access the banked Secure SCS registers

(e.g., SCB->CPUID)
• Non-secure SCS (0xE000E000 to 0xE000EFFF) - Non-secure software using this address space to access the banked Non-secure

SCS registers (e.g., SCB->CPUID)
• Non-secure alias SCS (0xE002E000 to 0xE002EFFF) - Secure software using this address space to access the Non-secure SCS reg-

isters (e.g., SCB_NS->CPUID)

The following table describes some core peripherals in the SCS and corresponding data structures defined in the CMSIS-Core header
file to access the registers of core peripherals in two SCS address spaces.

Core Peripheral Data Structure for Secure and NS SCS Data Structure for NS Alias SCS

Implementation Control Block SCnSCB (0xE000E004) SCnSCB_NS (0xE002E004)

SysTick Timer SysTick (0xE000E010) SysTick_NS (0xE002E010)

Nested Vectored Interrupt Controller NVIC (0xE000E100) NVIC_NS (0xE002E100)

System Control Block SCB (0xE000ECFC) SCB_NS (0xE002ECFC)

Memory Protection Unit MPU (0xE000ED90) MPU_NS (0xE002ED90)

Security Attribution Unit SAU (0xE000EDD0) —

Debug Control Block CoreDebug (0xE000EDF0) CoreDebug_NS (0xE002EDF0)

Software Interrupt Generation STIR (0xE000EF00) STIR_NS (0xE002EF00)

Floating-Point Extension FPU (0xE000EF34) FPU_NS (0xE002EF34)

AN1374: Series 2 TrustZone
TrustZone Basics

silabs.com | Building a more connected world. Rev. 0.3 | 6

https://developer.arm.com/documentation/100235/0100/The-Cortex-M33-Peripherals/About-the-Cortex-M33-peripherals
https://arm-software.github.io/CMSIS_5/Core/html/annotated.html

Note:
• The SCB is a group of system control registers for the various usages below.

• System Control Register (SCR) to configure processor low power mode
• Fault Status Register (xFSR) to provide fault status information
• Vector Table Offset Register (VTOR) for vector table relocation

• The SAU register is accessible from the Secure state only.
• The STIR register is not physically banked.
• Core peripherals such as SysTick, SCB, and MPU are duplicated. One instance is Secure and the other one is Non-secure.
• Secure software can use the corresponding functions for ARMv8-M in CMSIS-Core to configure the Non-secure NVIC and SysTick

through the Non-secure alias SCS.

Debug or vendor specific components (0xE0040000 to 0xE00FFFFF):
• Optional debug components (e.g., ETM)
• External Private Peripheral Bus (EPPB) allows designers to add their own debug or vendor-specific components
• System ROM Table is a simple lookup table that enables debug tools to extract the addresses of debug and trace components

AN1374: Series 2 TrustZone
TrustZone Basics

silabs.com | Building a more connected world. Rev. 0.3 | 7

https://arm-software.github.io/CMSIS_5/Core/html/group__nvic__trustzone__functions.html
https://arm-software.github.io/CMSIS_5/Core/html/group__systick__trustzone__functions.html

2.4 Secure Attribution Unit (SAU), Implementation Defined Attribution Unit (IDAU), and Memory Protection Unit (MPU)

Two units determine the security attribute of an address:
1. The internal programmable Secure Attribution Unit (SAU).
2. The external Implementation Defined Attribution Unit (IDAU), through the IDAU interface, returns the security attribute and region

number of an address.

Exempted/
S/NSC/NS

S/NSC/NS Compare

SAU IDAU Interface

Address

Secure MPU Non-secure MPU

Secure Non-secure
Security Attribution

Access
Permission

Security
Attribute

Secure/Non-secure

Optional IDAU

Inside processor Outside processor

Three possible configurations to define the security attribute of an address:
1. Internal SAU only
2. External IDAU only
3. A combination of the internal SAU and external IDAU

Note:
• Series 2 devices use configuration 3.
• IDAU in Series 2 devices is the External Secure Attribution Unit (ESAU).

The Memory Protection Unit (MPU) is a programmable unit that allows privileged software to define memory access permission. If the
TrustZone is enabled, there can be up to two MPUs, one for Secure and one for Non-secure.
• The number of MPU regions for the Secure and the Non-secure MPU can be different.
• The MPU registers are memory-mapped and are placed in the System Control Space (SCS).
• Secure software can use the MPU Functions for ARMv8-M in CMSIS-Core to configure the Non-secure MPU through the Non-se-

cure alias SCS (0xE002ED90 - 0xE002EDC4).

Software Non-secure MPU Registers Secure MPU Registers MemManage Fault

Non-secure privileged 0xE000ED90 - 0xE000EDC4 — Non-secure MPU violation

Secure privileged 0xE002ED90 - 0xE002EDC4 0xE000ED90 - 0xE000EDC4 Secure MPU violation

AN1374: Series 2 TrustZone
TrustZone Basics

silabs.com | Building a more connected world. Rev. 0.3 | 8

https://developer.arm.com/documentation/100690/0201/Attribution-units--SAU-and-IDAU-
https://developer.arm.com/documentation/100699/0100/
https://arm-software.github.io/CMSIS_5/Core/html/group__mpu8__functions.html

2.5 Exceptions and Interrupts

2.5.1 Type of Exceptions

The following table describes the types of exceptions in the TrustZone implemented system.

Exception (IRQ) Number Exception Type Default State

1 (—) Reset Secure only Secure

2 (-14) NMI Configurable Secure

3 (-13) HardFault Configurable Secure

4 (-12) MemManage Fault Banked Banked

5 (-11) BusFault Configurable Secure

6 (-10) UsageFault Banked Banked

7 (-9) SecureFault Secure only Secure

11 (-5) SVCall Banked Banked

12 (-4) DebugMonitor Configurable Secure

14 (-2) PendSV Banked Banked

15 (-1) SysTick Banked Banked

16 - 495 (0 - 479) IRQ0 - IRQ479 Configurable Secure

Note:
• "Secure only" means the system exceptions can only trigger in the Secure state.
• "Configurable" means the system exceptions and interrupts can be configured to target either the Secure state or the Non-secure

state.
• Banked means the system exceptions can have Secure and Non-secure versions. Both can be triggered and executed independent-

ly and have different priority level settings.

AN1374: Series 2 TrustZone
TrustZone Basics

silabs.com | Building a more connected world. Rev. 0.3 | 9

2.5.2 Exception Priorities

It may cause a security issue if the Non-secure software uses high priority levels to mask the Secure interrupts. To avoid this issue,
TrustZone introduces a programmable bit in the AIRCR register called PRIS (Prioritize Secure exception) for Secure software to priori-
tize, if needed, Secure exceptions and interrupts.

The AIRCR.PRIS is set to 0 out of reset, which means Secure and Non-secure exceptions/interrupts share the same configurable pro-
grammable priority level space (columns 2 and 3 in the following table). When the AIRCR.PRIS is set to 1, all Non-secure configurable
exceptions/interrupts are placed in the lower half of the priority level space so that Secure exceptions/interrupts can potentially have
higher priorities (columns 2 and 4 in the following table).

Priority Value Secure Priority Non-secure Priority (PRIS = 0) Non-secure Priority (PRIS = 1)

0 0 0 (0x00) 128 (0x80)

1 32 32 (0x20) 144 (0x90)

2 64 64 (0x40) 160 (0xA0)

3 96 96 (0x60) 176 (0xB0)

4 128 128 (0x80) 192 (0xC0)

5 160 160 (0xA0) 208 (0xD0)

6 192 192 (0xC0) 224 (0xE0)

7 224 224 (0xE0) 240 (0xF0)

Note: This table uses three bits (Bit [7:5]) of the group priority level (AIRCR.PRIGROUP) to limit the maximum number of preemption
levels to 8. A lower priority value indicates a higher priority.

AN1374: Series 2 TrustZone
TrustZone Basics

silabs.com | Building a more connected world. Rev. 0.3 | 10

2.5.3 Vector Tables

The following figure shows two vector tables for Secure and Non-secure exceptions and interrupts. The vector table offset is defined by
a Vector Table Offset Register (VTOR at 0xE000ED08), which can only be programmed in the privileged state.

-4

Reset

Image: Vector Table. Copyright © 1995-2022 Arm Limited (or its affiliates). All rights reserved.

Note:
• The VTOR_S defines the address of the Secure vector table in Secure memory, and the Secure Main Stack Pointer (MSP_S) is the

default stack for the Secure exception handler.
• The VTOR_NS defines the address of the Non-secure vector table in Non-secure memory, and the Non-secure Main Stack Pointer

(MSP_NS) is the default stack for the Non-secure exception handler.
• Secure privileged software can access the VTOR_NS using the Non-secure SCB alias (0xE002ED08).
• The System Control Space contains registers for the SysTick timer, NVIC, and SCB.
• The interrupt masking registers (PRIMASK, FAULTMASK, and BASEPRI) are banked between security states. The priority level

space is shared between the Secure and the Non-secure world, setting an interrupt mask register on one side can block some, or
all, of the exceptions on the other side.

• Interrupts (IRQ0 - IRQ479) are defined as Secure by default. Each interrupt can be configured as Secure or Non-secure and is deter-
mined by the Interrupt Target Non-secure (NVIC_ITNS) register, which is only programmable in the Secure software.

AN1374: Series 2 TrustZone
TrustZone Basics

silabs.com | Building a more connected world. Rev. 0.3 | 11

https://developer.arm.com/documentation/100235/0100/The-Cortex-M33-Processor/Exception-model/Vector-table

2.5.4 State Transitions in Exceptions and Interrupts

The following figure shows transitions between the processor states in ARMv8-M TrustZone.

Thread mode
Privileged/

Unprivileged

Thread mode
Privileged/

Unprivileged

Handler mode
Privileged

Handler mode
Privileged

Function call/return

11

32

3

4

Figure 2.6. State Transitions

Image (left): Switching-between-Secure-and-Non-secure-states. Copyright © 1995-2022 Arm Limited (or its affiliates). All rights re-
served.

1. Secure Thread → Secure Handler or Non-secure Thread to Non-secure Handler
• No security state transition.
• The exception sequence is almost identical to the exception stacking mechanism of current Cortex-M processors.
• The Interrupt Service Routine (ISR) is executed in the current security state (either Secure or Non-secure).

2. Non-secure Thread → Secure Handler or Non-secure Handler → Secure Handler
• The transition from Non-secure to Secure state.
• The exception sequence is almost identical to the exception stacking mechanism of current Cortex-M processors.
• The ISR is executed in a Secure state.

3. Secure Thread → Non-secure Handler or Secure Handler → Non-secure Handler
• The transition from Secure to Non-secure state.
• To avoid an information leak when transitioning from the Secure to Non-secure state. The processor automatically pushes all

general-purpose registers into the Secure stack and erases the contents of all general-purpose registers before executing the
Non-secure ISR. The processor pops the contents of all general-purpose registers from the Secure stack when returning from
the Non-secure ISR (right side in Figure 2.6 State Transitions on page 12). It incurs a slightly longer interrupt latency.

• The ISR is executed in a Non-secure state.
4. Secure Privileged Thread ↔ Non-secure Privileged Thread or Secure Unprivileged Thread ↔ Non-secure Unprivileged Thread

• The transition from Secure to Non-secure state or Non-secure to Secure state.
• The Function calls and returns can be used when the privileged level remains the same.

Note: Subject to interrupt priority, there are no restrictions regarding whether a Non-secure or Secure interrupt can occur when the
processor runs Non-secure or Secure code.

AN1374: Series 2 TrustZone
TrustZone Basics

silabs.com | Building a more connected world. Rev. 0.3 | 12

https://developer.arm.com/documentation/100690/0201/Switching-between-Secure-and-Non-secure-states

2.6 Switching Between Secure and Non-secure States

The TrustZone allows direct calling between Secure and Non-secure software. The following figure shows how to use an API function
call to trigger security state transitions. The state transitions can also happen because of exceptions and interrupts.

Image: Switching-between-Secure-and-Non-secure-states. Copyright © 1995-2022 Arm Limited (or its affiliates). All rights reserved.

2.6.1 Switching from Non-secure to Secure State

When the Non-secure program calls a Secure software, the first instruction must be a Secure Gateway (SG) instruction residing in Non-
secure Callable memory. The Secure Gateway entry points (veneers) decouple the address of the SG instructions in the Non-secure
Callable memory region from the rest of the Secure code. It can eliminate the risk of having inadvertent entry points when the Secure
software contains a pattern that matches the opcode of the SG instruction.

Non-secure Non-secure
Callable

Secure

Veneer Entry Function

Entry Function

Entry Function

Entry Function

Veneer

Veneer

Veneer

Se
cu

re
 C

od
e

Secure API
(Starting with SG)

NS Code

NS Code

NS Code

NS Code

Return

Non-secure
Code C

al
l

B
ra

nc
h

Image (right): Whitepaper - ARMv8-M Architecture Technical Overview. Copyright © 1995-2022 Arm Limited (or its affiliates). All rights
reserved.

The bit 0 of the Link Register (LR) is cleared to zero by SG instruction to indicate that returning from this function transits from Secure to
Non-secure. The processor is still in the Non-secure state when the SG instruction is executed. The BXNS LR instruction is used when
returning since a normal BX LR instruction interprets it as an unsupported execution mode change. A SecureFault exception is triggered
if the processor returns to a Secure address. It prevents a hacker from calling a Secure API with a fake return address pointing to a
Secure program location. If bit 0 of LR is 1, the BXNS LR instruction behaves like a normal BX LR. Therefore, Secure code can call a
Secure API in the NSC region even it is not a usual practice.

Program Call Instruction SG Instruction Return Instruction

Non-secure call Non-secure BL or BLX — BX LR (Return to Non-secure state)

Non-secure call Secure BL or BLX Clear bit 0 of LR BXNS LR (Return to Non-secure state)

Secure call Secure BL or BLX Set bit 0 of LR BXNS LR (Return to Secure state)

To help software developers create Secure APIs in C/C++, the Cortex-M Security Extension (CMSE) defines a C function attribute
called cmse_nonsecure_entry.
• GCC — __attribute__((cmse_nonsecure_entry))
• IAR — __cmse_nonsecure_entry

AN1374: Series 2 TrustZone
TrustZone Basics

silabs.com | Building a more connected world. Rev. 0.3 | 13

https://developer.arm.com/documentation/100690/0201/Switching-between-Secure-and-Non-secure-states
https://developer.arm.com/documentation/ecm0359818/latest

2.6.2 Test Target (TT) Instruction

The software can use an ARMv8-M instruction called Test Target (TT) and the region number generated by the SAU or the IDAU to
determine if a contiguous range of memory shares common security attributes and privilege levels.

The TT instruction returns the SAU/IDAU region number, security attributes (S/NS), and MPU region number after passing the start and
end addresses of the memory range to the TT instruction. The software can determine whether the memory range has required security
attributes and resides in the same region number.

Image: Test-target-instruction. Copyright © 1995-2022 Arm Limited (or its affiliates). All rights reserved.

This mechanism allows security checking at the beginning of the API service (instead of during the operation) to determine if the memo-
ry referenced by a pointer from Non-secure software points to the Non-secure address. It prevents Non-secure software from using
those APIs in Secure software to access or modify Secure data.

To make these operations easier in a C/C++ programming environment, the Cortex-M Security Extension (CMSE) has defined a range
of intrinsic functions for dealing with pointer checks with the TT instructions.

2.6.3 Switching from Secure to Non-secure State

When the Secure program calls a Non-secure software, the Secure program must use a BLXNS <reg> instruction to invoke the process.
If bit 0 of the <reg> is 0, the processor must switch to the Non-secure state when branching to the target address. During the state
transition, the return address and some processor state information are pushed onto the Secure stack, while the return address on the
Link Register (LR) is set to a special value called FNC_RETURN (0xFEFFFFFF).

The Non-secure function completes by performing a branch (BX LR) to the FNC_RETURN address (bit 0 is 1 to indicate the function was
called from the Secure state). It automatically triggers the unstacking of the actual return address from the Secure stack and returns to
the calling function. The FNC_RETURN hides the return address of the Secure program from the Non-secure software to avoid the leak-
age of any secret information. It also prevents Non-secure software from modifying the Secure return address stored in the Secure
stack.

Image: Switching-between-Secure-and-Non-secure-states. Copyright © 1995-2022 Arm Limited (or its affiliates). All rights reserved.

To help software developers declare Non-secure function pointers in C/C++, the Cortex-M Security Extension (CMSE) defines a C func-
tion attribute called cmse_nonsecure_call.
• GCC: __attribute__((cmse_nonsecure_call))
• IAR: __cmse_nonsecure_call

AN1374: Series 2 TrustZone
TrustZone Basics

silabs.com | Building a more connected world. Rev. 0.3 | 14

https://developer.arm.com/documentation/100690/0201/Test-target-instruction
https://developer.arm.com/documentation/ecm0359818/latest
https://www.keil.com/support/man/docs/armclang_ref/armclang_ref_pge1446715440722.htm
https://developer.arm.com/documentation/100690/0201/Switching-between-Secure-and-Non-secure-states
https://developer.arm.com/documentation/ecm0359818/latest

2.7 Software Flow

The following figure describes a software flow example in a TrustZone implemented system.

Figure 2.7. Execution Flow of a TrustZone Implemented System

Image: Software Development in ARMv8-M Architecture. Copyright © 1995-2022 Arm Limited (or its affiliates). All rights reserved.

1. The system starts executing code in the Secure state after a power-on or reset (Secure boot).
• The Secure stack pointer (MSP_S) is set from the address of the Secure vector table (VTOR_S).
• The Secure Reset Handler pointed by the VTOR_S is called.
• Perform various initialization tasks such as C startup code.
• Place peripherals and associated interrupts in either Secure or Non-secure applications.
• Program SAU/IDAU to partition the entire memory into Secure, Non-secure Callable, and Non-secure regions.
• Program the address of the Non-secure vector table (VTOR_NS).
• Initialize the two first entries of the table for the Non-secure stack pointer (MSP_NS) and Reset Handler to emulate a Non-secure

reset.
2. The Secure firmware branches to the entry point (Reset Handler pointed by the VTOR_NS) of the Non-secure application.

• The Non-secure software has its Reset Handler.
• Perform various initialization tasks such as C startup code and hardware initialization (e.g., Non-secure peripherals).
• It does not conflict with initialization from the Secure code as the stack and heap spaces of Secure and Non-secure code are

separated.
3. During the execution of Non-secure applications, the application could call Secure APIs through the Secure Gateway (SG) veneer

in the Non-secure Callable region.
4. In some cases, Secure APIs might need to call Non-secure call-back functions (e.g., a hardware driver).

AN1374: Series 2 TrustZone
TrustZone Basics

silabs.com | Building a more connected world. Rev. 0.3 | 15

https://community.arm.com/cfs-file/__key/telligent-evolution-components-attachments/01-2142-00-00-00-01-27-19/ARM-Cortex-_2D00_-session-11-_2D00_-Yiu-_2D00_-Software-Development-in-ARMv8_2D00_M-Architecture.pdf

3. Bus Level Security (BLS)

3.1 System Design

The following figure shows two system designs:
• The sample system contains an ARMv8-M processor and the required components to support TrustZone.
• Bus Level Security (BLS) on Series 2 devices implements the concepts introduced in the ARM TrustZone sample system. BLS en-

forces Secure and privileged programming models and uses security components (colored blocks) to configure the security attribute
and privileged level of peripherals and Bus Masters.

Lite
ESAU

ESAU

Sample System for ARMv8-M TrustZone Bus Level Security (BLS) on Series 2 Devices

SAU
Lite

ESAU

Figure 3.1. ARMv8-M TrustZone Implementation

ARMv8-M Processor

The ARMv8M processor is TrustZone capable of Secure and Non-secure states. It has a dedicated internal SAU that is fully program-
mable up to 8 different memory regions. Out of reset, the processor is in a Secure state and every transaction is a Secure transaction.

ARMv8-M Processor in Series 2 devices is the Cortex-M33.

System Security Controller

The system security controller is the central location for all security settings in the system. Each type of controller, IDAU, and wrapper
receives its security configuration and bus response configuration from this block.

System Security Controller in Series 2 devices is the Security Management Unit (SMU).

Implementation Defined Attribution Unit (IDAU)

The IDAU generates the security attribute for a given address. All IDAUs in the system have the same memory partitioning. The IDAU
is intended only for ARMv8-M cores and utilizes the entire IDAU interface for the core. The lite IDAU uses only the Secure and Non-
secure interface from the IDAU and is intended for Non-ARMv8-M Bus Masters.

IDAU in Series 2 devices is the External Secure Attribution Unit (ESAU).

Security Wrapper

The Security Wrapper gives a legacy Bus Master the ability to drive security attribution. The security wrapper outputs the transaction
address to the lite IDAU which returns the security attribute of the address. If the wrapper is configured as Non-secure, any transactions
to a Secure address are blocked.

Security Wrapper in Series 2 devices is the Bus Master Protect Unit (BMPU).

AN1374: Series 2 TrustZone
Bus Level Security (BLS)

silabs.com | Building a more connected world. Rev. 0.3 | 16

Memory Protection Controller (MPC)

MPC has a security configuration for a per block of memory or memory above and below the watermark. If the security attribute of the
block or memory region does not match the security attribute of the address, the transaction is blocked. This controller is used in a
system that alias RAM or flash memory locations. This controller is not needed when the memory region size is programmable in an
IDAU.

Series 2 devices have a programmable flash and RAM region in the ESAU (equivalent to IDAU) and are not implementing this block.

Peripheral Protection Controller (PPC)

PPC has a security configuration for every peripheral. If the security attribute of the selected peripheral does not match the security
attribute of the address, the transaction is blocked. This controller is used in systems that alias the peripheral memory locations.

PPC in Series 2 devices is the Peripheral Protection Unit (PPU).

Hardware security is now extended to the peripheral bus system of the processor. Each component on the bus can verify and propa-
gate the security level for each bus operation. The following sections describe the individual security component for BLS on Series 2
devices.

3.2 Security Management Unit (SMU)

The SMU is the only user-facing block in the BLS architecture and houses all the configuration and status for the ESAUs, BMPUs, and
PPUs.
• Thirteen memory regions (ESAU)
• Per Bus Master privileged and security attribute (BMPU)
• Interrupt flag for Bus Master security fault (fault table in BMPU section)
• Per peripheral privileged and security attribute (PPU)
• Interrupt flags for privileged, security, and instruction peripheral access faults (fault tables in PPU section)
• Separate Secure and Privileged IRQ

The SMU configurations can be locked down and protected from runaway code. The SMU_LOCK register resets to UNLOCK. Any write
other than the unlock code (0xACCE55) locks all SMU registers from further updates. The SMU_STATUS register contains a SMULOCK bit-
field with the current lock state of the SMU.

The SMU_M33CTRL register can lock down internal security and privileged configurations below.
• Cortex-M33 SAU
• Non-secure MPU
• Secure MPU
• Non-secure Vector Table Offset Register (VTOR)
• Secure AIRCR register

Interrupt flags in the SMU_IF register can generate a Secure or Privileged interrupt in the table below when its corresponding interrupt
enable bit in the SMU_IEN register is set and IRQn is enabled.

Enable Bit in SMU_IEN Register IRQn Interrupt Handler

BMPUSEC, PPUSEC SMU_SECURE_IRQn SMU_SECURE_IRQHandler()

PPUPRIV, PPUINST SMU_PRIVILEGED_IRQn SMU_PRIVILEGED_IRQHandler()

Each interrupt flag in the SMU_IF register can be cleared by writing 1 to the corresponding bit of the SMU_IF_CLR register.

AN1374: Series 2 TrustZone
Bus Level Security (BLS)

silabs.com | Building a more connected world. Rev. 0.3 | 17

3.3 External Secure Attribution Unit (ESAU)

The ESAU is responsible for determining the memory region and security attribute of a given address. Referring to Figure 3.1 ARMv8-M
TrustZone Implementation on page 16, the Cortex-M33 interfaces with an ESAU and the BMPUs of other Bus Masters interface with lite
ESAUs to determine the security attribute of all transactions. The following figure describes the security attributes of different memory
regions defined by the ESAU on Series 2 devices.

ØxEØ1Ø_ØØØØ

(512 MB)

(512 MB)

(512 MB)

(512 MB)

(512 MB)

(511 MB)

(1 MB)

(1 GB)

Exempted 12

ESAU

Default = Base Address | 0x0200_0000 (S size = 32 MB)

Base Address (Main flash) = 0x0000_0000 or 0x0800_0000

Default = Base Address | 0x0400_0000 (NSC size = 32 MB)

Maximum flash size = 256 MB (0x1000_0000)

Info flash is Secure by default (Base Address at 254 MB)

Base Address (RAM) = 0x2000_0000

Default = Base Address | 0x0200_0000 (S size = 32 MB)

Default = Base Address | 0x0400_0000 (NSC size = 32 MB)

Maximum RAM size = 256 MB (0x1000_0000)

S Peripheral size = 256 MB (0x1000_0000)

NS Peripheral size = 256 MB (0x1000_0000)

S Radio Peripheral/RAM size = 256 MB (0x1000_0000)

NS Radio Peripheral/RAM size = 256 MB (0x1000_0000)

EPPB is Secure by default
System ROM Table size = 4 kB (0x1000)

Figure 3.2. System Memory Map of Series 2 Device with TrustZone

Note:
• For Series 2 devices with base address 0x08000000 in region 0, the memory address from 0x0 to 0x07FFFFFF is an invalid region.
• The invalid regions are deemed as Secure.
• The NSC and Exempted attributes are only available to the ESAU, and all lite ESAUs in the system view these attributes as Secure.

AN1374: Series 2 TrustZone
Bus Level Security (BLS)

silabs.com | Building a more connected world. Rev. 0.3 | 18

The ESAU divides the memory map into 13 memory regions and has a maximum of 6 Non-secure regions.
• Four Movable Region Boundaries (MRBs) determine the size of 6 regions.
• Two regions have configurable security attributes.
• Each memory region consists of a base address that specifies the start of the region and a limit address that specifies the end of the

region plus one (+ 1).
• The address is valid if it falls between the base (≥ base) and limit (< limit) of a region.
• If the memory region is not defined, it is deemed invalid and Secure.

The MRBs distinguish the Secure, Non-secure Callable, and Non-secure regions in flash and RAM. The two configurable regions deter-
mine if the Info flash and Cortex-M33 EPPB regions are Secure or Non-secure. The MRBs have a specific programming sequence. Any
misprogramming results in a SMUPRGERR in the SMU_STATUS register.

ARMv8-M CODE Regions
• Regions 0, 1, and 2 are in the Main space of flash. Region 3 is the info space of flash.
• The mrb01 (ESAUMRB01 in SMU_ESAURMBR01 register) determines the end of region 0 and the start of region 1.
• The mrb12 (ESAUMRB12 in SMU_ESAURMBR12 register) determines the end of region 1 and the start of region 2.
• The size of region 3 is device-dependent.
• Three regions' security attributes are static, and one region is configurable. Region 0 is always Secure, region 1 is always Non-se-

cure Callable, and region 2 is always Non-secure. Region 3 is configurable as either Secure or Non-secure (ESAUR3NS in
SMU_ESAURTYPES0 register, default is secure after reset).

• Sizes of regions 0, 1, and 2 are adjusted in 4 kB increments with the lower 12 bits of ESAUMRB## in SMU_ESAURMBR## ignored.
• The Secure region can be set to size 0 when mbr01 = base address of region 0.
• The Non-secure Callable regions can be set to size 0 when mbr01 = mbr12.

• The default value of mbr01 is equal to base address + 0x02000000, so the size of region 0 is 32 MB. Out of reset, all flash is Secure
since all Series 2 devices have less than 32 MB of flash.

Region Memory Base Address Limit Address Security Attribute

0 Main flash 0x00000000 or 0x08000000 (0x00000000 or 0x08000000) | mbr01 Secure

1 Main flash (0x00000000 or 0x08000000) | mbr01 (0x00000000 or 0x08000000) | mbr12 Non-secure Callable

2 Main flash (0x00000000 or 0x08000000) | mbr12 0x0FE00000 Non-secure

3 Info flash 0x0FE0000 0x10000000 Secure or Non-secure

ARMv8-M RAM Regions
• Regions 4, 5, and 6 cover the entire available RAM in the device.
• The mrb45 (ESAUMRB45 in SMU_ESAURMBR45 register) determines the end of region 4 and the start of region 5.
• The mrb56 (ESAUMRB56 in SMU_ESAURMBR56 register) determines the end of region 5 and the start of region 6.
• All three regions' security attributes are static. Region 4 is always Secure, region 5 is always Non-secure Callable, and region 6 is

always Non-secure.
• Sizes of all three regions are adjusted in 4 kB increments with the lower 12 bits of ESAUMRB## in SMU_ESAURMBR## ignored.

• The Secure region can be set to size 0 when mbr45 = base address of region 4.
• The Non-secure Callable region can be set to size 0 when mbr45 = mbr56.

• The default value of mbr45 is equal to 0x02000000, so the size of region 4 is 32 MB. Out of reset, all RAM is Secure since all Series
2 devices have less than 32 MB of RAM.

Region Memory Base Address Limit Address Security Attribute

4 SRAM 0x20000000 0x20000000 | mbr45 Secure

5 SRAM 0x20000000 | mbr45 0x20000000 | mbr56 Non-secure Callable

6 SRAM 0x20000000 | mbr56 0x30000000 Non-secure

AN1374: Series 2 TrustZone
Bus Level Security (BLS)

silabs.com | Building a more connected world. Rev. 0.3 | 19

ARMv8-M Peripheral Regions
• These regions are aliases to the chip peripherals and SE mailbox (a device with HSE).
• Both regions have a fixed size.
• Both regions' security attributes are static. Region 7 is always Secure, and region 8 is always Non-secure.

Region Memory Base Address Limit Address Security Attribute

7 Chip Peripherals 0x40000000 0x50000000 Secure

8 Chip Peripherals 0x50000000 0x60000000 Non-secure

ARMv8-M Device Regions
• These regions are aliases to all radio peripherals and radio RAM.
• Both regions have a fixed size.
• Both regions' security attributes are static. Region 9 is always Secure, and region 10 is always Non-secure.
• From the perspective of the device bus system, the radio is one peripheral that is either Secure or Non-secure. So any Bus Master

accessing the radio needs to know the security attribute of the radio. From the perspective of the radio, all of its radio bus peripher-
als are accessible regardless of the security attribute. However, the radio needs to know the security attribute of chip bus peripherals
to access them through the correct alias.

Region Memory Base Address Limit Address Security Attribute

9 Radio Peripherals 0xA0000000 0xB0000000 Secure

10 Radio Peripherals 0xB0000000 0xC0000000 Non-secure

ARMv8-M System Private Peripheral Bus (PPB) Regions
• Both regions have a fixed size.
• Region 11 is the Cortex-M33 EPPB memory region and is configurable as either Secure or Non-secure (ESAUR11NS in
SMU_ESAURTYPES1 register, default is secure after reset). It is important to note that the Cortex-M33 core is the only Bus Master that
sees these memory regions. All other Bus Masters in the system do not have access to the System PPB, and it is an invalid region.

• Region 12 has a static security attribute of Exempted. It means that the Cortex-M33 core allows the transaction in all cases. It per-
mits debuggers to read the system ROM Table regardless of the state of the Cortex-M33 core.

Region Memory Base Address Limit Address Security Attribute

11 EPPB 0xE0044000 0xE00FE000 Secure or Non-secure

12 System ROM Table 0xE00FE000 0xE00FF000 Exempted

Note:
• The regions in flash (0/1/2) and RAM (4/5/6) can only create in the order of Secure, Non-secure Callable, and Non-secure.
• The ESAU and lite ESAUs handle the transactions of Bus Masters and must have consistent security attribute mapping. Therefore,

configurations in the SMU registers apply to ESAU and lite ESAUs.
• Unlike other Bus Masters using BMPU and lite ESAU, merging the address lookup results from the internal SAU and ESAU deter-

mines the security attribute of the Cortex-M33 transaction.

Bus Master Security Attribution

Cortex-M33 SAU and ESAU

Other Lite ESAU

AN1374: Series 2 TrustZone
Bus Level Security (BLS)

silabs.com | Building a more connected world. Rev. 0.3 | 20

3.4 Security Attribution Unit

In Series 2 devices, the combination of the integrated SAU in the Cortex-M33 processor and an ESAU determine the security attribute
of a Cortex-M33 transaction.

The SAU consists of several programmable registers. These registers are placed in the System Control Space (SCS) and are only ac-
cessible from the Secure privileged state.
• SAU Control Register (SAU_CTRL) — The SAU is disabled after RESET
• SAU Type Register (SAU_TYPE) — Indicates the number of available regions (read-only)
• SAU Region Number Register (SMU_RNR) — Assigns a region number
• SAU Region Base Address Register (SAU->RBAR) — Configures selected region base address
• SAU Region Limit Address Register (SAU->RLAR) — Configures selected region limit address and security attribute (NSC or NS),

enable or disable the region

The following figure shows three different SAU configurations for determining the security attribute of a Cortex-M33 transaction.

All Secure
Configuration

Configurable
Configuration

All Non-secure
Configuration

Figure 3.3. Configuration of SAU_CTRL Register

Note:
• All address ranges after RESET in SAU are Secure by default.
• The SAU can configure a 32 bytes aligned region as Non-secure or Non-secure Callable. Any address not defined in the SAU de-

faults to Secure.
• An ESAU can configure or hard-code a region as Secure, Non-secure Callable, Non-secure, or Exempted. An Exempted region ena-

bles Non-secure debuggers to access debugging components and establish a debug connection to the processor before the SAU is
configured.

• The processor determines the final attribute of the address based on the higher security attribute (Exempted > S > NSC > NS) from
either the SAU or the ESAU.

AN1374: Series 2 TrustZone
Bus Level Security (BLS)

silabs.com | Building a more connected world. Rev. 0.3 | 21

https://developer.arm.com/documentation/100690/0201/SAU-register-summary

3.4.1 All Secure Configuration

Highlights:
• SAU is disabled.
• ALLNS bit in the SAU Control register is clear.
• The whole memory is in a Secure state (highest security attribute apart from Exempted).
• All Cortex-M33 transactions in this configuration are Secure or Exempted and give the Cortex-M33 access to all memory locations

through either the Secure or Non-secure alias after RESET.

Overridden
by SAU

Overridden
by ESAU

• It is up to the boot procedure in a Secure state to keep the current configuration or use other configurations once the boot process is
complete.

3.4.2 All Non-secure Configuration

Highlights:
• SAU is disabled.
• ALLNS bit in the SAU Control register is set.
• The whole memory is in a Non-secure state (lowest security attribute).
• Therefore the ESAU configuration determines the security attribute of all Cortex-M33 transactions.

Overridden
by ESAU

• Except for the SAU_CTRL register, this configuration does not require programming on other SAU registers.

AN1374: Series 2 TrustZone
Bus Level Security (BLS)

silabs.com | Building a more connected world. Rev. 0.3 | 22

3.4.3 Configurable Configuration

Highlights:
• SAU is enabled.
• ALLNS bit in the SAU Control register can be 0 or 1 (do not care).
• The NSC bit on the SAU_RLAR register determines the security attribute of an address as Non-secure or Non-secure Callable if an

address matches an SAU region.
• The security attribute of an address is Secure by default if the address does not match any SAU region.
• This configuration programs SAU_RNR, SAU_RBAR, and SAU_RLAR registers to correlate the Non-secure regions in ESAU.
• The SAU or ESAU overrides the attribute to a higher security level if any security attribute mismatch occurs in a memory region.

• The following figure is an example of a configurable configuration with the size of ESAU regions 0 and 5 are set to zero.

Overridden
by SAU

Overridden
by ESAU

Overridden
by ESAU

Overridden
by ESAU

Overridden
by ESAU

Overridden
by ESAU

Note: The Cortex-M33 has an internal SAU that defaults all undefined addresses to Secure if enabled. If the Secure regions do not
align between the Cortex-M33 (SAU + ESAU) and other Bus Masters (lite ESAU), the Cortex-M33 treats a memory region as Secure
while other Bus Masters treat it as Non-secure. It can lead to the leaking of secure data if the Cortex-M33 stores secure data in what
other Bus Masters think is a Non-secure area (Figure 5.1 Main Flash Layout on page 34).

AN1374: Series 2 TrustZone
Bus Level Security (BLS)

silabs.com | Building a more connected world. Rev. 0.3 | 23

3.5 Bus Master Protection Unit (BMPU)

The BMPU is a security wrapper used for assigning a Bus Master specific security and privileged states. Referring to Figure
3.1 ARMv8-M TrustZone Implementation on page 16, the BMPU generally lies between the Bus Master and the Advanced High-per-
formance Bus (AHB) Matrix. BMPU interfaces with a lite ESAU to determine the security attribute of all Bus Master transactions.

The registers below in SMU configure the security and privileged state of a Bus Master. The Bus Masters in group 0 are device-de-
pendent. Out of reset, each Bus Master is Secure and privileged.

Register Description

SMU_BMPUPATD0 Bitfields (privileged if set) for privileged attribute configuration on Bus Master group 0

SMU_BMPUSATD0 Bitfields (Secure if set) for security attribute configuration on Bus Master group 0

Note: The Bus Master privileged attribute only applies to peripheral accesses. Flash and RAM accesses ignore the privileged attribute
of the Bus Master.

The BMPU generates a security fault when the security attribute of the bus transaction is Secure, and the security attribute
(SMU_BMPUSATD0) for the BMPU is configured as Non-secure.

Below is the security fault table that shows how the security attribute on the bus is driven based on the lite ESAU attribute and the
BMPU security configuration. The interrupt is triggered if BMPUSEC in SMU_IEN is set and the SMU_SECURE_IRQn is enabled.

Lite ESAU Attribute Secure Bus Master Non-secure Bus Master

Non-secure Non-secure Non-secure

Secure Secure FAULT

Upon a BMPU fault, the registers in SMU below notify that a BMPU security fault occurred and on which Bus Master. The registers also
identify the offending fault address. If a fault is detected, the response is Read As Zero (RAZ) or Write Ignored (WI) and the corre-
sponding interrupt flag is set in the SMU_IF register. The values in SMU_BMPUFS and SMU_BMPUFSADDR do not change until the BMPU
fault (BMPUSEC) in the SMU_IF register is cleared by software.

Register Bitfield Fault

SMU_IF BMPUSEC Security Fault if set

SMU_BMPUFS BMPUFSMASTERID ID of the Bus Master that triggered the fault

SMU_BMPUFSADDR BMPUFSADDR Access address that triggered the fault

Note: No privileged fault is generated because all the other Bus Masters in the system do not drive the privileged attribute.

AN1374: Series 2 TrustZone
Bus Level Security (BLS)

silabs.com | Building a more connected world. Rev. 0.3 | 24

3.6 Peripheral Protection Unit (PPU)

The PPU is a security wrapper used for assigning a Bus Slave peripheral specific security and privileged states. Referring to Figure
3.1 ARMv8-M TrustZone Implementation on page 16, the PPU comes in the form of a PPU in Advanced High-performance Bus (AHB)
and a PPU in Advanced Peripheral Bus (APB).
• The PPU AHB generally lies between the Bus Matrix and an AHB Bus Slave peripheral.
• The PPU APB lies between the output of an AHB to APB bridge and all of the APB Slaves on that APB bus.

The registers below in SMU configure the security and privileged state of a peripheral. The peripherals in groups 0 and 1 are device-
dependent. Out of reset, each peripheral is Secure and privileged. While each peripheral in address 0x40000000 (region 7) or
0x50000000 (region 8) can be configured independently, the radio subsystem in 0xA0000000 (region 9) or 0xB0000000 (region 10) is
configured as a unit.

Register Description

SMU_PPUPATD0 Bitfields (privileged if set) for privileged access configuration on peripheral group 0

SMU_PPUPATD1 Bitfields (privileged if set) for privileged access configuration on peripheral group 0

SMU_PPUSATD0 Bitfields (Secure if set) for security access configuration on peripheral group 0

SMU_PPUSATD1 Bitfields (Secure if set) for security access configuration on peripheral group 1

The PPU can generate three types of faults:
1. Privileged faults occur on unprivileged transactions to privileged peripherals. Below is the privileged fault table that shows when a

privileged fault occurs based on the PPU peripheral privileged configuration and the bus transaction privileged attribute. The inter-
rupt is triggered if PPUPRIV in SMU_IEN is set and the SMU_PRIVILEGED_IRQn is enabled.

Bus Attribute Privileged Peripheral Unprivileged Peripheral

Privileged SUCCESS SUCCESS

Unprivileged FAULT SUCCESS

2. Security faults occur on Secure transactions to Non-secure peripherals and Non-secure transactions to Secure peripherals. Below
is the security fault table that shows when a security fault occurs based on the PPU Peripheral security configuration and the bus
transaction security attribute. The interrupt is triggered if PPUSEC in SMU_IEN is set and the SMU_SECURE_IRQn is enabled.

Bus Attribute Secure Peripheral Non-secure Peripheral

Secure SUCCESS FAULT

Non-secure FAULT SUCCESS

3. Instruction faults occur on any transaction marked as an instruction fetch. Below is the instruction fault table that shows when a
PPU instruction fault occurs based on the bus transaction instruction attribute. The interrupt is triggered if PPUINST in SMU_IEN is
set and the SMU_PRIVILEGED_IRQn is enabled.

Bus Attribute PPU Output

Instruction FAULT

Data SUCCESS

Upon a PPU fault, the registers below in SMU notifies which PPU fault occurred and on which peripheral. If a fault is detected, the
response is Read As Zero (RAZ) or Write Ignored (WI) and set the corresponding interrupt flag in the SMU_IF register. The values in
SMU_IF and SMU_PPUFS do not change until all PPU faults in the SMU_IF register are cleared by software.

Register Bitfield Fault

SMU_IF PPUPRIV Privilege Fault if set

SMU_IF PPUSEC Security Fault if set

SMU_IF PPUINST Instruction Fault if set

SMU_PPUFS PPUFSPERIPHID ID of the peripheral that caused the fault

AN1374: Series 2 TrustZone
Bus Level Security (BLS)

silabs.com | Building a more connected world. Rev. 0.3 | 25

3.7 Compatibility

Secure software usually controls the SYSCFG and SMU peripherals to prevent Non-secure software from changing critical configura-
tions in the Secure domain. It requires switching between Secure and Non-secure states when Non-secure software wants to update
the registers in these peripherals. Therefore dedicated registers for Non-secure access are added to SYSCFG and SMU peripherals on
newer Series 2 devices.

3.7.1 System Configuration (SYSCFG)

Except for EFR32xG21 devices, the following tables apply to all Series 2 devices.

Table 3.1. Dedicated Bitfield to Configure Access for Non-secure SYSCFG Registers

Bitfield (Register) Description

SYSCFGCFGNS (SMU_PPUPATD0) Bitfields (privileged if set) for privileged access configuration on NS SYSCFG registers

SYSCFGCFGNS (SMU_PPUSATD0) Bitfields (Secure if set) for security access configuration on NS SYSCFG registers

Note: Reset SYSCFGCFGNS bit in SMU_PPUSATD0 to allow Non-secure software to access NS SYSCFG registers.

Table 3.2. Dedicated SYSCFG Registers for Non-secure State

SYSCFG Non-secure Registers Description

SYSCFG_CFGNS_CFGNSTCALIB NS SysTick calibration value register

SYSCFG_CFGNS_ROOTNSDATA0 NS root data register 0

SYSCFG_CFGNS_ROOTNSDATA0 NS root data register 1

AN1374: Series 2 TrustZone
Bus Level Security (BLS)

silabs.com | Building a more connected world. Rev. 0.3 | 26

3.7.2 Security Management Unit (SMU)

Except for EFR32xG21 devices, the following tables apply to all Series 2 devices.

Table 3.3. Dedicated Bitfield to Configure Access for Non-secure SMU Registers

Bitfield (Register) Description

SMUCFGNS (SMU_PPUPATD1) Bitfields (privileged if set) for privileged access configuration on NS SMU registers

SMUCFGNS (SMU_PPUSATD1) Bitfields (Secure if set) for security access configuration on NS registers

Note: Reset SMUCFGNS bit in SMU_PPUSATD1 to allow Non-secure software to access NS SMU registers.

The SMU_CFGNS register file is for the TrustZone Non-secure state and has its register lock (NSLOCK). It allows hardware to maintain
the privileged assignments for the NS state. The privileged configuration within the NS state is the same as the Secure state, except it
has an "NS" to differentiate the registers.

Table 3.4. Dedicated SMU Registers for Non-secure State

SMU Non-secure Registers Description

SMU_CFGNS_NSSTATUS Lock status of SMU_CFGNS registers

SMU_CFGNS_NSLCOK Lock and unlock the SMU_CFGNS registers

SMU_CFGNS_NSIF Interrupt flags for NS privilege (PPUNSPRIVIF) and instruction (PPUNSINSTIF) faults

SMU_CFGNS_NSIEN Interrupt enable flags for NS privilege (PPUNSPRIVIEN) and instruction (PPUNSINSTIEN) faults

SMU_CFGNS_PPUNSPATD0 Bitfields (privileged if set) for NS privileged access configuration on peripheral group 0

SMU_CFGNS_PPUNSPATD1 Bitfields (privileged if set) for NS privileged access configuration on peripheral group 1

SMU_CFGNS_PPUNSFS ID (PPUFSPERIPHID) of the NS peripheral that caused the fault

SMU_CFGNS_BMPUNSPATD0 Bitfields (privileged if set) for privileged attribute configuration on NS Bus Master group 0

Table 3.5. Fault Statuses Only for Secure State

Bitfield (Register) Description

PPUPRIV (SMU_IF) Fault status now limited only to Secure state

PPUINST (SMU_IF) Fault status now limited only to Secure state

PPUPRIV (SMU_IEN) Fault status now limited only to Secure state

PPUINST (SMU_IEN) Fault status now limited only to Secure state

PPUFSPERIPHID (SMU_PPUFS) Fault status now limited only to Secure state

Table 3.6. Dedicated SMU Interrupt for Non-secure State

Interrupt Description

SMU_NS_PRIVILEGED_IRQHandler() An interrupt flag in the SMU_CFGNS_NSIF register can generate an NS privileged inter-
rupt when its corresponding interrupt enable bit in the SMU_CFGNS_NSIEN register is
set and SMU_NS_PRIVILEGED_IRQn is enabled, and in which the peripheral (ID) that
triggers the fault is in the SMU_CFGNS_PPUNSFS register.

AN1374: Series 2 TrustZone
Bus Level Security (BLS)

silabs.com | Building a more connected world. Rev. 0.3 | 27

4. Secure and Privileged Programming Model

The implementation of BLS on Series 2 devices, both flash and RAM, use a programmable watermark to delineate Secure, Non-secure
Callable, and Non-secure regions. On the other hand, peripherals exist in both a Secure and Non-secure alias of memory.

4.1 BLS SMU Programming

4.1.1 Enabling SMU Clock

Except for the EFR32xG21 devices, all Series 2 devices enable the SMU clock in CMU before programming the SMU registers.

#if (_SILICON_LABS_32B_SERIES_2_CONFIG > 1)
 CMU->CLKEN1_SET = CMU_CLKEN1_SMU;
#endif

4.1.2 Cortex-M33 Lock Control

The Cortex-M33 security and privileged configurations can be locked by programming the SMU_M33CTRL register.

 // Lock Secure MPU configuration
 SMU->M33CTRL |= SMU_M33CTRL_LOCKSMPU;

4.1.3 Locking SMU Configuration

Th entire SMU configuration can be locked down to avoid runaway code. Below is an example of how to lock and unlock the SMU.

 uint32_t lock_status;

 // Lock Down SMU
 SMU->LOCK = ~SMU_LOCK_SMULOCKKEY_UNLOCK;

 // Grab Lock Status
 lock_status = (SMU->STATUS & _SMU_STATUS_SMULOCK_MASK) >> _SMU_STATUS_SMULOCK_SHIFT;

 // Unlock SMU
 SMU->LOCK = SMU_LOCK_SMULOCKKEY_UNLOCK;

4.1.4 Interrupt Control

Each interrupt flag in SMU_IF can generate an interrupt when its corresponding interrupt enable flag in the SMU_IEN register is set. Each
interrupt flag can be cleared by writing the clear alias of the SMU_IF register.

 // Clear and enable the SMU PPUSEC and BMPUSEC interrupt
 NVIC_ClearPendingIRQ(SMU_SECURE_IRQn);
 SMU->IF_CLR = SMU_IF_PPUSEC | SMU_IF_BMPUSEC;
 NVIC_EnableIRQ(SMU_SECURE_IRQn);
 SMU->IEN = SMU_IEN_PPUSEC | SMU_IEN_BMPUSEC;

4.2 BLS ESAU Programming

4.2.1 Region Types

The SMU_ESAURTYESn registers are used to configure memory regions with a specific security attribute. All configurable memory regions
reset to Secure. Below is an example of programming regions 3 and 11 to Non-secure.

 // Region 3 (Info flash) is Non-secure
 SMU->ESAURTYPES0 = SMU_ESAURTYPES0_ESAUR3NS;

 // Region 11 (EPPB) is Non-secure
 SMU->ESAURTYPES1 = SMU_ESAURTYPES1_ESAUR11NS;

AN1374: Series 2 TrustZone
Secure and Privileged Programming Model

silabs.com | Building a more connected world. Rev. 0.3 | 28

4.2.2 Region Sizes

The code and figure below highlight how to program the Movable Region Boundaries (MRBs) of ESAU.

 // ESAU region 0/1/2 programming
 // Boundary01 at 252kB and Boundary12 at 256kB
 SMU->ESAUMRB01 = 0x0003F000U & _SMU_ESAUMRB01_MASK;
 SMU->ESAUMRB12 = 0x00040000U & _SMU_ESAUMRB12_MASK;

 // ESAU region 4/5/6 programming
 // Boundary45 at 44kB and Boundary56 at 44kB (region 5 size = 0)
 SMU->ESAUMRB45 = 0x0000B000U & _SMU_ESAUMRB45_MASK;
 SMU->ESAUMRB56 = 0x0000B000U & _SMU_ESAUMRB56_MASK;

mrb01
 0x0003F000/
0x0803F000

mrb12
 0x00040000/
0x08040000

0x00000000/
0x08000000

0x0FE00000
(Maximum Size)

0

1

2

4

5

6

Flash RAM
0x30000000

(Maximum Szie)

Actual Size
Device-dependent

Actual Size
Device-dependent

0x20000000

mrb56
 0x2000B000

mrb45
 0x2000B000

(Size = 0 if mrb45 = mrb56)

Note:
• The mrb12 (ESAUMRB12 in SMU_ESAURMBR12) has to be greater than or equal to mrb01 (ESAUMRB12 in SMU_ESAURMBR12).
• The mrb56 (ESAUMRB56 in SMU_ESAURMBR562) has to be greater than or equal to mrb45 (ESAUMRB45 in SMU_ESAURMBR45).
• If one of the rules above is violated, the SMU_STATUS.SMUPRGERR is asserted.
• When mrb01 and mrb12 are equal, region 1 (NSC) is a size of 0 and is not seen by the system.
• When mrb45 and mrb56 are equal, region 5 (NSC) is a size of 0 and is not seen by the system.

4.3 BLS SAU Programming

4.3.1 All Secure Configuration

All secure configuration is the default state after reset. It clears the SAU_CTRL.ENABLE and the SAU_CTRL.ALLNS bits in SAU, and the
entire memory is in a Secure attribute.

4.3.2 All Non-secure Configuration

All Non-secure Configuration occurs when the SAU_CTRL.ENABLE bit is cleared, and the SAU_CTRL.ALLNS bit is set. The ESAU controls
the security attribute of a Cortex-M33 transaction.

 // Disable SAU (ALLNS = 1) and clear data and instruction pipe
 SAU->CTRL = SAU_CTRL_ALLNS_Msk;
 __DSB();
 __ISB();

AN1374: Series 2 TrustZone
Secure and Privileged Programming Model

silabs.com | Building a more connected world. Rev. 0.3 | 29

4.3.3 Configurable Configuration

Configurable configuration occurs when the SAU_CTRL.ENABLE bit is set (SAU_CTRL.ALLNS is irrelevant). Both SAU and ESAU deter-
mine the security attribute of a Cortex-M33 transaction. The code and figure below highlight how to program the SAU regions.

 // Define all Non-secure (NS) and Non-secure Callable (NSC) Regions
 #define REGION0_BASE 0x0001E000UL
 #define REGION1_BASE 0x00020000UL
 #define REGION2_BASE 0x20004000UL
 #define REGION0_LIMIT 0x0001FFFFUL
 #define REGION1_LIMIT 0x000FFFFFUL
 #define REGION2_LIMIT 0x20017FFFUL

 // CMSIS calls to enable SAU Regions
 // SAU region 0 - Flash NSC at 120 kB to 128 kB (0x0001E000 - 0x0001FFFF)
 SAU->RNR = (0UL & SAU_RNR_REGION_Msk);
 SAU->RBAR = (REGION0_BASE & SAU_RBAR_BADDR_Msk);
 SAU->RLAR = (REGION0_LIMIT & SAU_RLAR_LADDR_Msk) | SAU_RLAR_NSC_Msk | SAU_RLAR_ENABLE_Msk;

 // SAU region 1 - Flash NS at 128 KB to 1024 kB (0x00020000 - 0x000FFFFF)
 SAU->RNR = (1UL & SAU_RNR_REGION_Msk);
 SAU->RBAR = (REGION1_BASE & SAU_RBAR_BADDR_Msk);
 SAU->RLAR = (REGION1_LIMIT & SAU_RLAR_LADDR_Msk) | SAU_RLAR_ENABLE_Msk;

 // SAU region 2 - RAM NS at 16 kB to 96 kB (0x20004000 - 0x20017FFF)
 SAU->RNR = (2UL & SAU_RNR_REGION_Msk);
 SAU->RBAR = (REGION2_BASE & SAU_RBAR_BADDR_Msk);
 SAU->RLAR = (REGION2_LIMIT & SAU_RLAR_LADDR_Msk) | SAU_RLAR_ENABLE_Msk;

 // CMSIS functions to enable SAU and clear data and instruction pipe
 TZ_SAU_Enable();
 __DSB();
 __ISB();

0x20004000

0x00020000

0x00000000

0x000FFFFF
Flash RAM

0x20017FFF

0x20000000

0x0001E000

Non-Secure

AN1374: Series 2 TrustZone
Secure and Privileged Programming Model

silabs.com | Building a more connected world. Rev. 0.3 | 30

4.4 BLS BMPU Programming

4.4.1 Bus Master Privileged Attribute

A Bus Master can be configured as either privileged (default) or unprivileged by programming the corresponding index in the
SMU_BMPUPATDn register.

 // Configure all odd Bus Masters unprivileged
 for (i = 0; i < SMU_NUM_BMPUS; i++) {
 if (i & 0x01) {
 SMU->BMPUPATD0 &= ~(1 << i);
 }
 }

4.4.2 Bus Master Security Attribute

A Bus Master can be configured as either Secure (default) or Non-secure by programming the corresponding index in the
SMU_BMPUPATDn register. Configure a Bus Master as Non-secure results in the Bus Master only being able to access Non-secure ad-
dresses.

 // Configure all odd Bus Masters Non-secure
 for (i = 0; i < SMU_NUM_BMPUS; i++) {
 if (i & 0x01) {
 SMU->BMPUSATD0 &= ~(1 << i);
 }
 }

4.4.3 Bus Master Fault Status

The Bus Master ID and the address that triggered the fault can be read from the SMU_BMPUFS and SMU_BMPUFSADDR registers.

 uint32_t fs_bmpu_id;
 uint32_t fs_bmpu_addr;
 uint32_t fs_bmpu_secfault;

 // Read Bus Master fault status
 fs_bmpu_id = SMU->BMPUFS;
 fs_bmpu_addr = SMU->BMPUFSADDR;
 fs_bmpu_secfault = (SMU->IF & _SMU_IF_BMPUSEC_MASK) >> _SMU_IF_BMPUSEC_SHIFT;

 // Clear the IF to capture a new fault
 SMU->IF_CLR = SMU_IF_BMPUSEC;

4.5 BLS PPU Programming

4.5.1 Peripheral Privileged Attributes

A peripheral can be configured as either privileged (default) or unprivileged by programming the corresponding index in the
SMU_PPUPATDn register.

 // Configure all odd peripherals unprivileged
 for (i = 0; i < SMU_NUM_PPU_PERIPHS; i++) {
 if (i & 0x01) {
 if (i >= 32){
 SMU->PPUPATD1 &= ~(1 << (i-32));
 } else {
 SMU->PPUPATD0 &= ~(1 << i);
 }
 }
 }

Note:
• The peripherals in SMU_PPUPATD0 and SMU_PPUPATD0 are device-dependent.
• The privileged attribute of the radio subsystem (AHBRADIO index) is configured as a unit.

AN1374: Series 2 TrustZone
Secure and Privileged Programming Model

silabs.com | Building a more connected world. Rev. 0.3 | 31

4.5.2 Peripheral Security Attributes

A peripheral can be configured as either Secure (default) or Non-secure by programming the corresponding index in the SMU_PPUSATDn
register. The figure below shows the memory map when the ADC, I2C0, USART1, and RADIO are configured as Non-secure and other
peripherals (e.g., SMU, RTCC, TIMER1, TIMER0, USART0...) as Secure.

 // Configure all the Non-secure peripherals
 SMU->PPUSATD0 &= ~SMU_PPUSATD0_USART1;
 SMU->PPUSATD1 &= ~(SMU_PPUSATD1_I2C0 | SMU_PPUSATD1_IADC0 | SMU_PPUSATD1_AHBRADIO);

7

8

9

10

Peripherals Radio Peripherals & Radio RAM

Note:
• The peripherals in SMU_PPUSATD0 and SMU->PPUSATD1 are device-dependent.
• The security attribute of the radio subsystem (AHBRADIO index) is configured as a unit.

4.5.3 Peripheral Fault Status

The peripheral ID that triggered the fault can be read from the SMU_PPUFS register.

 uint32_t fs_ppu_periph_id;
 uint32_t fs_sec_fault;
 uint32_t fs_priv_fault;
 uint32_t fs_inst_fault;

 // Read peripheral fault status
 fs_ppu_periph_id = SMU->PPUFS;
 fs_sec_fault = (SMU->IF & _SMU_IF_PPUSEC_MASK) >> _SMU_IF_PPUSEC_SHIFT;
 fs_priv_fault = (SMU->IF & _SMU_IF_PPUPRIV_MASK) >> _SMU_IF_PPUPRIV_SHIFT;
 fs_inst_fault = (SMU->IF & _SMU_IF_PPUINST_MASK) >> _SMU_IF_PPUINST_SHIFT;

 // Clear the IF to capture a new fault
 SMU->IF_CLR = SMU_IF_PPUSEC | SMU_IF_PPUPRIV | SMU_IF_PPUINST;

4.6 Floating Point Unit (FPU) Programming

If the Non-secure application enables the FPU at initialization, the Secure software needs to set up the NSACR register in SCB to grant
the FPU access for Non-secure software.

 // Enable Non-secure access to the FPU
 SCB->NSACR |= SCB_NSACR_CP10_Msk + SCB_NSACR_CP11_Msk;

AN1374: Series 2 TrustZone
Secure and Privileged Programming Model

silabs.com | Building a more connected world. Rev. 0.3 | 32

5. TrustZone Implementation

The goal of TrustZone implementation is to provide Secure Key Storage that can keep access to keys limited to Secure applications
while at the same time allowing Non-secure applications to exercise the keys. It is an added feature for the SVM devices that do not
have dedicated hardware for Secure Key Storage as in SVH devices.

The PSA Crypto is placed in a Secure region to keep key material hidden from the Non-secure application. The exposed PSA Crypto
APIs stay the same while the backend provides persistent key encryption and decryption similar to the key wrapping and unwrapping
functionality of the SVH device.

The following items need to be considered when upgrading the existing system for Secure Key Storage with TrustZone.
• System Configuration
• Gecko Bootloader
• Secure Library
• TrustZone Secure Key Storage
• PSA Attestation
• SE Manager
• Common Vulnerabilities and Exposures (CVE)

5.1 System Configuration

The system configuration includes the following items:
• Enable system exceptions in the Secure state.
• Set the security attributes of different regions in the SAU and ESAU.
• Place peripherals and associated interrupts in either Secure or Non-secure applications.
• Assign the Bus Masters' security attributes.
• The system has two Secure/Non-secure pairs for the bootloader and application. The Secure part of each pair is responsible for

properly configuring the split in its Secure application before branching to the Non-secure application.

Note: The secure application will issue a software reset at startup (fatal error) if the device's SE firmware version is lower than the first
version that supports TrustZone.

5.1.1 System Exceptions

The following system exceptions are enabled in the Secure state for the bootloader and application.
• MemManage Fault
• BusFault
• UsageFault
• SecureFault

AN1374: Series 2 TrustZone
TrustZone Implementation

silabs.com | Building a more connected world. Rev. 0.3 | 33

https://www.silabs.com/documents/public/application-notes/an1271-efr32-secure-key-storage.pdf
https://www.silabs.com/documents/public/application-notes/an1311-mbedtls-psa-crypto-porting-guide.pdf

5.1.2 Main Flash Layout

The following figure is an overview of the main flash layout that covers the isolation requirements for the Secure Key Storage solution.
The SAU and ESAU configurations provide the required security to the Cortex-M33 and other Bus Masters during boot and normal op-
eration.

1

1

2

2

3

4

5

4

Threat

No Threat

Figure 5.1. Main Flash Layout

1. Settings:
• The application is set to non-executable (XN) by Secure MPU to avoid any code execution in this area during boot.
• The bootloader is set to non-executable (XN) by Secure MPU to avoid any code execution in this area during normal operation.

2. The ESAU configuration only uses the NSC section by setting mrb01 to the base address of region 0. The reason is that lite ESAU
in other Bus Masters treats both S and NSC as a Secure attribute. For the Cortex-M33, the SAU upgrades the NSC in the ESAU to
Secure. The 32 bytes region alignment of SAU also relaxes the 4 kB alignment restriction on the start address of the NSC in
ESAU.

3. The whole application area is set to Secure in SAU for Cortex-M33 during boot to hide details from the bootloader NS part.
4. The ESAU cannot mark any region that comes after a Non-secure section as Secure (must be in the order of S/NSC/NS). There-

fore the Secure application area does not align between the Cortex-M33 (SAU + ESAU) and other Bus Masters (lite ESAU) during
boot. The secrets stored in that Secure region expose as Non-secure for other Bus Masters during boot (no such issue in normal
operations). So the application must not save any plaintext secrets in that Secure region to overcome this limitation during boot.

5. The NVM storage is in the Non-secure region, so the application must encrypt the persistent keys before storing them in this area.

AN1374: Series 2 TrustZone
TrustZone Implementation

silabs.com | Building a more connected world. Rev. 0.3 | 34

5.1.3 RAM Layout

The following figure is an overview of the RAM layout used for the bootloader and application. The SAU and ESAU are used to split the
RAM into a Secure and Non-secure region (Non-secure Callable is not required).

Figure 5.2. RAM Layout

In practice, the Secure part (bootloader or application) takes ownership of the amount of RAM it needs from the beginning of RAM and
leaves the rest (up to the ESAU 4 kB alignment requirement) configured as Non-secure.

The bootloader does not know how the application partitions the RAM between Secure and Non-secure. So bootloader removes any
secrets from RAM before handing control to the application.

5.1.4 Info Flash and EPPB

The following figure is an overview of the Info flash and EPPB layout for the application. The Cortex-M33 core is the only Bus Master
that can access the EPPB region.

Figure 5.3. Info Flash and EPPB Layout

AN1374: Series 2 TrustZone
TrustZone Implementation

silabs.com | Building a more connected world. Rev. 0.3 | 35

5.1.5 Peripheral and Device

The following figure is an overview of the peripheral and device layout for the bootloader and application. The SAU and ESAU are used
to split the peripheral and device into a Secure and Non-secure region.

Figure 5.4. Peripheral and Device Layout

The Secure software is responsible for moving all peripherals and associated interrupts to the Non-secure state at startup, except for
the peripherals and interrupts that need to be Secure. The Non-secure software must not include code that attempts to directly access
any peripheral that is used by the Secure software.

Peripherals owned by the Secure software (application):
1. Security Management Unit (SMU)

• It prevents Non-secure software from changing the configuration for the ESAUs, BMPUs, and PPUs.
• Except for EFR32xG21 devices, some features are also available in the dedicated Non-secure version of SMU registers

(SMU_CFGNS).
2. CRYPTOACC (VSE devices) or SEMAILBOX (HSE devices)

• The crypto engine is placed in the Secure domain for Secure library.
3. System Configuration (SYSCFG)

• It prevents Non-secure software from changing system configurations for Secure software.
• Except for EFR32xG21 devices, some features are also available in the dedicated Non-secure version of SYSCFG registers

(SYSCFG_CFGNS).
4. Memory System Controller (MSC)

• It prevents Non-secure software from writing to Secure flash.

Peripheral interrupts owned by the Secure software:

Table 5.1. Secure Peripheral Interrupts (Application)

VSE Device HSE Device

SMU_SECURE_IRQn SMU_SECURE_IRQn

SYSCFG_IRQn SYSCFG_IRQn

MSC_IRQn MSC_IRQn

CRYTOACC_IRQn SEMBRX_IRQn

TRNG_IRQn SEMBTX_IRQn

PKE_IRQn

The PRIS bit in the AIRCR register is set to 1 to place all Non-secure exceptions/interrupts in lower priority level space. Therefore any
Secure exceptions/interrupts can be programmed with higher priority than Non-secure ones.

The BMPUSEC and PPUSEC interrupt enable flags in the SMU_IEN register are set to enable the SMU security fault interrupts
(SMU_SECURE_IRQn) on Bus Masters and peripherals.

Floating Point Unit (FPU):

The Secure application does not use the FPU. But the Secure startup code also enables the FPU for use by the Non-secure applica-
tion.

AN1374: Series 2 TrustZone
TrustZone Implementation

silabs.com | Building a more connected world. Rev. 0.3 | 36

5.1.6 Bus Masters

To keep all secrets from the Non-secure world, only the Bus Masters in the table below can access data in the Secure world. For the
Bus Masters living in the Secure world, the secure application must configure their corresponding control interfaces in the peripheral
space to Secure. The Cortex-M33 core as a Bus Master is split to run in Secure and Non-secure contexts.

Table 5.2. Secure Bus Masters (Application)

Device Secure Bus Master Control Interface of Bus Master

VSE CRYPTOACC CRYTPOACC

HSE SEDMA or SEEXTDMA SEMAILBOX

Note:
• Use SMU_BMPUSATD0 register to configure the security attribute of a Bus Master.
• Use SMU_PPUSATDn register to configure the control interface of Bus Master as a Secure peripheral.
• LDMA is set as a Non-secure Bus Master to make sure it cannot be used to copy out data from the Secure memory.

5.1.7 Application Transitions

The system contains two Secure/Non-secure pairs.
1. The bootloader pair has a Secure bootloader and a Non-secure bootloader containing the communication interfaces.
2. The application pair has a Secure application and a Non-secure application consisting of the wireless stacks (if applicable) and

application layers.

As described in the preceding sections, the Secure part of these pairs is responsible for setting the security configurations of the system
during startup. For the handover between Secure/Non-secure pairs, the software must restore the system so the Secure part of the
other pair can execute and reconfigure the system.

The software must reconfigure the following items before transitioning to the next Secure/Non-secure pair:
• Restored all peripherals and interrupts to Secure
• Reset ESAU to default configuration (all configurable regions to Secure)
• Reset SAU to default configuration (Secure for everything)
• Reset MPU to default configuration (removes any XN)

AN1374: Series 2 TrustZone
TrustZone Implementation

silabs.com | Building a more connected world. Rev. 0.3 | 37

5.2 Gecko Bootloader

The Gecko bootloader ensures the Secure assets are protected during the boot flow and normal operation.

1

2

45

6

7

7

3

Figure 5.5. Gecko Bootloader Flow

1. The SAU and Secure MPU mark all the flash for application and NVM as Secure and non-executable (XN) during boot. It guards
against bootloader NS code execution branching into the application code.

2. The bootloader needs to split into Secure and Non-secure software to protect secrets in the system. Secure code can access the
entire flash to validate or upgrade the system.

3. For VSE devices, the GBL Decryption Key (AES-128 key) is moved from the NS memory (last page of the main flash) to the Se-
cure part of the bootloader. The Simplicity Commander v1.13 or higher provides a feature to inject the AES-128 key to the boot-
loader binary file.

commander convert <BL image file> --aeskey <decryption key file> --outfile <BL image with decryption key>

4. The bootloader communication interfaces are placed in the NS area to support various communication components below for firm-
ware upgrades.
• BGAPI UART
• EZSP-SPI
• UART XMODEM

5. The NS communication functions call into the bootloader APIs placed in the bootloader NSC region. The Secure application vali-
dates all input arguments before processing the request.

6. Before transiting from bootloader to normal operation, it resets the SAU to default configuration to make all the flash for bootloader
as Secure.

7. The Non-secure application software can call bootloader APIs through application NSC, and the corresponding Secure function
releases the non-executable (XN) restriction on the bootloader during normal operation.

AN1374: Series 2 TrustZone
TrustZone Implementation

silabs.com | Building a more connected world. Rev. 0.3 | 38

https://www.silabs.com/documents/public/user-guides/ug489-gecko-bootloader-user-guide-gsdk-4.pdf
https://www.silabs.com/documents/public/application-notes/an1222-efr32xg2x-production-programming.pdf
https://docs.silabs.com/mcu-bootloader/latest/group-Communication
https://docs.silabs.com/mcu-bootloader/latest/group-Interface
https://docs.silabs.com/mcu-bootloader/latest/group-Interface

5.3 Secure Library

The goal of the Secure library is to keep the PSA Crypto key and attestation token protected from malicious code on the NSPE. The
following figure overviews multiple components to support the Secure library.

PSA Crypto & Attestation NS Interface Non-secure Processing
Environment (NSPE)

PSA Crypto

SE Manager
NS Interface

Transparent/
Opaque Driver

SE Manager or CRYPTOACCSE Manager

SE Manager
Wrapper

PSA Crypto & Attestation Wrapper

NVM3

NVM3
Wrapper

NVM3 NS
Interface

Encrypted
PSA ITS

Unchanged
Component

Updated
Component

New
Component

Secure Processing
Environment (SPE)

43

1 1 1

2

2

2

PSA
Attestation

2

Figure 5.6. Secure Library Components

1. The NS interfaces in NSPE are responsible for packing and passing all input arguments over the NSC functions on wrappers in
SPE.

2. The wrappers in SPE validate all input arguments before calling into the corresponding APIs in different drivers.
3. Because of the system memory layout limitation, the flash for NVM3 storage is located in the NSPE. Therefore the updated PSA

Internal Trusted Storage (ITS) driver needs to encrypt all crypto keys before storing them in Non-secure NVM.
4. Data stored directly using the NVM3 APIs are not encrypted.

The following table describes the new and updated components of the Secure library.

Component Description

SE Manager NS interface This component contains SE Manager API callable from the NSPE. It packages the list of input arguments
in the appropriate format before calling into the SE Manager wrapper's NSC functions.

SE manager wrapper This component contains the interface into SE Manager exposed to the NSPE. These NSC functions grant
access to the SE Manager utility API and validate all input arguments before calling into SE Manager.

PSA Crypto & Attestation
NS interface

This component contains PSA Crypto and attestation API callable from the NSPE. It packages the list of
input arguments in the appropriate format before calling into the PSA Crypto and attestation wrapper's
NSC functions.

PSA Crypto & Attestation
wrapper

This component contains the interface into PSA Crypto and attestation exposed to the NSPE. These NSC
functions grant access to the entire PSA Crypto and attestation API and validate all input arguments before
calling into PSA Crypto and attestation.

PSA attestation This component in SPE provides the functionality required by the PSA attestation specification.

Encrypted PSA ITS The PSA ITS layer builds on top of NVM3. This component is updated to support encrypted storage to se-
cure stored keys. The encryption is based on the device's TrustZone Root Key.

NVM3 NS interface This component contains NVM3 API callable from the NSPE. It packages the list of input arguments in the
appropriate format before calling into the NVM3 wrapper's NSC functions.

NVM3 wrapper This component contains the interface into NVM3 exposed to the NSPE. These NSC functions grant ac-
cess to the NVM3 API and validate all input arguments before calling into NVM3.

Note:
• The SE Manager NS interface, PSA Crypto NS interface, and NVM3 NS interface in the NSPE provide drop-in replacement on SE

Manager utility, PSA Crypto, and NVM3 APIs for existing wireless stacks and user applications.
• The NSC calls can only take a limited number of arguments, so all NSC functions take a pointer to a list of parameters to support a

long list of arguments. All arguments must be validated using the intrinsic functions from CMSIS.

AN1374: Series 2 TrustZone
TrustZone Implementation

silabs.com | Building a more connected world. Rev. 0.3 | 39

https://armmbed.github.io/mbed-crypto/html/about.html
https://docs.silabs.com/gecko-platform/latest/driver/api/group-nvm3

5.4 TrustZone Secure Key Storage

The TrustZone Secure Key Storage provides a solution to store a user key in Secure RAM or an encrypted form in Non-secure flash.

The TrustZone Root Key stored in the SE NVM for Secure Key Storage encryption is generated or renewed by following operations.
• The TrustZone Root Key had already existed if the shipped Series 2 device with SE firmware version supports this key.
• Generate a TrustZone Root Key when upgrading from a SE firmware version that did not support this key to the one that does.
• Renew a TrustZone Root Key after performing a Device Erase.

Note: The TrustZone Root Key cannot be renewed if Device Erase is disabled.

The TrustZone Root Key is not exposable to the NSPE, and access to this key in SPE is different in HSE and VSE devices.
• HSE - The SPE can access the TrustZone Root Key as a built-in non-exportable key in HSE NVM.
• VSE - The SPE can access the TrustZone Root Key in Secure RAM, which is copied from VSE NVM during boot.

The TrustZone Root Key value after reset is identical to the value before reset. TrustZone Root Keys are unique on each device. The
key allows a user to securely store a key in the Non-secure flash, limiting the number of keys that can be saved only by the amount of
Non-secure storage. The following figure describes using the TrustZone Root Key to encrypt a plaintext key and store it in Non-secure
NVM.

Non-secure (NSPE) Secure (SPE)

PSA Crypto

Flash (NVM)

Series 2 TrustZone Secure Key Storage

Encrypted
Key

RAM

Plaintext Key

Plaintext
User Key

TrustZone
Root Key

NSC (SG)
2

1

3

5

6

PSA ITS

NVM3
7

4

1. After power-on, the device's TrustZone Root Key is available for the SPE.
2. A user key is generated and imported into the device's Non-secure memory. In this example, the key is imported into Non-secure

RAM for easy deletion, and the key is lost if device power is removed.
3. Call PSA Crypto API (psa_import_key() or psa_generate_key()) through SG in NSC to generate a key for crypto operations.
4. The plaintext key is passed to the PSA Crypto in SPE, where it is encrypted (AES-GCM) with the TrustZone Root Key.
5. The encrypted key is stored to the NVM in NSPE through the PSA ITS and NVM3 drivers.
6. The plaintext key can now be deleted from the Non-secure RAM.
7. Only the PSA Crypto in SPE can retrieve the encrypted key from NVM in NSPE and decrypt it for crypto operations in SPE.

Note: Ignore steps 2 and 6 if the plaintext key is randomly generated by the PSA Crypto.

AN1374: Series 2 TrustZone
TrustZone Implementation

silabs.com | Building a more connected world. Rev. 0.3 | 40

https://www.silabs.com/documents/public/application-notes/an1190-efr32-secure-debug.pdf

The following tables describe the storage differences between SVM and SVH devices with and without TrustZone Secure Key Storage
(SKS).

Key Type Storage on SVM Device Storage on SVH Device

Volatile Plaintext (without TrustZone SKS) RAM RAM

Persistent Plaintext (without TrustZone SKS) NVM NVM

Volatile Wrapped (without TrustZone SKS) Not supported RAM (1)

Persistent Wrapped (without TrustZone SKS) Not supported NVM (1)

Key Type Storage on SVM Device Storage on SVH Device

Volatile Plaintext (with TrustZone SKS) Secure RAM (2) Secure RAM

Persistent Plaintext (with TrustZone SKS) Encrypted plaintext key in NS NVM (2) Encrypted plaintext key in NS NVM

Volatile Wrapped (with TrustZone SKS) Not supported Secure RAM

Persistent Wrapped (with TrustZone SKS) Not supported Encrypted wrapped key in NS NVM

Note:
• The NVM or NS NVM is at the last part of the main flash.
• It is possible to replace the wrapped key solution on the SVH device (1) with TrustZone Secure Key Storage on the SVM device (2),

but this is a less secure approach.

AN1374: Series 2 TrustZone
TrustZone Implementation

silabs.com | Building a more connected world. Rev. 0.3 | 41

https://www.silabs.com/documents/public/application-notes/an1271-efr32-secure-key-storage.pdf

5.5 PSA Attestation

The device attestation service creates a token that contains a fixed set of device-specific data when requested by the caller. Each de-
vice must have a unique Initial Attestation Key (IAK) pair. The device uses the private IAK to sign the token, and the caller uses the
public IAK to verify the token's authenticity.

The generation of the private IAK is different in SVM and SVH devices.
• SVM - If the private IAK does not exist in NVM3, it is randomly generated when requested from the PSA Attestation driver and saved

to NVM3 through the TrustZone Secure Key Storage.
• SVH - The private IAK is generated and securely stored in the HSE during chip production.

An Entity Attestation Token (EAT) is a mini-report that is cryptographically signed. An EAT is encoded in either one of two standardized
data formats: a Concise Binary Object Representation (CBOR) or in the text-based format JSON. A digital signature is then used to
protect its content. The technical specification defining the content of the EAT, which are claims about the hardware and the software
running on a device, is specified by the Internet Engineering Task Force (IETF).

The EAT is a crypto-signed report card with claims. A claim is a data item that is represented as a Key-Value pair. Claims can relate to
the device's pedigree or anything one wants the device to attest. Collected data can originate from the Root of Trust (RoT), any protec-
ted area, or non-protected areas.

The EAT must be signed following the structure of the CBOR Object Signing and Encryption (COSE) specification. For asymmetric key
algorithms, the signature structure must be COSE-Sign1. A COSE-Sign1 is a CBOR encoded, self-secured data blob that contains
headers, a payload, and a signature.

The primary need for EAT verification is to check correct formation and signing as for any token. In addition, though, the verifier can
operate a policy where values of some of the claims in this profile can be compared to reference values that are registered with the
verifier for a given deployment, to confirm that the device is endorsed by the manufacturer supply chain.

The PSA attestation token (aka Initial Attestation Token - IAT) is a profiled EAT. The Series 2 device will generate this token by request
with a challenge (Nonce claim below) unless the SE OTP is uninitialized or the SECURE_BOOT_ENABLE option in SE OTP is disabled.

The following tables describe claims used in the PSA attestation token of the Series 2 device.

Table 5.3. Claims of PSA Attestation Token

Key Claim Name (Present) Claim Description Claim Value

265
(-75000)

Profile Definition (Must) The Profile Definition claim encodes the unique identifier corre-
sponds to the EAT profile.

http://arm.com/psa/2.0.0

2394
(-75001)

Client ID (Must) The Client ID claim represents the security domain of the caller. See note below (2 byes)

2395
(-75002)

Security Lifecycle
(Must)

The Security Lifecycle claim represents the current lifecycle state
of the PSA RoT.

Device dependent (2 bytes)

2396
(-75003)

Implementation ID
(Must)

The Implementation ID claim uniquely identifies the implementa-
tion of the immutable PSA RoT.

Device dependent (32 bytes)

2397
(-75004)

Boot Seed (Optional) The Boot Seed claim represents a value created at system boot
time that will allow differentiation of reports from different boot
sessions.

Device dependent (32 bytes)

2399
(-75006)

Software Components
(Must)

The Software Components claim is a list of software components
that includes all the software loaded by the PSA RoT.

See note below

10
(-75008)

Nonce (Must) The Nonce claim is used to carry the challenge provided by the
caller to demonstrate freshness of the generated token. The
length must be either 32, 48, or 64 bytes.

Random nonce (32/48/64
bytes)

256
(-75009)

Instance ID (Must) The Instance ID claim represents the unique identifier of the IAK.
The length must be 33 bytes.

SHA-256 hash of public IAK
(32 bytes) with header 0x01

Note:
• Some claims MUST be present in a PSA attestation token.
• The keys -7500x were defined in a previous version of the PSA attestation token specification (PSA_IOT_PROFILE_1 profile) that is

still used in the HSE-SVH firmware.
• The actual claims returned from the tokens on the SVH device are HSE firmware version-dependent.

AN1374: Series 2 TrustZone
TrustZone Implementation

silabs.com | Building a more connected world. Rev. 0.3 | 42

https://www.rfc-editor.org/info/rfc7049
https://datatracker.ietf.org/doc/html/draft-ietf-rats-eat-11
https://www.rfc-editor.org/info/rfc8152
https://www.ietf.org/id/draft-tschofenig-rats-psa-token-10.html
https://www.silabs.com/documents/public/application-notes/an1218-secure-boot-with-rtsl.pdf

• Key 2394: In PSA, a security domain is represented by a signed integer where negative values represent callers from the NSPE and
positive IDs represent callers from the SPE. The value 0 is not permitted.

• Key 2395 (For the definitions of these lifecycle states, refer to the ARM PSA Security Model):
• UNKNOWN (0x0000 - 0x00ff)
• ASSEMBLY_AND_TEST (0x1000 - 0x10ff)
• PSA_ROT_PROVISIONING (0x2000 - 0x20ff)
• SECURED (0x3000 - 0x30ff)
• NON_PSA_ROT_DEBUG (0x4000 - 0x40ff)
• RECOVERABLE_PSA_ROT_DEBUG (0x5000 - 0x50ff)
• DECOMMISSIONED (0x6000 - 0x60ff)

• Key 2396:
• Word[0]: Die revision
• Word[1]: SE OTP version (return 0 for VSE SE firmware < v1.2.14)
• Word[2]: Security capability (not applicable to HSE-SVH device, always returns 1 in this word)

• 0: Unknown security capability
• 1: Security capability not applicable
• 2: Basic security capability
• 3: Root of Trust security capability
• 4: HSE-SVM security capability
• 5: HSE-SVH security capability (run HSE-SVM binary on HSE-SVH device)

• Word[3]: Production version
• Word[4:7]: Reserved (zeros)

• Key 2399: Each software component uses the attributes described in the following table, and some MUST be present in a software
component claim.

Key Attribute (Present) Description Value

1 Measurement Type
(Optional)

The Measurement Type attribute is a short string representing the
role of this software component.

See note below

2 Measurement Value
(Must)

The Measurement Value attribute represents a hash of the invariant
software component in memory at startup time.

SHA-256 hash (32 bytes)
of the firmware

4 Version (Optional) The Version attribute is the issued software version in the form of a
text string.

A string of 8 bytes

The following measurement types may be used for Key 1:
• "BL": a Bootloader
• "PRoT": a component of the PSA Root of Trust
• "ARoT": a component of the Application Root of Trust
• "App": a component of the NSPE application
• "TS": a component of a Trusted Subsystem

The PSA Attestation API allows access to the PSA attestation token, so an external entity can cryptographically verify the identity and
trust status of the device.

Table 5.4. PSA Attestation API

PSA Attestation API Usage

psa_initial_attest_get_token Retrieve the PSA attestation Token.

psa_initial_attest_get_token_size Calculate the size of a PSA attestation Token.

sl_tz_attestation_get_public_key Get the public IAK key for PSA attestation token signature verification.

Note: The sl_tz_attestation_get_public_key is a Silicon Labs custom API.

AN1374: Series 2 TrustZone
TrustZone Implementation

silabs.com | Building a more connected world. Rev. 0.3 | 43

https://developer.arm.com/-/media/Files/pdf/PlatformSecurityArchitecture/Architect/DEN0079_PSA_SM_ALPHA-03_RC01.pdf

5.6 SE Manager

SE Manager is the foundation for the Secure library cryptographic operations on HSE devices. It means that SE Manager has to move
into the SPE.

The following SE Manager core APIs are always available in the NSPE.

SE Manager Core API VSE-SVM HSE-SVM HSE-SVH

sl_se_init Y Y Y

sl_se_deinit Y Y Y

sl_se_init_command_context Y Y Y

sl_se_deinit_command_context Y Y Y

sl_se_set_yield Y Y Y

The following SE Manager core APIs expose to the NSPE through the NSC interface for the VSE devices.

SE Manager Core API VSE-SVM HSE-SVM HSE-SVH

sl_se_read_executed_command Y — —

sl_se_ack_command Y — —

The following SE Manager utility APIs expose to the NSPE through the NSC interface for configuring the security features of HSE or
VSE devices.

SE Manager Utility API VSE-SVM HSE-SVM HSE-SVH

sl_se_check_se_image Y Y Y

sl_se_apply_se_image Y Y Y

sl_se_get_upgrade_status_se_image Y Y Y

sl_se_check_host_image Y Y Y

sl_se_apply_host_image Y Y Y

sl_se_get_upgrade_status_host_image Y Y Y

sl_se_init_otp_key Y Y Y

sl_se_read_pubkey Y Y Y

sl_se_init_otp Y Y Y

sl_se_read_otp Y Y Y

sl_se_get_se_version Y Y Y

sl_se_get_debug_lock_status Y Y Y

sl_se_apply_debug_lock Y Y Y

sl_se_get_otp_version Y Y Y

sl_se_write_user_data — Y (EFR32xG21 only) Y (EFR32xG21 only)

sl_se_erase_user_data — Y (EFR32xG21 only) Y (EFR32xG21 only)

sl_se_get_reset_cause — Y (EFR32xG21 only) Y (EFR32xG21 only)

sl_se_get_status — Y Y

sl_se_get_serialnumber — Y Y

sl_se_enable_secure_debug — Y Y

sl_se_disable_secure_debug — Y Y

AN1374: Series 2 TrustZone
TrustZone Implementation

silabs.com | Building a more connected world. Rev. 0.3 | 44

https://docs.silabs.com/gecko-platform/latest/service/api/group-sl-se-manager-core
https://docs.silabs.com/gecko-platform/latest/service/api/group-sl-se-manager-core
https://docs.silabs.com/gecko-platform/latest/service/api/group-sl-se-manager-util

SE Manager Utility API VSE-SVM HSE-SVM HSE-SVH

sl_se_set_debug_options — Y Y

sl_se_erase_device — Y Y

sl_se_disable_device_erase — Y Y

sl_se_get_challenge — Y Y

sl_se_roll_challenge — Y Y

sl_se_open_debug — Y Y

sl_se_disable_tamper — — Y

sl_se_read_cert_size — — Y

sl_se_read_cert — — Y

Note: The NSPE cannot access the other SE Manager APIs for cryptographic and attestation operations.

5.7 Common Vulnerabilities and Exposures (CVE)

At this writing, the following known TrustZone CVE had been fixed in the current implementation.
• CVE-2020-16273: Stack sealing
• CVE-2021-36465: VLLDM instruction/floating-point vulnerability

AN1374: Series 2 TrustZone
TrustZone Implementation

silabs.com | Building a more connected world. Rev. 0.3 | 45

https://docs.silabs.com/gecko-platform/latest/service/api/group-sl-se-manager
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-16273
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-35465

6. Upgrade Existing Application to TrustZone

The main concerns when upgrading existing deployment to the TrustZone solution are:
• The Secure/Non-secure pair for the bootloader (24 kB) does not fit inside the current allotted bootloader space (16 kB).
• The Secure/Non-secure pair for the application does not fit inside the current allotted application space.
• The PSA ITS moves from a non-encrypted to an encrypted format, so the existing stored cryptographic keys in NVM3 cannot be

reused after upgrading the current application to TrustZone.

The Secure Library is based on PSA Crypto, so the existing application cannot integrate with the TrustZone if one of the following con-
ditions is valid.
• Use SE Manager APIs for cryptographic and attestation operations.
• Use classic Mbed TLS APIs for cryptographic operations (except for X.509 certificate) and Transport Layer Security (TLS) protocol.

6.1 System Requirements

The following table lists the tools and software required for TrustZone development on Series 2 devices.

Tool/Software Required Version Description

GCC v10.3.1 Fix a bug (ID 99271) on cmse_nonsecure_call attribute.

IAR EWARM v9.20.4 Fix a bug (EWARM-9484) on __cmse_nonsecure_call attribute.

Segger J-Link ≥ v7.6.2c v7.6.2c is the first version to add basic TrustZone support on Series 2 devices.

Simplicity Studio ≥ v5.6.3.0 v5.6.3.0 is the first version to support TrustZone software development on Series 2 de-
vices.

Simplicity Commander ≥ v1.13.3 v1.13.3 includes a TrustZone-aware flash loader and supports features required for
TrustZone development.

GSDK ≥ v4.2.2 GSDK v4.2.2 is the first version to support TrustZone software development on Series
2 devices.

SE Firmware ≥ v1.2.14 v1.2.14 is the first version to fully support TrustZone on xG21 (HSE) and xG22 (VSE)
devices.

SE Firmware ≥ v2.2.1 v2.2.1 is the first version to fully support TrustZone on other Series 2 HSE and VSE
devices.

Note:
• Required GCC and IAR EWARM versions are GSDK-dependent.
• Bug list of GCC v10.3
• IAR EWARM release note
• Segger J-Link release note
• Simplicity Studio user guide
• Latest version of Simplicity Commander
• GSDK release note
• Silicon Labs strongly recommends installing the latest SE firmware on Series 2 devices to support the required TrustZone features.

The latest SE firmware image and release notes after installing the GSDK (Windows folder):

C:\Users\<PC USER NAME>\SimplicityStudio\SDKs\gecko_sdk\util\se_release\public

AN1374: Series 2 TrustZone
Upgrade Existing Application to TrustZone

silabs.com | Building a more connected world. Rev. 0.3 | 46

https://docs.silabs.com/gecko-platform/latest/service/api/group-sl-se-manager
https://gcc.gnu.org/bugzilla/buglist.cgi?bug_status=RESOLVED&resolution=FIXED&target_milestone=10.3
https://updates.iar.com/?product=EWARM
https://www.segger.com/downloads/jlink/ReleaseNotes_JLink.html
https://docs.silabs.com/simplicity-studio-5-users-guide/latest/ss-5-users-guide-overview/
https://www.silabs.com/developers/mcu-programming-options
https://github.com/SiliconLabs/gecko_sdk/releases

6.2 Peripheral Addresses in Device Header Files

The device header files (e.g., efr32mg21b020f1024im32.h) need to be configurable for different situations. The SL_TRUSTZONE_SECURE
and SL_TRUSTZONE_NONSECURE definitions specify whether the compilation is for Secure or Non-secure applications. The
SL_TRUSTZONE_SECURE and SL_TRUSTZONE_NONSECURE should be exclusive. If none of the definitions are true, the state should be simi-
lar to the Non-secure configuration, but the startup code (SystemInit() in system_*.c) will be responsible for reconfiguring the sys-
tem.

Define (Software Component) Default Peripheral Pointer Startup Code

SL_TRUSTZONE_SECURE
(TrustZone Secure)

Point to Secure peripherals (*_BASE = *_S_BASE) No effect on SystemInit()

SL_TRUSTZONE_NONSECURE
(TrustZone Non-Secure)

Point to Non-secure peripherals (*_BASE = *_NS_BASE) No effect on SystemInit()

None of the above (—) Point to Non-secure peripherals (*_BASE = *_NS_BASE) SystemInit() moves peripherals to
Non-secure

When building a Secure application (SL_TRUSTZONE_SECURE is true), all peripherals shall have their non-suffixed default address point-
ing to the Secure location of the peripheral (e.g., EMU). But the definitions in sl_trustzone_secure_config.h can force the address-
es of specific peripherals pointing to the Non-secure location.

#ifndef SL_TRUSTZONE_SECURE_CONFIG_H
#define SL_TRUSTZONE_SECURE_CONFIG_H

// Specify security configuration of peripherals. Peripherals that are not
// included here will automatically have their _BASE addresses point to their
// secure address. This might not be true, since most peripherals are configured
// to be non-secure -- but it's also not a problem if the peripheral is not
// accessed from the S app.

// Used in multiple places.
#define SL_TRUSTZONE_PERIPHERAL_CMU_S (0)

// Used by SE Manager service.
#define SL_TRUSTZONE_PERIPHERAL_AHBRADIO_S (0)

// Used by MSC service.
#define SL_TRUSTZONE_PERIPHERAL_LDMA_S (1)

// Used by MSC service.
#define SL_TRUSTZONE_PERIPHERAL_LDMAXBAR_S (1)

#endif // SL_TRUSTZONE_SECURE_CONFIG_H

#if defined(SL_CATALOG_TRUSTZONE_SECURE_CONFIG_PRESENT)
#include "sl_trustzone_secure_config.h"
#endif

#if ((defined(SL_TRUSTZONE_SECURE) && !defined(SL_TRUSTZONE_PERIPHERAL_EMU_S))
 || (defined(SL_TRUSTZONE_PERIPHERAL_EMU_S) && (SL_TRUSTZONE_PERIPHERAL_EMU_S != 0)))
#define EMU_BASE (EMU_S_BASE) /* EMU base address */
#else

In other cases (SL_TRUSTZONE_NONSECURE is true or both SL_TRUSTZONE_SECURE and SL_TRUSTZONE_NONSECURE are false), all periph-
erals shall have their non-suffixed default address pointing to the Non-secure location of the peripheral (e.g., EMU).

#define EMU_BASE (EMU_NS_BASE) /* EMU base address */

Note: Do not install the TrustZone Secure or TrustZone Non-Secure software component to the TrustZone-unaware application.

AN1374: Series 2 TrustZone
Upgrade Existing Application to TrustZone

silabs.com | Building a more connected world. Rev. 0.3 | 47

6.3 Startup Code

The startup code moves peripherals from Secure to Non-secure to support the default peripheral locations. In a TrustZone-aware appli-
cation (either SL_TRUSTZONE_SECURE or SL_TRUSTZONE_NONSECURE is true), this is the application's responsibility (skip lines 168 to 194
in SystemInit()) and is done in the Secure firmware of the system.

For the TrustZone-unaware application (both SL_TRUSTZONE_SECURE and SL_TRUSTZONE_NONSECURE are false), the SystemInit() in sy
stem_*.c (e.g., system_efr32mg21.c) moves peripherals to the Non-secure location.
• The SystemInit() sets the accesses of all peripherals to Non-secure except for the SMU and HSE SEMAILBOX (lines 172 to 178).
• The SystemInit() sets the SAU in All Non-secure configuration (lines 180 to 187).

• It ensures Non-secure access to Non-secure peripherals.
• The device component files (e.g., efr32mg21b020f1024im32.slcc) enable the CMSE compiler option (-mcmse for GCC and --
cmse for IAR) to pass the condition in line 181 to program the SAU.

• To catch the missing CMSE compiler option, it will generate a preprocessor error (line 186) if the CMSE flag is not set when
manually upgrading a project from GSDK v4.0.x to ≥v4.1.x for the TrustZone-unaware application.

• The SystemInit() does not program the ESAU (default Secure flash is 32 MB), so the whole program is run in the Secure state.
• The SystemInit() also enables the BMPUSEC and PPUSEC interrupts in the SMU (lines 189 to 193). It ensures the TrustZone-un-

aware application catches any violations of Bus Master and peripheral security access permissions.

The SMU_BASE and HSE SEMAILBOX_HOST_BASE in device header files must point to the Secure location regardless of the
SL_TRUSTZONE_SECURE and SL_TRUSTZONE_NONSECURE settings to avoid security violations on peripherals in the TrustZone-unaware
application (SMU and HSE SEMAILBOX are set to Secure peripherals).

AN1374: Series 2 TrustZone
Upgrade Existing Application to TrustZone

silabs.com | Building a more connected world. Rev. 0.3 | 48

https://developer.arm.com/documentation/ecm0359818/latest

#if ((defined(SL_TRUSTZONE_SECURE) && !defined(SL_TRUSTZONE_PERIPHERAL_SMU_S))
 || (defined(SL_TRUSTZONE_PERIPHERAL_SMU_S) && (SL_TRUSTZONE_PERIPHERAL_SMU_S != 0)))
#define SMU_BASE (SMU_S_BASE) /* SMU base address */
#else
#define SMU_BASE (SMU_S_BASE) /* SMU base address */

#if ((defined(SL_TRUSTZONE_SECURE) && !defined(SL_TRUSTZONE_PERIPHERAL_SEMAILBOX_HOST_S))
 || (defined(SL_TRUSTZONE_PERIPHERAL_SEMAILBOX_HOST_S) && (SL_TRUSTZONE_PERIPHERAL_SEMAILBOX_HOST_S != 0)))
#define SEMAILBOX_HOST_BASE (SEMAILBOX_S_HOST_BASE) /* SEMAILBOX_HOST base address */
#else
#define SEMAILBOX_HOST_BASE (SEMAILBOX_S_HOST_BASE) /* SEMAILBOX_HOST base address */

Note:
• The CMSE compiler option of GCC is in the Other flags window under C/C++ Build → Settings → Tool Settings → GNU ARM
C Compiler → Miscellaneous.

• The CMSE compiler option of IAR is in the Command line options: (one per line) window under Options... → C/C++ Com-
piler → Extra Options.

AN1374: Series 2 TrustZone
Upgrade Existing Application to TrustZone

silabs.com | Building a more connected world. Rev. 0.3 | 49

6.4 Linker File

The template_contribution defined in the slcp files of Secure and Non-secure projects will override the default memory settings
defined in the device component files (e.g., efr32mg21b020f1024im32.slcc) to generate the linker files for Secure and Non-secure
applications.

Memory Region Default Setting in Device Component File Override Setting in template_contribution

Flash start address device_flash_addr memory_flash_start

Flash size device_flash_size memory_flash_size

RAM start address device_ram_addr memory_ram_start

RAM size device_ram_size memory_ram_size

The ESAU sets the flash and RAM start address, so these addresses should be alignment at 4 kB (0x1000). The Secure project linker
file needs to have a section for NSC (Secure Gateway) at the end of the Secure flash section. The SAU sets the start address of the
NSC section, so this section only needs to be 32 bytes aligned.
• GCC NSC: The .gnu.sgstubs region in the Secure application map file (.map)
• IAR NSC: The Veneer$$CMSE region in the Secure application map file (.map)

The Secure and Non-secure flash and RAM sizes are incremented or decremented in 4 kB. The memory configurations in Secure and
Non-secure applications are correlated, so the flash and RAM settings are in pairs.

m
em

or
y_

fla
sh

_s
ta

rt
 (S

)
4

kB
 a

lig
nm

en
t

m
em

or
y_

fla
sh

_s
ize

 (S
)

m
em

or
y_

fla
sh

_s
ta

rt
 (N

S)
4

kB
 a

lig
nm

en
t

m
em

or
y_

fla
sh

_s
ize

 (N
S)

m
em

or
y_

ra
m

_s
ta

rt
 (S

)
4

kB
 a

lig
nm

en
t

m
em

or
y_

ra
m

_s
ize

 (S
)

m
em

or
y_

ra
m

_s
ta

rt
 (N

S)
4

kB
 a

lig
nm

en
t

m
em

or
y_

ra
m

_s
ize

 (N
S)

32
 b

yt
e

al
ig

nm
en

t

Note: Users should not directly edit the template_contribution in the slcp file, but rather use the Memory Editor in Simplicity Studio
to update the memory configuration.

AN1374: Series 2 TrustZone
Upgrade Existing Application to TrustZone

silabs.com | Building a more connected world. Rev. 0.3 | 50

https://siliconlabs.github.io/slc-specification/latest/format/component/template_contribution/
https://siliconlabs.github.io/slc-specification/latest/format/project/

6.5 Debugger

Simplicity Studio supports two debuggers:
• GNU Debugger (GDB) client and SEGGER's GDB server
• Simplicity Studio Debugger

The TrustZone-unaware and TrustZone-aware applications enable the PPUSEC interrupts in the SMU. The debugger will trigger the
SMU_SECURE_IRQHandler if the [Registers] or [Peripherals] view feature violates peripheral security access permission.

Simplicity Studio Debugger

The [Registers] view of Simplicity Studio Debugger can only access the Secure location of a peripheral. The following figure demon-
strates the Default_Handler (SMU_SECURE_IRQHandler not defined) is triggered (PPUSEC in SMU->IF = 1) when viewing the registers of
GPIO peripheral (PPUFSPERIPHID = 13) that is set to Non-secure access in the SMU.

The debugger can access the registers of the SMU since this peripheral is set to Secure access in the SMU.

This limitation does not apply to GSDK < v4.1.0 since no peripherals are configured for Non-secure access.

The Simplicity Studio Debugger is not the preferred choice for TrustZone debugging since it has limitations on viewing Non-secure ac-
cess peripherals.

AN1374: Series 2 TrustZone
Upgrade Existing Application to TrustZone

silabs.com | Building a more connected world. Rev. 0.3 | 51

https://docs.silabs.com/simplicity-studio-5-users-guide/latest/ss-5-users-guide-testing-and-debugging/using-the-debugger

GNU Debugger (GDB)

The [Peripherals] view of GNU Debugger can access either the Secure or Non-secure location of the peripheral to avoid conflicts on
security access permission. The following figure shows the registers of GPIO on Secure (GPIO at 0x4003C000) and Non-secure
(GPIO_NS at 0x5003C000) addresses. The GPIO peripheral is set to Non-secure access in the SMU, so the registers in the Secure ad-
dress are displayed as zero.

The GNU Debugger is the preferred choice for TrustZone debugging and is the default debugger for Simplicity Studio ≥ v5.5.0.0.

AN1374: Series 2 TrustZone
Upgrade Existing Application to TrustZone

silabs.com | Building a more connected world. Rev. 0.3 | 52

7. TrustZone Platform Examples

The following TrustZone platform examples located in the C:\Users\<PC USER NAME>\SimplicityStudio\SDKs\gecko_sdk\app\com
mon\example folder (Windows) demonstrate the TrustZone implementation on Series 2 devices. All TrustZone platform examples do
not include Gecko Bootloader.

TrustZone PSA Attestation

Example Folder Description

tz_psa_attestation The workspace description file (tz_psa_attestation_ws.slcw) creates the TrustZone PSA Attestation exam-
ple. The project description file (tz_psa_attestation_s.slcp) configures a Secure application that provides
the Secure Library functionality required by the Non-secure application.

tz_psa_attestation_ns The project description file (tz_psa_attestation_ns.slcp) configures a Non-secure application for the Trust-
Zone PSA Attestation example.

Note:
• This example cannot run if the SECURE_BOOT_ENABLE (root of trust of the attestation) option in SE OTP is disabled.
• The combined image of Secure and Non-secure applications is signed by the example_signing_key.pem (private key) in C:\Users
\<PC USER NAME>\SimplicityStudio\SDKs\gecko_sdk\platform\common folder (Windows). The example_signing_pubkey.pem
(public key) in the same folder is installed to the SE OTP to verify the image signature during Secure Boot.

TrustZone PSA Crypto ECDH

Example Folder Description

tz_psa_crypto_ecdh The workspace description file (tz_psa_crypto_ecdh_ws.slcw) upgrades the existing Platform - PSA Crypto
ECDH example to TrustZone-aware. The project description file (tz_psa_crypto_ecdh_s.slcp) configures a
Secure application that provides the Secure Library functionality required by the Non-secure application.

tz_psa_crypto_ecdh_ns The project description file (tz_psa_crypto_ecdh_ns.slcp) configures the existing Platform - PSA Crypto
ECDH example as a Non-secure application. The source code can be reused without changes.

AN1374: Series 2 TrustZone
TrustZone Platform Examples

silabs.com | Building a more connected world. Rev. 0.3 | 53

https://www.silabs.com/documents/public/application-notes/an1218-secure-boot-with-rtsl.pdf

The following sections use Simplicity Studio v5.6.3.0 and GSDK v4.2.2. The procedures and pictures may be different if using higher
versions of Simplicity Studio 5 and GSDK.

7.1 Project Description File

The project description file (.slcp) contains references to the GSDK used and a list of components to use from these. The TrustZone-
aware application requires separate slcp files for the Secure and Non-secure applications.

Users should not directly edit the slcp files, but rather use the Memory Editor and Post Build Editor in Simplicity Studio to update the
memory configuration and post-build actions.

7.1.1 Secure Application

The following figure describes which TrustZone software components are installed for the TrustZone Secure library of the TrustZone
PSA Crypto ECDH example.

Note:
• The services provided by the Secure library are standardized.
• The source files for the Secure library will be automatically added to the application when generating the Secure project from the
slcp file. For the current TrustZone implementation, modifications of the source files of the Secure library are not recommended.

AN1374: Series 2 TrustZone
TrustZone Platform Examples

silabs.com | Building a more connected world. Rev. 0.3 | 54

https://siliconlabs.github.io/slc-specification/1.0/format/project/

7.1.2 Non-secure Application

The following figure describes which TrustZone software components are installed for the Non-secure application of the TrustZone PSA
Crypto ECDH example.

Note:
• The following software components are automatically installed when PSA Crypto and ITS services are used on the Non-secure ap-

plication.
• MSC Service for TrustZone Secure Key Library
• NVM3 Service for TrustZone Secure Key Library
• PSA Crypto Service for TrustZone Secure Key Library
• PSA ITS Service for TrustZone Secure Key Library
• SYSCFG Service for TrustZone Secure Key Library

• The following software components can be installed to the Non-secure application when those services are required.
• PSA Attestation Service for TrustZone Secure Key Library
• SE Manager Service for TrustZone Secure Key Library

7.2 Workspace

A workspace is a structure that can contain multiple projects. 'Workspace' is a generic term for this construct. In the context of Simplicity
Studio, where workspace has a different, Eclipse-based, meaning, workspaces are referred to as Solutions.

The workspace description file (.slcw) contains references to projects (.slcp) that make up the workspace. Users should not directly
edit the slcw file, but rather use the Post Build Editor in Simplicity Studio to update the post-build actions.

AN1374: Series 2 TrustZone
TrustZone Platform Examples

silabs.com | Building a more connected world. Rev. 0.3 | 55

https://docs.silabs.com/simplicity-studio-5-users-guide/latest/ss-5-users-guide-developing-with-project-configurator/project-solutions
https://siliconlabs.github.io/slc-specification/latest/format/workspace/
https://siliconlabs.github.io/slc-specification/latest/format/project/

7.3 Memory Configuration

The memory configurations in the TrustZone platform examples are based on the Series 2 radio board with minimum flash (512 kB) and
RAM (32 kB), so these configurations can run on all Series 2 radio boards. Users can customize the settings when more flash and RAM
are available on the selected device.
• Memory flash size (total) = memory_flash_size (S) + memory_flash_size (NS) = 512 kB
• Memory RAM size (total) = memory_ram_size (S) + memory_ram_size (NS) = 32 kB

7.3.1 Secure Application

The project description file of the Secure application (*_s.slcp) uses the default memory setting below to generate the Secure linker
file (linkerfile.ld for GCC and linkerfile.icf for IAR in the project autogen folder).

The actual memory usage during software development is unknown, so it needs to reserve enough flash (memory_flash_size: 176 kB)
and RAM (memory_ram_size: 12 kB) for the Secure part of all TrustZone platform examples. The bigger RAM size (including stack and
heap) is mainly for the software fallback on cryptographic operations in PSA Crypto.

Default Memory Setting (Secure) xG21 and xG22 Devices Other Series 2 Devices

memory_flash_start 0x00000000 0x08000000

memory_flash_size 0x0002C000 (176 kB) 0x0002C000 (176 kB)

memory_ram_start 0x20000000 0x20000000

memory_ram_size 0x00003000 (12 kB) 0x00003000 (12 kB)

 MEMORY
 {
 FLASH (rx) : ORIGIN = 0x0, LENGTH = 0x2c000
 RAM (rwx) : ORIGIN = 0x20000000, LENGTH = 0x3000
 }

7.3.2 Non-secure Application

The project description files of the Non-secure application (*_ns.slcp) use the default memory setting below to generate the Non-se-
cure linker file (linkerfile.ld for GCC and linkerfile.icf for IAR in the project autogen folder).

The actual memory usage during software development is unknown, so the remaining flash (memory_flash_size: 336 kB) and RAM
(memory_ram_size: 20 kB) should be big enough for the Non-secure part of all TrustZone platform examples.

Default Memory Setting (Non-secure) xG21 and xG22 Devices Other Series 2 Devices

memory_flash_start 0x0002C000 (176 kB) 0x0802C000 (176 kB)

memory_flash_size 0x00054000 (336 kB) 0x00054000 (336 kB)

memory_ram_start 0x20003000 (12 kB) 0x20003000 (12 kB)

memory_ram_size 0x00005000 (20 kB) 0x00005000 (20 kB)

 MEMORY
 {
 FLASH (rx) : ORIGIN = 0x2c000, LENGTH = 0x54000
 RAM (rwx) : ORIGIN = 0x20003000, LENGTH = 0x5000
 }

Note: The usable flash for Non-secure code should be equal to memory_flash_size - NVM size (default is 40 kB) if NVM3 storage is
required.

AN1374: Series 2 TrustZone
TrustZone Platform Examples

silabs.com | Building a more connected world. Rev. 0.3 | 56

7.3.3 Memory Editor

The default memory setting of Secure and Non-secure applications are good enough for software development and debugging. The
final memory layouts of Secure and Non-secure projects are deduced by inspecting the flash and RAM usage in the Secure application
memory map file (.map).

The Memory Editor in Simplicity Studio 5 is a graphical tool for editing the memory layout (flash and RAM) of the applications in the
workspace. The Memory Editor will update the linker file in the project autogen folder with the custom settings. Rebuild the projects to
use the new memory configurations in the linker files.

The Memory Editor is located at the Quick Links and CONFIGURATION TOOLS of Secure or Non-secure slcp file.

AN1374: Series 2 TrustZone
TrustZone Platform Examples

silabs.com | Building a more connected world. Rev. 0.3 | 57

https://docs.silabs.com/simplicity-studio-5-users-guide/latest/ss-5-users-guide-getting-started/start-a-project#memory-editor

The following items will be determined by the flash usage in the Secure application memory map file:
• memory_flash_size (S)
• memory_flash_start (NS)
• memory_flash_szie (NS)

Note: The Memory Editor in Simplicity Studio v5.6.3.0 can only adjust the flash size in 8 kB (page size) alignment, which may not fit the
4kB alignment between the Secure and Non-secure flash boundary.

AN1374: Series 2 TrustZone
TrustZone Platform Examples

silabs.com | Building a more connected world. Rev. 0.3 | 58

The following items will be determined by the RAM usage in the Secure application memory map file:
• memory_ram_size (S)
• memory_ram_start (NS)
• memory_ram_szie (NS)

7.4 Build

The Secure project must be built first to create the Secure object library (trustzone_secure_library.o) with function entries for the
Non-secure project. Both projects need to be rebuilt if any changes in the Secure project. Users can use Simplicity IDE in Simplicity
Studio 5 or IAR EWARM v9.20.4 to build the TrustZone platform examples.

AN1374: Series 2 TrustZone
TrustZone Platform Examples

silabs.com | Building a more connected world. Rev. 0.3 | 59

7.4.1 Simplicity IDE

The following procedures are based on the TrustZone PSA Crypto ECDH example on BRD4182A Radio Board
(EFR32MG22C224F512IM40).

1. Use the tz_psa_crypto keyword to search in EXAMPLE PROJECTS & DEMOS tab. Select the tz_psa_crypto_ecdh_ws exam-
ple.

2. Click [CREATE] to generate the solution.

3. The Project Configuration dialog shows the Secure and Non-secure projects in the target solution. Click [FINISH] to start the cre-
ation process.

AN1374: Series 2 TrustZone
TrustZone Platform Examples

silabs.com | Building a more connected world. Rev. 0.3 | 60

https://docs.silabs.com/simplicity-studio-5-users-guide/latest/ss-5-users-guide-developing-with-project-configurator/project-solutions

4. The Simplicity IDE perspective opens after finishing the solution creation. Click Build on the Simplicity IDE perspective toolbar to
build the projects of a selected solution in order (Secure then Non-secure).

5. The post-build actions (.slpb files) of the Secure project, Non-secure project, and workspace will be processed in sequence if the
solution is successfully built. The combined image (tz_psa_crypto_ecdh_ws-combined.s37) in the Secure project artifact fold-
er can be used for programming the device or debugging.

6. Use Memory Editor to finalize the memory layouts of Secure and Non-secure applications and rebuild the solution to update the
memory configurations.

Note: The Simplicity IDE can only apply the post-build action to a particular project if multiple Secure or Non-secure projects exist in the
solution.

AN1374: Series 2 TrustZone
TrustZone Platform Examples

silabs.com | Building a more connected world. Rev. 0.3 | 61

7.4.2 IAR EWARM

The following procedures are based on the TrustZone PSA Crypto ECDH example on BRD4181A Radio Board
(EFR32MG21A010F1024IM32).

1. Follow steps 1 to 3 in 7.4.1 Simplicity IDE to generate the solution for the tz_psa_crypto_ws. Select the
tz_psa_crypto_ecdh_s.slcp file.

2. The Overview tab shows the Target and Tool Settings card on the left side. Scroll down if necessary and click
[ChangeTarget/SDK/Generators].

AN1374: Series 2 TrustZone
TrustZone Platform Examples

silabs.com | Building a more connected world. Rev. 0.3 | 62

3. Drop down the CHANGE PROJECT GENERATORS list and select IAR Embedded Workbench Project.

4. Click [Save] to generate an IAR Secure project (tz_psa_crypto_ecdh_s.ewp).

5. Select the tz_psa_crypto_ecdh_ns.slcp file. Repeat steps 2 to 4 to generate an IAR Non-secure project (tz_psa_crypto_ecdh
_ns.ewp).

AN1374: Series 2 TrustZone
TrustZone Platform Examples

silabs.com | Building a more connected world. Rev. 0.3 | 63

6. Use a text editor to create an IAR tz_psa_crypto_ecdh_ws.eww file (shown below) to house the projects (tz_psa_crypto_ecdh_s
.ewp and tz_psa_crypto_ecdh_ns.ewp) generated in steps 4 and 5. The location of the tz_psa_crypto_ecdh_ws.eww is the di-
rectory for WS_DIR.

<?xml version ="1.0" encoding="iso-8859-1"?>

<workspace>
 <project>
 <path>WS_DIR\tz_psa_crypto_ecdh_s\tz_psa_crypto_ecdh_s.ewp</path>
 </project>
 <project>
 <path>WS_DIR\tz_psa_crypto_ecdh_ns\tz_psa_crypto_ecdh_ns.ewp</path>
 </project>

 <batchBuild/>
</workspace>

7. Double-click the tz_psa_crypto_ecdh_ws.eww file to open the workspace that includes Secure and Non-secure projects.

AN1374: Series 2 TrustZone
TrustZone Platform Examples

silabs.com | Building a more connected world. Rev. 0.3 | 64

8. Click the tz_psa_crypto_ecdh_s tab to open the Secure project. Click (Make) to build. It exports the Secure object library (tr
ustzone_secure_library.o) for function entries that will be used by the Non-secure project.

9. Click the tz_psa_crypto_ecdh_ns tab to open the Non-secure project.

AN1374: Series 2 TrustZone
TrustZone Platform Examples

silabs.com | Building a more connected world. Rev. 0.3 | 65

10. The SL_TRUSTZONE_NONSECURE defined in the Non-secure project disables the CMSE compiler option (--cmse) regardless of
whether the Project → Options... → General Options → 32-bit → TrustZone → Mode: setting is Secure or Non-secure. So
changing this configuration from Secure to Non-secure is optional. Click [OK] to exit.

11. Click (Make) to build the Non-secure project. The post-build actions of the workspace (tz_psa_crypto_ecdh_ws.slpb) will be
triggered in IAR to combine the Secure and Non-secure images (tz_psa_crypto_ecdh_ws-combined.s37) to the artifact folder
of tz_psa_crypto_ecdh_s for programming the device.

12. Use Memory Editor to finalize the memory layouts of Secure and Non-secure applications and rebuild the Secure and Non-secure
projects to update the memory configurations.

Note: The IAR EWARM can only apply the workspace post-build action to a particular project if multiple Secure or Non-secure projects
exist in the workspace.

7.5 Debugging

Users can use Simplicity IDE in Simplicity Studio 5 or IAR EWARM v9.20.4 to debug the TrustZone platform examples. Building the
projects with Optimization Level None (-O0) is recommended for debugging.

AN1374: Series 2 TrustZone
TrustZone Platform Examples

silabs.com | Building a more connected world. Rev. 0.3 | 66

7.5.1 Simplicity IDE

The TrustZone debugging process on Simplicity IDE is similar to the existing sample projects in Simplicity Studio.
1. GNU Debugger (GDB) is recommended to debug TrustZone applications.
2. Flash the combined image (tz_psa_crypto_ecdh_ws-combined.s37) generated in 7.4.1 Simplicity IDE to the device.
3. Select the Secure or Non-secure project and use the Debug icon to launch a debug session.

4. Follow the instructions in the Using the Debugger section in Simplicity Studio 5 User's Guide to debug the Secure or Non-secure
application.

5. The debugger cannot step into the function in a Non-secure application when debugging the Secure application and vice versa.
Use the Program Counter (PC in Secure or Non-secure address) in the Registers window to determine the program status.

AN1374: Series 2 TrustZone
TrustZone Platform Examples

silabs.com | Building a more connected world. Rev. 0.3 | 67

https://docs.silabs.com/simplicity-studio-5-users-guide/latest/ss-5-users-guide-testing-and-debugging/using-the-debugger

7.5.2 IAR EWARM

Use the tz_psa_crypto_ecdh_ws.eww workspace created in 7.4.2 IAR EWARM for the debugger settings. Except for a minor differ-
ence in step 3, the following steps are the same as those to set up the Secure (tz_psa_crypto_ecdh_s) and Non-secure (tz_psa_cry
pto_ecdh_ns) projects for debugging.

1. Select Options... in the context menu of the Secure or Non-secure project and open the IDE Options →
Stack dialog. Uncheck the Stack pointer(s) not valid until program reaches checkbox. Click [OK] to exit.

2. Select Options... in the context menu of the Secure or Non-secure project and open the window for De-
bugger options. Click the Setup tab to open a dialog, and uncheck the Run to → main checkbox. Click the Images tab to set up
another option.

AN1374: Series 2 TrustZone
TrustZone Platform Examples

silabs.com | Building a more connected world. Rev. 0.3 | 68

3. Check the Download extra image option. Enter the location of the .out file to Path: with Offset: set to 0. All project relative paths
are resolved from the directory location of the tz_psa_crypto_ecdh_ws.eww workspace file.

Location of Non-secure .out file for Secure project: tz_psa_crypto_ecdh_ns\ewarm-iar\exe\tz_psa_crypto_ecdh_ns.out

Location of Secure .out file for Non-secure project: tz_psa_crypto_ecdh_s\ewarm-iar\exe\tz_psa_crypto_ecdh_s.out

4. Click the Extra Options tab to set up another option.

AN1374: Series 2 TrustZone
TrustZone Platform Examples

silabs.com | Building a more connected world. Rev. 0.3 | 69

5. Check the Use command line options. Enter --drv_vector_table_base=0x00000000 to Command line options: (one per
line) window. Click [OK] to exit.

6. Finish the debug settings in Secure and Non-secure projects, and click (Download and Debug) in the Secure or Non-secure
project to download the Secure and Non-secure images for debugging (assume both projects had successfully built before). Click

 (Go) to start running the code in a Secure or Non-secure project.
7. The debugger will automatically switch between Secure and Non-secure projects when stepping into a function or hitting a break-

point in a Secure or Non-secure project. Use the Program Counter (PC in Secure or Non-secure address) or SECURE (0 or 1) in
the Registers window to determine the program status.

8. Click (Stop Debugging) to end the debug session.

7.6 Benchmark

The TrustZone implementation will affect the memory footprint and performance of cryptographic operations. The following compari-
sons are based on the TrustZone PSA Crypto ECDH example on BRD4182A Radio Board (EFR32MG22C224F512IM40) with SE
firmware v1.2.14.

AN1374: Series 2 TrustZone
TrustZone Platform Examples

silabs.com | Building a more connected world. Rev. 0.3 | 70

7.6.1 Memory Footprint

The memory footprint of a TrustZone project depends on which services (software components in the figure below) provided by the
Secure Library are used in the Non-secure application (tz_psa_crypto_ecdh_ns project).

The following tables compare the memory footprint of the TrustZone-unaware (Platform - PSA Crypto ECDH) and TrustZone-aware
projects (tz_psa_crypto_ecdh_ws) based on the following conditions.
• The tz_psa_crypto_ecdh_ns reuses the source code from the Platform - PSA Crypto ECDH example without any changes.
• The total size in tz_psa_crypto_ecdh_ns does not consider the 4 kB alignment on the Secure and Non-secure flash and RAM. The

4 kB alignment requirement will increase the actual usage of flash and RAM.
• All source code is compiled with Optimize for size (-Os) in Simplicity IDE (GNU ARM v10.3.1) of Simplicity Studio 5.

Table 7.1. Flash Size Comparison

Platform Example Secure NSC Non-secure Total

Platform - PSA Crypto ECDH 64688 B — — 64688 B

tz_psa_crypto_ecdh_ws 79172 B 288 B 29264 B 108724 B

Note: The NSC is part of the Secure code, and the total size does not include the flash for NVM3 storage.

Table 7.2. RAM Size Comparison

Platform Example Secure NSC Non-secure Total

Platform - PSA Crypto ECDH 3784 B — — 3764 B

tz_psa_crypto_ecdh_ws 2156 B — 1200 B 3356 B

Note: The total size does not include the RAM for the stack and heap. The Secure and Non-secure applications have their independent
stack and heap.

AN1374: Series 2 TrustZone
TrustZone Platform Examples

silabs.com | Building a more connected world. Rev. 0.3 | 71

7.6.2 PSA Crypto Performance

The following sections compare the PSA Crypto performance of the TrustZone-unaware (Platform - PSA Crypto ECDH) and Trust-
Zone-aware projects (tz_psa_crypto_ecdh_ws) based on the following conditions.
• The tz_psa_crypto_ecdh_ns reuses the source code from the Platform - PSA Crypto ECDH example without any changes.
• All source code is compiled with Optimize most (-O3) in Simplicity IDE (GNU ARM v10.3.1) of Simplicity Studio 5.
• Use ECC curve SECP256R1 on volatile and persistent keys.
• The EFR32MG22C224 runs at 38 MHz HFRCODPLL.

Volatile key ECDH operation on Platform - PSA Crypto ECDH

 . ECDH Client
 + Creating a SECP256R1 (256-bit) VOLATILE PLAIN client key... PSA_SUCCESS (cycles: 2928 time: 77 us)
 + Creating a SECP256R1 (256-bit) VOLATILE PLAIN server key... PSA_SUCCESS (cycles: 2960 time: 77 us)
 + Exporting a public key of a SECP256R1 (256-bit) VOLATILE PLAIN server key... PSA_SUCCESS (cycles: 332134 time: 8740 us)
 + Computing client shared secret with a SECP256R1 (256-bit) server public key... PSA_SUCCESS (cycles: 336860 time: 8864 us)

Volatile key ECDH operation on tz_psa_crypto_ecdh_ws

 . ECDH Client
 + Creating a SECP256R1 (256-bit) VOLATILE PLAIN client key... PSA_SUCCESS (cycles: 5047 time: 132 us)
 + Creating a SECP256R1 (256-bit) VOLATILE PLAIN server key... PSA_SUCCESS (cycles: 5067 time: 133 us)
 + Exporting a public key of a SECP256R1 (256-bit) VOLATILE PLAIN server key... PSA_SUCCESS (cycles: 333956 time: 8788 us)
 + Computing client shared secret with a SECP256R1 (256-bit) server public key... PSA_SUCCESS (cycles: 338470 time: 8907 us)

Persistent key ECDH operation on Platform - PSA Crypto ECDH

 . ECDH Client
 + Creating a SECP256R1 (256-bit) PERSISTENT PLAIN client key... PSA_SUCCESS (cycles: 27489 time: 723 us)
 + Creating a SECP256R1 (256-bit) PERSISTENT PLAIN server key... PSA_SUCCESS (cycles: 27587 time: 725 us)
 + Exporting a public key of a SECP256R1 (256-bit) PERSISTENT PLAIN server key... PSA_SUCCESS (cycles: 332949 time: 8761 us)
 + Computing client shared secret with a SECP256R1 (256-bit) server public key... PSA_SUCCESS (cycles: 337803 time: 8889 us)

Persistent key ECDH operation on tz_psa_crypto_ecdh_ws

 . ECDH Client
 + Creating a SECP256R1 (256-bit) PERSISTENT PLAIN client key... PSA_SUCCESS (cycles: 46998 time: 1236 us)
 + Creating a SECP256R1 (256-bit) PERSISTENT PLAIN server key... PSA_SUCCESS (cycles: 45962 time: 1209 us)
 + Exporting a public key of a SECP256R1 (256-bit) PERSISTENT PLAIN server key... PSA_SUCCESS (cycles: 334127 time: 8792 us)
 + Computing client shared secret with a SECP256R1 (256-bit) server public key... PSA_SUCCESS (cycles: 338321 time: 8903 us)

The overheads on the TrustZone-aware project (tz_psa_crypto_ecdh_ws) are due to the following operations of Secure Library imple-
mentation.
• Packages the list of input arguments in the appropriate format before calling into the NSC function.
• Switches from a Non-secure to a Secure state.
• Validates all input arguments before calling into the function in SPE.
• Encrypts PSA ITS if using a persistent key.
• Returns to a Non-secure state.

AN1374: Series 2 TrustZone
TrustZone Platform Examples

silabs.com | Building a more connected world. Rev. 0.3 | 72

8. Revision History

Revision 0.3

March 2023

• Updated Root Key to TrustZone Root Key.
• Updated 5.1 System Configuration and its sub-sections.
• Updated 5.3 Secure Library for PSA Attestation.
• Updated 5.4 TrustZone Secure Key Storage.
• Added 5.5 PSA Attestation.
• Updated 6. Upgrade Existing Application to TrustZone.
• Added 7. TrustZone Platform Examples.

Revision 0.2

August 2022

• Various copy edits and copyright updates (Beta revision).

Revision 0.1

June 2022

• Beta revision.

AN1374: Series 2 TrustZone
Revision History

silabs.com | Building a more connected world. Rev. 0.3 | 73

Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
USA

www.silabs.com

IoT Portfolio
www.silabs.com/IoT

SW/HW
www.silabs.com/simplicity

Quality
www.silabs.com/quality

Support & Community
www.silabs.com/community

Simplicity Studio
One-click access to MCU and wireless
tools, documentation, software,
source code libraries & more. Available
for Windows, Mac and Linux!

Disclaimer
Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software imple-
menters using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each
specific device, and “Typical” parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon
Labs reserves the right to make changes without further notice to the product information, specifications, and descriptions herein, and does not give warranties as to the
accuracy or completeness of the included information. Without prior notification, Silicon Labs may update product firmware during the manufacturing process for security or
reliability reasons. Such changes will not alter the specifications or the performance of the product. Silicon Labs shall have no liability for the consequences of use of the infor-
mation supplied in this document. This document does not imply or expressly grant any license to design or fabricate any integrated circuits. The products are not designed or
authorized to be used within any FDA Class III devices, applications for which FDA premarket approval is required or Life Support Systems without the specific written consent
of Silicon Labs. A “Life Support System” is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in
significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used
in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. Silicon Labs disclaims
all express and implied warranties and shall not be responsible or liable for any injuries or damages related to use of a Silicon Labs product in such unauthorized applications.
Note: This content may contain offensive terminology that is now obsolete. Silicon Labs is replacing these terms with inclusive language wherever possible. For more
information, visit www.silabs.com/about-us/inclusive-lexicon-project

Trademark Information
Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy
Micro logo and combinations thereof, “the world’s most energy friendly microcontrollers”, Redpine Signals®, WiSeConnect , n-Link, ThreadArch®, EZLink®, EZRadio®, EZRadioPRO®,
Gecko®, Gecko OS, Gecko OS Studio, Precision32®, Simplicity Studio®, Telegesis, the Telegesis Logo®, USBXpress® , Zentri, the Zentri logo and Zentri DMS, Z-Wave®, and others
are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered
trademark of ARM Limited. Wi-Fi is a registered trademark of the Wi-Fi Alliance. All other products or brand names mentioned herein are trademarks of their respective holders.

	1. Series 2 Device Security Features
	2. TrustZone Basics
	2.1 Introduction
	2.2 Memory Security Attributes
	2.3 Banked Register
	2.3.1 General-Purpose Registers
	2.3.2 Special-Purpose Registers
	2.3.3 System Private Peripheral Bus (PPB)

	2.4 Secure Attribution Unit (SAU), Implementation Defined Attribution Unit (IDAU), and Memory Protection Unit (MPU)
	2.5 Exceptions and Interrupts
	2.5.1 Type of Exceptions
	2.5.2 Exception Priorities
	2.5.3 Vector Tables
	2.5.4 State Transitions in Exceptions and Interrupts

	2.6 Switching Between Secure and Non-secure States
	2.6.1 Switching from Non-secure to Secure State
	2.6.2 Test Target (TT) Instruction
	2.6.3 Switching from Secure to Non-secure State

	2.7 Software Flow

	3. Bus Level Security (BLS)
	3.1 System Design
	3.2 Security Management Unit (SMU)
	3.3 External Secure Attribution Unit (ESAU)
	3.4 Security Attribution Unit
	3.4.1 All Secure Configuration
	3.4.2 All Non-secure Configuration
	3.4.3 Configurable Configuration

	3.5 Bus Master Protection Unit (BMPU)
	3.6 Peripheral Protection Unit (PPU)
	3.7 Compatibility
	3.7.1 System Configuration (SYSCFG)
	3.7.2 Security Management Unit (SMU)

	4. Secure and Privileged Programming Model
	4.1 BLS SMU Programming
	4.1.1 Enabling SMU Clock
	4.1.2 Cortex-M33 Lock Control
	4.1.3 Locking SMU Configuration
	4.1.4 Interrupt Control

	4.2 BLS ESAU Programming
	4.2.1 Region Types
	4.2.2 Region Sizes

	4.3 BLS SAU Programming
	4.3.1 All Secure Configuration
	4.3.2 All Non-secure Configuration
	4.3.3 Configurable Configuration

	4.4 BLS BMPU Programming
	4.4.1 Bus Master Privileged Attribute
	4.4.2 Bus Master Security Attribute
	4.4.3 Bus Master Fault Status

	4.5 BLS PPU Programming
	4.5.1 Peripheral Privileged Attributes
	4.5.2 Peripheral Security Attributes
	4.5.3 Peripheral Fault Status

	4.6 Floating Point Unit (FPU) Programming

	5. TrustZone Implementation
	5.1 System Configuration
	5.1.1 System Exceptions
	5.1.2 Main Flash Layout
	5.1.3 RAM Layout
	5.1.4 Info Flash and EPPB
	5.1.5 Peripheral and Device
	5.1.6 Bus Masters
	5.1.7 Application Transitions

	5.2 Gecko Bootloader
	5.3 Secure Library
	5.4 TrustZone Secure Key Storage
	5.5 PSA Attestation
	5.6 SE Manager
	5.7 Common Vulnerabilities and Exposures (CVE)

	6. Upgrade Existing Application to TrustZone
	6.1 System Requirements
	6.2 Peripheral Addresses in Device Header Files
	6.3 Startup Code
	6.4 Linker File
	6.5 Debugger

	7. TrustZone Platform Examples
	7.1 Project Description File
	7.1.1 Secure Application
	7.1.2 Non-secure Application

	7.2 Workspace
	7.3 Memory Configuration
	7.3.1 Secure Application
	7.3.2 Non-secure Application
	7.3.3 Memory Editor

	7.4 Build
	7.4.1 Simplicity IDE
	7.4.2 IAR EWARM

	7.5 Debugging
	7.5.1 Simplicity IDE
	7.5.2 IAR EWARM

	7.6 Benchmark
	7.6.1 Memory Footprint
	7.6.2 PSA Crypto Performance

	8. Revision History

