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1 ABBREVIATIONS

Abbreviation Explanation
API Application Programming Interface
OTA Over The Air (firmware update)
SDK Software Development Kit
ZAF Z-Wave Application Framework

2 INTRODUCTION

2.1 Purpose

The purpose of this document is to provide guidelines to Z-Wave application developers for porting 
applications based on the Z-Wave Application Framework (ZAF) from 700 series SDKs to 800 series 
SDKs.

2.2 Audience and prerequisites

The audience of this document is Z-Wave partners and Silicon Labs.

https://www.silabs.com/
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3 GECKO SDK 4.00 CHANGES

The Gecko Software Development Kit version 4.00 introduces a new underlying platform architecture 
based on components. The Z-Wave SDK 7.17.x now uses this component structure and the structure 
and build method of Z-Wave applications has therefore changed compared to previous releases of Z-
Wave SDK. The new component structure offers several new features in the GSDK:

 Search and filter to find and discover software components that work with the target device

 Automatically pull in all component dependencies and initialization code

 Configurable software components including peripheral units and drivers

 All configuration settings in C header files for usage outside of Simplicity Studio

 Configuration validation to alert developers to errors or issues

 GNU makefiles as a build option

Other changes specific to the Z-Wave Gecko SDK

 main() is now part of the application

 The FreeRTOS configuration is available for application developers

 The region can be configured in Simplicity Studio GUI

3.1 Z-Wave SDK 7.17.x

The Z-Wave SDK 7.17.x is now using the Silicon Labs Configurator (SLC) for project generation and build 
and the SDK has therefore now been divided into components that can be installed or uninstalled in an 
existing project in Simplicity Studio. All components now have a description in the z-wave/component 
directory. The component description file contains a list of all source and header files in the component, 
all dependencies for the component and all defines used by the component. 

The software components can be found in the SOFTWARE COMPONENTS tab in simplicity project view 
and the Z-Wave software components can be found under the Z-Wave section.

https://www.silabs.com/
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The components with a checkmark are the components already installed in the current project.

3.1.1 Breaking API changes

All breaking API changes can be found in the release note [2]
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4 PORTING AREAS

The following sections describe where to focus the effort when porting from a 700 series application 
based on ZAF to an 800 series application based on ZAF. In general, all differences described are applied 
to the certified apps in the 800 series SDK.

It is recommended to take one of the applications from the 800 series SDK and add the business logic of 
a 700 series application.

4.1 Non-volatile memory

There are no changes in the NVM3 interface between the 700 and the 800. However, the size of the 
NVM3 instances has increased because of the larger Flash page size in the 800 series.

4.2 RTOS

The Z-Wave 800 series SDK utilizes FreeRTOS like the 700 SDK. There are no changes in the way 
applications interface with FreeRTOS. 

The FreeRTOS is no longer part of the static linked Z-Wave library but is compiled as part of the 
application build. This means that the FreeRTOS setup is now owned by the application and features 
can be added by application developers. 

4.3 Peripherals

Several peripheral drivers are available (EMDRV and EMLIB) and must be linked to the application 
before the hardware device in question can be accessed. EMDRV exist on top of the lower level EMLIB.

4.4 Board files

The board.h header file provides a common interface for accessing different boards. This header file 
provides a common interface for different board specific header files that abstract from the underlying 
hardware and thereby ease the transition from Silabs development boards to custom made hardware. 
The board specific header files either begin with “board_” or “extension_board_”. 

4.5 Using existing command classes

There are no changes to the existing command classes between the 700 and the 800.

https://www.silabs.com/
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4.6 Implementing new command classes

There is no impact on implementing new command classes between the 700 and the 800.
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APL14836-21 Porting Z-Wave Appl. SW from 700 to 800 hardware 2021-12-10

silabs.com | Building a more connected world. Page 6 of 12

5 PORTING AN APPLICATION

5.1 Porting from 700 series (7.16.x) to 800 series

5.1.1 Create an 800 series project in Simplicity Studio

Choose the sample application that you originally used as a starting point for your application and 
create an 800 series project in Simplicity Studio for that application. If you are using the ZGM230 
module then chose the 4205B board and if you are using the ZG23 chip, then use the 4204D board.

Steps to create the application project:

1. Click “EXAMPLE PROJECTS & DEMOS”
2. Click to filter out demos
3. Check Z-Wave to filter out other technologies
4. Click the CREATE button on the desired application,
5. Choose “Link sdk and copy project sources” in the window titled “New Project Wizard”, and
6. Click “FINISH”.

When the project is created it can be built by clicking “Build” (hammer icon).

https://www.silabs.com/
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5.1.2 Configure the region (optional)

The project is now created and if another region than the default (EU) is desired, choose it with the 
following steps:

1. Click “SOFTWARE COMPONENTS”,
2. Search for “Z-Wave Core”,
3. Click the cogwheel next to “Z-Wave Core Component”, and
4. Select the desired region in the “Z-Wave Radio Configuration” section.
5. Click the project in “Project Explorer”
6. Click “Build”

https://www.silabs.com/
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5.1.3 New files in a project

main.c

This file contains the main() function for the application. The main() function has been moved out of the 
Z-Wave library and is now part of the application. The main() function should NOT be modified as the 
startup of the system depends on the sequence of calls in main().

app.c/app.h

app.c contains the app_init() function for initializing the application. This function should NOT be used 
as the Z-Wave protocol stack will start the application task.

<app name>.slcp

The extension SLCP is short for Silicon Labs Configurator Project and this file contains the project 
description and references to the required components.

postbuild.sh

This file is a small script for combining the application and a bootloader into one binary that can be 
flashed with commander in one programming cycle.

5.1.4 Building for release/debug

Building for release or debug is now a matter of installing the right component. In “SOFTWARE 
COMPONENTS -> Z-Wave” there exist two components named “Z-Wave Debug” and “Z-Wave Release” 
respectively. Only one of those components can be installed at a time.

https://www.silabs.com/
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5.1.5 Steps to port Switch On/Off

The following steps describe the required changes to get Switch On/Off building and running after 
replacing the contents of SwitchOnOff.c from SDK version 7.17.0 with the contents of SwitchOnOff.c 
from SDK version 7.16.3.

1. Replace inclusion of config_rf.h with zw_config_rf.h
2. Replace APP_FREQ with ZW_REGION and include zw_region_config.h
3. Remove call to CC_AGI_LifeLineGroupSetup() as the function is deprecated. See breaking 

changes in release note.
4. Include zw_build_no.h as ZAF_BUILD_NO is now defined here.
5. Remove reset reason argument passed to ZAF_setNetworkLearnMode() as it no longer takes a 

reset reason. See breaking changes in release note.
6. Remove calls to command class handlers delivered by Silicon Labs from 

Transport_ApplicationCommandHandlerEx(). See breaking changes in release note.
7. Add pPowerDownDebug in ProtocolConfig and set it to either EPOWERDOWNDEBUG_ENABLED 

if you want the debug interface to be enabled during power down or to 
EPOWERDOWNDEBUG_DISABLED if it should be disabled.

8. For debug printing there are two steps:
a. Add the following code block:

#ifdef DEBUGPRINT
#include "sl_iostream.h"
static void DebugPrinter(const uint8_t * buffer, uint32_t len)
{

sl_iostream_write(SL_IOSTREAM_STDOUT, buffer, len);
}
#endif // DEBUGPRINT

b. Configure the debug printer:
#ifdef DEBUGPRINT

DebugPrintConfig(m_aDebugPrintBuffer,
sizeof(m_aDebugPrintBuffer),
DebugPrinter);

#endif // DEBUGPRINT

5.1.6 Installing a missing command class

In case the newly created project doesn’t include a desired command class, it can be installed from 
“SOFTWARE COMPONENTS -> Z-Wave -> Command Classes”. If the desired command class is not 
delivered with the SDK, it must be manually added to the project by clicking “File -> Import”.

Depending on which command class is installed from “SOFTWARE COMPONENTS” it might require 
certain functions to be invoked from the application, but this is no different than in previous SDK 
versions.
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