
Application Note

Porting Z-Wave Appl. SW from 700 to 800 hardware

Document No.: APL14836

Version: 1

Description: The purpose of this document is to give guidelines for the Z Wave application
developer, when porting software applications based on Z-Wave Framework from
700 to 800 hardware.

Written By: MNPALANI;JFR;COLSEN;PSH

Date: 2021-12-1008

Reviewed By:

Restrictions: Public

Approved by:

Date CET Initials Name Justification
2021-12-10 09:40:50 JFR Jorgen Franck on behalf of NTJ

This document is the property of Silicon Labs. The data contained herein, in whole or in
part, may not be duplicated, used or disclosed outside the recipient for any purpose. This
restriction does not limit the recipient's right to use information contained in the data if it
is obtained from another source without restriction.

APL14836-21 Porting Z-Wave Appl. SW from 700 to 800 hardware 2021-12-10

silabs.com | Building a more connected world. Page ii of iii

REVISION RECORD

Doc.
Rev

Date By Pages
affected

Brief description of changes

1 20210608 MNP ALL Initial draft; based on APL14440
2 20211012 PSH & COLSEN ALL Updated including a detailed description on how to port a non-UC 700 based Switch On/Off

App (7.16.x) to a UC 800 based Switch On/Off App (7.17.x) added

https://www.silabs.com/

APL14836-21 Porting Z-Wave Appl. SW from 700 to 800 hardware 2021-12-10

silabs.com | Building a more connected world. Page iii of iii

Table of Contents
1 ABBREVIATIONS..1

2 INTRODUCTION ..1

2.1 Purpose..1
2.2 Audience and prerequisites...1

3 GECKO SDK 4.00 CHANGES..2

3.1 Z-Wave SDK 7.17.x...2
3.1.1 Breaking API changes ..3

4 PORTING AREAS..4

4.1 Non-volatile memory...4
4.2 RTOS ..4
4.3 Peripherals...4
4.4 Board files..4
4.5 Using existing command classes..4
4.6 Implementing new command classes ...5

5 PORTING AN APPLICATION ...6

5.1 Porting from 700 series (7.16.x) to 800 series...6
5.1.1 Create an 800 series project in Simplicity Studio ..6
5.1.2 Configure the region (optional)...7
5.1.3 New files in a project...9
5.1.4 Building for release/debug..9
5.1.5 Steps to port Switch On/Off ..10
5.1.6 Installing a missing command class...10

REFERENCES...11

INDEX ..12

https://www.silabs.com/

APL14836-21 Porting Z-Wave Appl. SW from 700 to 800 hardware 2021-12-10

silabs.com | Building a more connected world. Page 1 of 12

1 ABBREVIATIONS

Abbreviation Explanation
API Application Programming Interface
OTA Over The Air (firmware update)
SDK Software Development Kit
ZAF Z-Wave Application Framework

2 INTRODUCTION

2.1 Purpose

The purpose of this document is to provide guidelines to Z-Wave application developers for porting
applications based on the Z-Wave Application Framework (ZAF) from 700 series SDKs to 800 series
SDKs.

2.2 Audience and prerequisites

The audience of this document is Z-Wave partners and Silicon Labs.

https://www.silabs.com/

APL14836-21 Porting Z-Wave Appl. SW from 700 to 800 hardware 2021-12-10

silabs.com | Building a more connected world. Page 2 of 12

3 GECKO SDK 4.00 CHANGES

The Gecko Software Development Kit version 4.00 introduces a new underlying platform architecture
based on components. The Z-Wave SDK 7.17.x now uses this component structure and the structure
and build method of Z-Wave applications has therefore changed compared to previous releases of Z-
Wave SDK. The new component structure offers several new features in the GSDK:

 Search and filter to find and discover software components that work with the target device

 Automatically pull in all component dependencies and initialization code

 Configurable software components including peripheral units and drivers

 All configuration settings in C header files for usage outside of Simplicity Studio

 Configuration validation to alert developers to errors or issues

 GNU makefiles as a build option

Other changes specific to the Z-Wave Gecko SDK

 main() is now part of the application

 The FreeRTOS configuration is available for application developers

 The region can be configured in Simplicity Studio GUI

3.1 Z-Wave SDK 7.17.x

The Z-Wave SDK 7.17.x is now using the Silicon Labs Configurator (SLC) for project generation and build
and the SDK has therefore now been divided into components that can be installed or uninstalled in an
existing project in Simplicity Studio. All components now have a description in the z-wave/component
directory. The component description file contains a list of all source and header files in the component,
all dependencies for the component and all defines used by the component.

The software components can be found in the SOFTWARE COMPONENTS tab in simplicity project view
and the Z-Wave software components can be found under the Z-Wave section.

https://www.silabs.com/

APL14836-21 Porting Z-Wave Appl. SW from 700 to 800 hardware 2021-12-10

silabs.com | Building a more connected world. Page 3 of 12

The components with a checkmark are the components already installed in the current project.

3.1.1 Breaking API changes

All breaking API changes can be found in the release note [2]

https://www.silabs.com/

APL14836-21 Porting Z-Wave Appl. SW from 700 to 800 hardware 2021-12-10

silabs.com | Building a more connected world. Page 4 of 12

4 PORTING AREAS

The following sections describe where to focus the effort when porting from a 700 series application
based on ZAF to an 800 series application based on ZAF. In general, all differences described are applied
to the certified apps in the 800 series SDK.

It is recommended to take one of the applications from the 800 series SDK and add the business logic of
a 700 series application.

4.1 Non-volatile memory

There are no changes in the NVM3 interface between the 700 and the 800. However, the size of the
NVM3 instances has increased because of the larger Flash page size in the 800 series.

4.2 RTOS

The Z-Wave 800 series SDK utilizes FreeRTOS like the 700 SDK. There are no changes in the way
applications interface with FreeRTOS.

The FreeRTOS is no longer part of the static linked Z-Wave library but is compiled as part of the
application build. This means that the FreeRTOS setup is now owned by the application and features
can be added by application developers.

4.3 Peripherals

Several peripheral drivers are available (EMDRV and EMLIB) and must be linked to the application
before the hardware device in question can be accessed. EMDRV exist on top of the lower level EMLIB.

4.4 Board files

The board.h header file provides a common interface for accessing different boards. This header file
provides a common interface for different board specific header files that abstract from the underlying
hardware and thereby ease the transition from Silabs development boards to custom made hardware.
The board specific header files either begin with “board_” or “extension_board_”.

4.5 Using existing command classes

There are no changes to the existing command classes between the 700 and the 800.

https://www.silabs.com/

APL14836-21 Porting Z-Wave Appl. SW from 700 to 800 hardware 2021-12-10

silabs.com | Building a more connected world. Page 5 of 12

4.6 Implementing new command classes

There is no impact on implementing new command classes between the 700 and the 800.

https://www.silabs.com/

APL14836-21 Porting Z-Wave Appl. SW from 700 to 800 hardware 2021-12-10

silabs.com | Building a more connected world. Page 6 of 12

5 PORTING AN APPLICATION

5.1 Porting from 700 series (7.16.x) to 800 series

5.1.1 Create an 800 series project in Simplicity Studio

Choose the sample application that you originally used as a starting point for your application and
create an 800 series project in Simplicity Studio for that application. If you are using the ZGM230
module then chose the 4205B board and if you are using the ZG23 chip, then use the 4204D board.

Steps to create the application project:

1. Click “EXAMPLE PROJECTS & DEMOS”
2. Click to filter out demos
3. Check Z-Wave to filter out other technologies
4. Click the CREATE button on the desired application,
5. Choose “Link sdk and copy project sources” in the window titled “New Project Wizard”, and
6. Click “FINISH”.

When the project is created it can be built by clicking “Build” (hammer icon).

https://www.silabs.com/

APL14836-21 Porting Z-Wave Appl. SW from 700 to 800 hardware 2021-12-10

silabs.com | Building a more connected world. Page 7 of 12

5.1.2 Configure the region (optional)

The project is now created and if another region than the default (EU) is desired, choose it with the
following steps:

1. Click “SOFTWARE COMPONENTS”,
2. Search for “Z-Wave Core”,
3. Click the cogwheel next to “Z-Wave Core Component”, and
4. Select the desired region in the “Z-Wave Radio Configuration” section.
5. Click the project in “Project Explorer”
6. Click “Build”

https://www.silabs.com/

APL14836-21 Porting Z-Wave Appl. SW from 700 to 800 hardware 2021-12-10

silabs.com | Building a more connected world. Page 8 of 12

https://www.silabs.com/

APL14836-21 Porting Z-Wave Appl. SW from 700 to 800 hardware 2021-12-10

silabs.com | Building a more connected world. Page 9 of 12

5.1.3 New files in a project

main.c

This file contains the main() function for the application. The main() function has been moved out of the
Z-Wave library and is now part of the application. The main() function should NOT be modified as the
startup of the system depends on the sequence of calls in main().

app.c/app.h

app.c contains the app_init() function for initializing the application. This function should NOT be used
as the Z-Wave protocol stack will start the application task.

<app name>.slcp

The extension SLCP is short for Silicon Labs Configurator Project and this file contains the project
description and references to the required components.

postbuild.sh

This file is a small script for combining the application and a bootloader into one binary that can be
flashed with commander in one programming cycle.

5.1.4 Building for release/debug

Building for release or debug is now a matter of installing the right component. In “SOFTWARE
COMPONENTS -> Z-Wave” there exist two components named “Z-Wave Debug” and “Z-Wave Release”
respectively. Only one of those components can be installed at a time.

https://www.silabs.com/

APL14836-21 Porting Z-Wave Appl. SW from 700 to 800 hardware 2021-12-10

silabs.com | Building a more connected world. Page 10 of 12

5.1.5 Steps to port Switch On/Off

The following steps describe the required changes to get Switch On/Off building and running after
replacing the contents of SwitchOnOff.c from SDK version 7.17.0 with the contents of SwitchOnOff.c
from SDK version 7.16.3.

1. Replace inclusion of config_rf.h with zw_config_rf.h
2. Replace APP_FREQ with ZW_REGION and include zw_region_config.h
3. Remove call to CC_AGI_LifeLineGroupSetup() as the function is deprecated. See breaking

changes in release note.
4. Include zw_build_no.h as ZAF_BUILD_NO is now defined here.
5. Remove reset reason argument passed to ZAF_setNetworkLearnMode() as it no longer takes a

reset reason. See breaking changes in release note.
6. Remove calls to command class handlers delivered by Silicon Labs from

Transport_ApplicationCommandHandlerEx(). See breaking changes in release note.
7. Add pPowerDownDebug in ProtocolConfig and set it to either EPOWERDOWNDEBUG_ENABLED

if you want the debug interface to be enabled during power down or to
EPOWERDOWNDEBUG_DISABLED if it should be disabled.

8. For debug printing there are two steps:
a. Add the following code block:

#ifdef DEBUGPRINT
#include "sl_iostream.h"
static void DebugPrinter(const uint8_t * buffer, uint32_t len)
{

sl_iostream_write(SL_IOSTREAM_STDOUT, buffer, len);
}
#endif // DEBUGPRINT

b. Configure the debug printer:
#ifdef DEBUGPRINT

DebugPrintConfig(m_aDebugPrintBuffer,
sizeof(m_aDebugPrintBuffer),
DebugPrinter);

#endif // DEBUGPRINT

5.1.6 Installing a missing command class

In case the newly created project doesn’t include a desired command class, it can be installed from
“SOFTWARE COMPONENTS -> Z-Wave -> Command Classes”. If the desired command class is not
delivered with the SDK, it must be manually added to the project by clicking “File -> Import”.

Depending on which command class is installed from “SOFTWARE COMPONENTS” it might require
certain functions to be invoked from the application, but this is no different than in previous SDK
versions.

https://www.silabs.com/

APL14836-21 Porting Z-Wave Appl. SW from 700 to 800 hardware 2021-12-10

silabs.com | Building a more connected world. Page 11 of 12

REFERENCES

[1] Silicon Labs, INS14259, Instruction, Z-Wave Plus V2 Application Framework SDK7
[2] Silicon Labs, SRN14862, Z-Wave and Z-Wave Long Range 700/800

https://www.silabs.com/

APL14836-21 Porting Z-Wave Appl. SW from 700 to 800 hardware 2021-12-10

silabs.com | Building a more connected world. Page 12 of 12

INDEX

No index entries found.

https://www.silabs.com/

IoT Portfolio
www.silabs.com/products

Quality
www.silabs.com/quality

Support & Community
www.silabs.com/community

Smart. Connected.
Energy-Friendly.

Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
USA

www.silabs.com

Disclaimer
Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software imple-
menters using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each
specific device, and “Typical” parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon
Labs reserves the right to make changes without further notice to the product information, specifications, and descriptions herein, and does not give warranties as to the
accuracy or completeness of the included information. Without prior notification, Silicon Labs may update product firmware during the manufacturing process for security or
reliability reasons. Such changes will not alter the specifications or the performance of the product. Silicon Labs shall have no liability for the consequences of use of the infor-
mation supplied in this document. This document does not imply or expressly grant any license to design or fabricate any integrated circuits. The products are not designed or
authorized to be used within any FDA Class III devices, applications for which FDA premarket approval is required or Life Support Systems without the specific written consent
of Silicon Labs. A “Life Support System” is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in
significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used
in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. Silicon Labs disclaims
all express and implied warranties and shall not be responsible or liable for any injuries or damages related to use of a Silicon Labs product in such unauthorized applications.
Note: This content may contain offensive terminology that is now obsolete. Silicon Labs is replacing these terms with inclusive language wherever possible. For more
information, visit www.silabs.com/about-us/inclusive-lexicon-project

Trademark Information
Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy
Micro logo and combinations thereof, “the world’s most energy friendly microcontrollers”, Redpine Signals®, WiSeConnect , n-Link, ThreadArch®, EZLink®, EZRadio®, EZRadioPRO®,
Gecko®, Gecko OS, Gecko OS Studio, Precision32®, Simplicity Studio®, Telegesis, the Telegesis Logo®, USBXpress® , Zentri, the Zentri logo and Zentri DMS, Z-Wave®, and others
are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered
trademark of ARM Limited. Wi-Fi is a registered trademark of the Wi-Fi Alliance. All other products or brand names mentioned herein are trademarks of their respective holders.

	1	Abbreviations
	2	Introduction
	2.1	Purpose
	2.2	Audience and prerequisites

	3	Gecko sdk 4.00 changes
	3.1	Z-Wave SDK 7.17.x
	3.1.1	Breaking API changes

	4	Porting areas
	4.1	Non-volatile memory
	4.2	RTOS
	4.3	Peripherals
	4.4	Board files
	4.5	Using existing command classes
	4.6	Implementing new command classes

	5	Porting an application
	5.1	Porting from 700 series (7.16.x) to 800 series
	5.1.1	Create an 800 series project in Simplicity Studio
	5.1.2	Configure the region (optional)
	5.1.3	New files in a project
	5.1.4	Building for release/debug
	5.1.5	Steps to port Switch On/Off
	5.1.6	Installing a missing command class

	References
	Index

