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AN1389: Running Zigbee Host Applications in 
a Docker Container 

The updated application structure in Zigbee EmberZNet 7.0 and 
higher no longer supports compiling host applications in MinGW 
for Windows. This document offers an alternative solution by using 
a Docker container to run the NCP Host Application.  

 

 

 
  

KEY POINTS 

• Example Configuration for NCP Host Ap-
plication in Docker  

• Host configuration solution for Windows 
users. 
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1 Introduction 

Beginning with Zigbee EmberZNet 7.0, Silicon Labs introduced a new callback framework that automatically supplies weak callback 
functions to the stack, such as global-callback.c and zap-event.c. These weak functions ensure that the project builds when the callbacks 
are not explicitly implemented. This new framework replaces the ‘callback-stub.c’ file generated in EmberZNet 6.0 by AppBuilder. Overall, 
the new callback structure simplifies the user experience in application development but has been seen to cause errors in the linking 
stage in environments that do not support weak functions. More information on the new EmberZNet 7.0 callback framework can be found 
in UG491: Zigbee Application Framework Developer’s Guide for SDK 7.x and Higher.  

Specifically, the weak functions in EmberZNet 7.0 cause issues for Windows users when running applications in MinGW on Cygwin. 
MinGW treats weak function as "Null", causing undefined reference errors in the linking stages of the project build. This application note 
offers an alternative solution for Windows users that uses Docker to configure the host application. This solution is not required for Linux 
and MacOS operating systems, as Clang and GCC support weak functions. However, if you want to follow a similar procedure for Linux 
and MacOS, configuring a Docker host application will differ slightly from the procedure below. For more information contact Silicon Labs 
support through the support portal https://www.silabs.com/support.  

This application note will walk through the configuration of the host application in a Docker container on a local Windows PC connected 
to an NCP-configured radio board via USB. To follow the procedure, you should have both Docker Desktop and Silink installed on your 
local PC. Silink is a Simplicity Studio tool that maps USB Ports to IP addresses, which allows Docker Containers running on Windows 
PCs to connect to the radio board. 

Currently, this configuration does not allow Network Analyzer’s network capture to run while the host and NCP applications are running. 
This is due to conflicts with Silink’s port mapping. It is recommended to configure another radio board as a sniffer node and complete the 
network capture that way. 

Requirements:  

Docker (Version 20.10.0 or Higher) installed from https://www.docker.com/products/docker-desktop. This will install all dependencies 
needed for this procedure. 

Simplicity Studio 5 installed from https://www.silabs.com/developers/simplicity-studio 

Silink installed as part of Simplicity Studio 5 adapter pack tools (see section 2.3 Step 3: Install and Config Silink for instructions) 

EmberZNet SDK 7.x or higher, installed as part of the Gecko SDK Suite (GSDK). See the Simplicity Studio v5 User’s Guide for more 
information about installing the GSDK.   

Radio Board installed on a development mainboard (BRD4162A is used in this example) 

https://www.silabs.com/support
https://www.docker.com/products/docker-desktop
https://docs.silabs.com/simplicity-studio-5-users-guide/latest/ss-5-users-guide-overview/
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2 Running a Host Application in a Docker Container 

2.1 Step 1: Create and Flash NCP-UART-HW Example Project onto BRD4162A 

Create a new Simplicity Studio project for the target radio board (BRD4162A). Select the ncp-uart-hw example project. Build and flash 
the project onto BRD4162A. This will be the NCP-configured device. For more information on how to create projects in Simplicity Studio, 
refer to QSG180: Zigbee EmberZNet Quick-Start Guide for SDK v7.0 and Higher. 

2.2 Step 2: Config COM Port 

Make sure the radio board (BRD4162A) is connected to the host PC via USB. Open the Windows Device Manager and configure the 
"Port Settings" to match those used by the NCP application (115200 Baud rate with hardware flow control), as shown in the following 
figure. 
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2.3 Step 3: Install and Config Silink 

To find Silink’s installation path, navigate through the installation path of Simplicity Studios until you reach the adapter pack directory. If 
you used the default installation path, the file path should look like: C:/SiliconLabs/SimplicityStudio/v5/developer/adapter_packs/Silink. 

Add the Silink file path to the Windows "PATH" environment variables. The following figure shows the steps required.  

 

Run "Windows PowerShell" as Administrator and execute the following commands to map the USB ports to IP address ports. 

silink.exe -automap 4900 

The following figure shows the desired output from the console.  
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2.4 Step 4: Create a Host App for Linux 32 Bit 

In the Simplicity Studio My Products view, select Linux 32 Bit as the target part and select the Z3 Gateway project, as shown in the 
following figure. 

 

In the Project Configuration dialog, select Copy Contents, as shown in the following figure. This copies necessary files from the GSDK 
to the project folder, so the Docker Container does not need a complete GSDK.  
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2.5 Step 5: Create a Dockerfile 

Create a new file in the root project directory and name it "Dockerfile" without any file extension or suffix. Add the following commands: 

FROM gcc 
RUN apt-get update && apt-get -y install gcc-multilib socat 
RUN echo "socat -d TCP:host.docker.internal:4901 pty,raw,echo=0,link=/dev/ttySilink &" >> ~/.bashrc 
COPY . /usr/src/Z3Gateway 
WORKDIR /usr/src/Z3Gateway 
RUN make -f Z3Gateway.Makefile 

This file configures the Docker container with a GCC environment and downloads the required packages to run the application. The 
following figure shows the Dockerfile location in the project structure of Z3 Gateway.  

 

2.6 Step 6: Build and Run the Host App in the Container 

Run the following commands on the console inside the project folder to build and start the container. 

docker build . -t z3gateway 
docker run -it z3gateway 
./build/debug/Z3Gateway -n 0 -p /dev/ttySilink 
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The following figure shows the desired output of these commands.  

  

After this step, the host application is up and running.  

In order to stop the Docker container, enter the following commands into a new console. Docker ps lists all running containers on the 
local PC. Docker stop then stops whatever container is explicitly specified. 

Docker ps 
Docker stop <container_id> 
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Alternatively, the Docker desktop application can run, stop, and pause the Docker containers on the local machine.  
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