

silabs.com | Building a more connected world. Copyright © 2022 by Silicon Laboratories Rev. 0.1

AN1389: Running Zigbee Host Applications in
a Docker Container

The updated application structure in Zigbee EmberZNet 7.0 and
higher no longer supports compiling host applications in MinGW
for Windows. This document offers an alternative solution by using
a Docker container to run the NCP Host Application.

KEY POINTS

• Example Configuration for NCP Host Ap-
plication in Docker

• Host configuration solution for Windows
users.

 AN1389: Running Zigbee Host Applications in a Docker Container
 Introduction

silabs.com | Building a more connected world. Rev. 0.1 | 2

1 Introduction

Beginning with Zigbee EmberZNet 7.0, Silicon Labs introduced a new callback framework that automatically supplies weak callback
functions to the stack, such as global-callback.c and zap-event.c. These weak functions ensure that the project builds when the callbacks
are not explicitly implemented. This new framework replaces the ‘callback-stub.c’ file generated in EmberZNet 6.0 by AppBuilder. Overall,
the new callback structure simplifies the user experience in application development but has been seen to cause errors in the linking
stage in environments that do not support weak functions. More information on the new EmberZNet 7.0 callback framework can be found
in UG491: Zigbee Application Framework Developer’s Guide for SDK 7.x and Higher.

Specifically, the weak functions in EmberZNet 7.0 cause issues for Windows users when running applications in MinGW on Cygwin.
MinGW treats weak function as "Null", causing undefined reference errors in the linking stages of the project build. This application note
offers an alternative solution for Windows users that uses Docker to configure the host application. This solution is not required for Linux
and MacOS operating systems, as Clang and GCC support weak functions. However, if you want to follow a similar procedure for Linux
and MacOS, configuring a Docker host application will differ slightly from the procedure below. For more information contact Silicon Labs
support through the support portal https://www.silabs.com/support.

This application note will walk through the configuration of the host application in a Docker container on a local Windows PC connected
to an NCP-configured radio board via USB. To follow the procedure, you should have both Docker Desktop and Silink installed on your
local PC. Silink is a Simplicity Studio tool that maps USB Ports to IP addresses, which allows Docker Containers running on Windows
PCs to connect to the radio board.

Currently, this configuration does not allow Network Analyzer’s network capture to run while the host and NCP applications are running.
This is due to conflicts with Silink’s port mapping. It is recommended to configure another radio board as a sniffer node and complete the
network capture that way.

Requirements:

Docker (Version 20.10.0 or Higher) installed from https://www.docker.com/products/docker-desktop. This will install all dependencies
needed for this procedure.

Simplicity Studio 5 installed from https://www.silabs.com/developers/simplicity-studio

Silink installed as part of Simplicity Studio 5 adapter pack tools (see section 2.3 Step 3: Install and Config Silink for instructions)

EmberZNet SDK 7.x or higher, installed as part of the Gecko SDK Suite (GSDK). See the Simplicity Studio v5 User’s Guide for more
information about installing the GSDK.

Radio Board installed on a development mainboard (BRD4162A is used in this example)

https://www.silabs.com/support
https://www.docker.com/products/docker-desktop
https://docs.silabs.com/simplicity-studio-5-users-guide/latest/ss-5-users-guide-overview/

 AN1389: Running Zigbee Host Applications in a Docker Container
 Running a Host Application in a Docker Container

silabs.com | Building a more connected world. Rev. 0.1 | 3

2 Running a Host Application in a Docker Container

2.1 Step 1: Create and Flash NCP-UART-HW Example Project onto BRD4162A

Create a new Simplicity Studio project for the target radio board (BRD4162A). Select the ncp-uart-hw example project. Build and flash
the project onto BRD4162A. This will be the NCP-configured device. For more information on how to create projects in Simplicity Studio,
refer to QSG180: Zigbee EmberZNet Quick-Start Guide for SDK v7.0 and Higher.

2.2 Step 2: Config COM Port

Make sure the radio board (BRD4162A) is connected to the host PC via USB. Open the Windows Device Manager and configure the
"Port Settings" to match those used by the NCP application (115200 Baud rate with hardware flow control), as shown in the following
figure.

 AN1389: Running Zigbee Host Applications in a Docker Container
 Running a Host Application in a Docker Container

silabs.com | Building a more connected world. Rev. 0.1 | 4

2.3 Step 3: Install and Config Silink

To find Silink’s installation path, navigate through the installation path of Simplicity Studios until you reach the adapter pack directory. If
you used the default installation path, the file path should look like: C:/SiliconLabs/SimplicityStudio/v5/developer/adapter_packs/Silink.

Add the Silink file path to the Windows "PATH" environment variables. The following figure shows the steps required.

Run "Windows PowerShell" as Administrator and execute the following commands to map the USB ports to IP address ports.

silink.exe -automap 4900

The following figure shows the desired output from the console.

 AN1389: Running Zigbee Host Applications in a Docker Container
 Running a Host Application in a Docker Container

silabs.com | Building a more connected world. Rev. 0.1 | 5

2.4 Step 4: Create a Host App for Linux 32 Bit

In the Simplicity Studio My Products view, select Linux 32 Bit as the target part and select the Z3 Gateway project, as shown in the
following figure.

In the Project Configuration dialog, select Copy Contents, as shown in the following figure. This copies necessary files from the GSDK
to the project folder, so the Docker Container does not need a complete GSDK.

 AN1389: Running Zigbee Host Applications in a Docker Container
 Running a Host Application in a Docker Container

silabs.com | Building a more connected world. Rev. 0.1 | 6

2.5 Step 5: Create a Dockerfile

Create a new file in the root project directory and name it "Dockerfile" without any file extension or suffix. Add the following commands:

FROM gcc
RUN apt-get update && apt-get -y install gcc-multilib socat
RUN echo "socat -d TCP:host.docker.internal:4901 pty,raw,echo=0,link=/dev/ttySilink &" >> ~/.bashrc
COPY . /usr/src/Z3Gateway
WORKDIR /usr/src/Z3Gateway
RUN make -f Z3Gateway.Makefile

This file configures the Docker container with a GCC environment and downloads the required packages to run the application. The
following figure shows the Dockerfile location in the project structure of Z3 Gateway.

2.6 Step 6: Build and Run the Host App in the Container

Run the following commands on the console inside the project folder to build and start the container.

docker build . -t z3gateway
docker run -it z3gateway
./build/debug/Z3Gateway -n 0 -p /dev/ttySilink

 AN1389: Running Zigbee Host Applications in a Docker Container
 Running a Host Application in a Docker Container

silabs.com | Building a more connected world. Rev. 0.1 | 7

The following figure shows the desired output of these commands.

After this step, the host application is up and running.

In order to stop the Docker container, enter the following commands into a new console. Docker ps lists all running containers on the
local PC. Docker stop then stops whatever container is explicitly specified.

Docker ps
Docker stop <container_id>

 AN1389: Running Zigbee Host Applications in a Docker Container
 Running a Host Application in a Docker Container

silabs.com | Building a more connected world. Rev. 0.1 | 8

Alternatively, the Docker desktop application can run, stop, and pause the Docker containers on the local machine.

Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
USA

www.silabs.com

IoT Portfolio
www.silabs.com/IoT

SW/HW
www.silabs.com/simplicity

Quality
www.silabs.com/quality

Support & Community
www.silabs.com/community

Simplicity Studio
One-click access to MCU and wireless
tools, documentation, software,
source code libraries & more. Available
for Windows, Mac and Linux!

Disclaimer
Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software imple-
menters using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each
specific device, and “Typical” parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon
Labs reserves the right to make changes without further notice to the product information, specifications, and descriptions herein, and does not give warranties as to the
accuracy or completeness of the included information. Without prior notification, Silicon Labs may update product firmware during the manufacturing process for security or
reliability reasons. Such changes will not alter the specifications or the performance of the product. Silicon Labs shall have no liability for the consequences of use of the infor-
mation supplied in this document. This document does not imply or expressly grant any license to design or fabricate any integrated circuits. The products are not designed or
authorized to be used within any FDA Class III devices, applications for which FDA premarket approval is required or Life Support Systems without the specific written consent
of Silicon Labs. A “Life Support System” is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in
significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used
in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. Silicon Labs disclaims
all express and implied warranties and shall not be responsible or liable for any injuries or damages related to use of a Silicon Labs product in such unauthorized applications.
Note: This content may contain offensive terminology that is now obsolete. Silicon Labs is replacing these terms with inclusive language wherever possible. For more
information, visit www.silabs.com/about-us/inclusive-lexicon-project

Trademark Information
Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy
Micro logo and combinations thereof, “the world’s most energy friendly microcontrollers”, Redpine Signals®, WiSeConnect , n-Link, ThreadArch®, EZLink®, EZRadio®, EZRadioPRO®,
Gecko®, Gecko OS, Gecko OS Studio, Precision32®, Simplicity Studio®, Telegesis, the Telegesis Logo®, USBXpress® , Zentri, the Zentri logo and Zentri DMS, Z-Wave®, and others
are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered
trademark of ARM Limited. Wi-Fi is a registered trademark of the Wi-Fi Alliance. All other products or brand names mentioned herein are trademarks of their respective holders.

	1 Introduction
	2 Running a Host Application in a Docker Container
	2.1 Step 1: Create and Flash NCP-UART-HW Example Project onto BRD4162A
	2.2 Step 2: Config COM Port
	2.3 Step 3: Install and Config Silink
	2.4 Step 4: Create a Host App for Linux 32 Bit
	2.5 Step 5: Create a Dockerfile
	2.6 Step 6: Build and Run the Host App in the Container

