SILICON LABS

AN1418: Running Zigbee, OpenThread, and
Bluetooth® Concurrently on a System-on-

Chip

This document describes how to run a combination of Zigbee,
OpenThread, and Bluetooth networking stacks and the Zigbee
application layer on a System-on-Chip (SoC). One of the main
functions of a Concurrent Multiprotocol (CMP) device is to act as a
bridge between Zigbee and OpenThread networks.

Note that, depending on the chip, memory size restrictions may prevent running Matter

KEY POINTS

¢ Important features of the sample applica-
tion

e Making a Zigbee-OpenThread CMP ap-
plication from a Z3Light

on SoC devices.

silabs.com | Building a more connected world. Copyright © 2023 by Silicon Laboratories

AN1418: Running Zigbee, OpenThread, and Bluetooth Concurrently on a System-on-Chip
Introduction

1 Introduction

This document describes a Concurrent Multiprotocol (CMP) application that runs Zigbee, Bluetooth, and OpenThread stacks on a single
EFR32 radio. The primary use for such an application is to allow Zigbee line-powered devices to also be part of an OpenThread network
simultaneously and therefore serve as a bridge between the two networks.

silabs.com | Building a more connected world. Rev.0.2 |2

AN1418: Running Zigbee, OpenThread, and Bluetooth Concurrently on a System-on-Chip
Concurrent Multiprotocol (CMP) Sample Application (z3-light_ot-ftd)

2 Concurrent Multiprotocol (CMP) Sample Application (z3-light_ot-ftd)

Zigbee OpenThread

§ D)
1

RAIL Library

Figure 2-1. Zigbee + OpenThread Concurrent Multiprotocol Application

Bluetooth LE Zigbee OpenThread
1§ J
b i
RAIL
Multiplexer
J

[

MultiProtocol
RAIL Library

Figure 2-2. Zigbee + Bluetooth + OpenThread Concurrent Multiprotocol Application

The CMP sample application consists of a Z3Light, which is a Zigbee router, and an OpenThread FTD (Full Thread Device). Both protocol
stacks operate by multiplexing a single EFR32 radio. Both protocols need to use the same radio channel to ensure proper operation.
Bluetooth functionality can be added to the sample application by including additional components.

21 RTOS

Within the CMP application, scheduling is managed using a Real Time Operating System (RTOS). Each protocol runs in a dedicated
RTOS task. The Zigbee and OpenThread tasks operate at the same priority while the Command Line Interface (CLI) is made available
using a CLI RTOS task that operates at a lower priority.

Caution: It is critical to note that Zigbee and OpenThread APIs are not thread-safe. Calling them from different threads can result in
unexpected behavior. In addition, any references to EmberMessageBuffer must be contained within the Zigbee task.

2.2 Command Line Interface

This application supports all CLI commands that can be found in the Z3Light sample application. A subset of the OpenThread CLI has
been ported to demonstrate form, join and ping operations. This functionality can be extended further, if necessary, by following the
example commands in the ot_up_cli.c file from the ot_up_cli component. Note that OpenThread APIs are only invoked from sl_ot_rtos_ap-
plication_tick since they are not thread-safe.

silabs.com | Building a more connected world. Rev.0.2 |3

AN1418: Running Zigbee, OpenThread, and Bluetooth Concurrently on a System-on-Chip
Concurrent Multiprotocol (CMP) Sample Application (z3-light_ot-ftd)

2.21 OpenThread Commissioning

This device can be commissioned on to an OpenThread network out-of-band using CLI commands. Setting the OpenThread network
parameters, such as network key and channel, before starting the network allows the CMP device to join a Thread network as a child or
router device.

Table 2.1. OpenThread CLI commands

CLI Command Description

dataset View OpenThread network configuration.
dataset_new Creates a new OpenThread dataset.
dataset_commit_active Commits dataset to NVM.

factory_reset Removes all NVM OpenThread settings.

Presets the network key on the device to help with joining an existing OpenThread network

dataset_networkkey out-of-band

Presets the radio channel used by the OpenThread network. This command can be used

dataset_channel to force both Zigbee and OpenThread networks to use the same radio channel.

. Presets the PAN ID on the device to help with joining the OpenThread network out-of-
dataset_pan_id

band.
. Presets the extended PAN ID on the device to help with joining the OpenThread network
dataset_extended_pan_id
out-of-band.
ifconfig_up Enables OpenThread interface.
thread_start Enables and attaches OpenThread protocol operation.
thread_state Reads current status: offline, disabled, detached, child, router, or leader.

silabs.com | Building a more connected world. Rev.0.2 |4

AN1418: Running Zigbee, OpenThread, and Bluetooth Concurrently on a System-on-Chip
Converting a Zigbee Application into a Zigbee-OpenThread CMP Application

3 Converting a Zigbee Application into a Zigbee-OpenThread CMP Application

This section describes the steps involved in converting a Z3Light into a Concurrent Multiprotocol application that includes the OpenThread
stack.

1. Use the Simplicity Studio “Create New Project” wizard to create a Zigbee — SoC Light project for your board of choice.

2. Open the Software Components tab of the generated project to add the OpenThread > Stack (FTD) component. Note that the addition
of this component automatically adds a Real Time Operating System (RTOS) to the project.

o4 Z3Light.slcp X 1 = B

Z3Light SOFTWARE COMPONENTS

Search keywords, component's name

Y Filter components by £ Configurable D @ Installed D 2 Installed by you D B2 SDK Extensions D K Quality v ftd @

v OpenThread | Stack (FTD) m

Stack (FTD) o3

Description
This component provides the OpenThread stack for a Full Thread Device (FTD)

Quality
PRODUCTION

Dependencies v
ot_stack_ftd requires 0 components

No Dependencies

Dependents

0 components require ot_stack_ftd
No Dependent Components

silabs.com | Building a more connected world. Rev.0.2 |5

AN1418: Running Zigbee, OpenThread, and Bluetooth Concurrently on a System-on-Chip
Converting a Zigbee Application into a Zigbee-OpenThread CMP Application

3. Select the |10 Stream > Driver > |0S Stream: USART > vcom component and configure it by increasing “Receive buffer size” to 128.

& readme.html L“ﬁ“lﬁﬂ = E

Z3Light OVERVIEW SOFTWARE COMPONENTS CONFIGURATION TOOLS

Search keywords, component's name
Y Filter components by £ Configurable |:| @ Installed |:| 2 Installed by you |:| B2 SDK Extensions |:| R Quality ~ veom @ 0

v
Platform I veom £ configure
v Board

v Radio Board

©@ BRD4161A Description

Instantiate the driver for using IO Stream over the Universal Synchronous Asynchronous

Receiver Transceiver (USART) peripheral.

v Services
o Quality
v Co-Processor Communication PRODUCTION
v Secondary Device
CPC: Auto Configure VCOM Speed
Dependencies v
v |0 Stream . .
iostream_usart-vcom requires 1 components
Driver
M » Platform
v |0 Stream: USART o]
& veom » Dependents

0 components require iostream_usart-vcom

¥ Uninstall [4 Add New Instances Instances

[9 readme.html X l& Z3Light.slcp W =

Maximize
10 Stream: USART (vcom) [Pin Tool | <[> View Source ‘ X
»
USART settings
Baud rate Parity mode to use Number of stop bits to use. Flow control
115200 No Parity v 1 stop bits v CTS/RTS v

v

Receive buffer size Convert \n to \r\n Restrict the energy mode to allow the

reception.

~1 128 »

silabs.com | Building a more connected world.

AN1418: Running Zigbee, OpenThread, and Bluetooth Concurrently on a System-on-Chip
Converting a Zigbee Application into a Zigbee-OpenThread CMP Application

4. Select the Toolchain > Memory Configuration component and configure it by increasing stack size to 4608 and heap size to 16384
to account for the addition of OpenThread networking stack.

Z3Light_2 SOFTWARE COMPONENTS

Search keywords, component's nar
Y Filter components by €% Configurable [_] @ Installed [& installedbyyou [| |BBSDK Extensions [| R Quality ~ erj‘lcemdry con 53 R

v Platform I Memory Configuration

» Toolchain

Memory Configuration o
Description

This component provides configuration of the stack and heap for supported toolchains. For gec it

also adds support for _sbrk({) for heap allocation. This is used in the newlib version of mallec()}.

Quality
PRODUCTION

Dependencies v

sl_memory requires 0 components

No Dependencies

MNaAamAamAAmda

¥ Uninstall

R T ———— - o

Memory Configuration I Pin Tool I I <[> View Source X

I Memory configuration

Stack size for the application. Minimum heap size for the application.

~ ~
4608 16384
w v

silabs.com | Building a more connected world.

AN1418: Running Zigbee, OpenThread, and Bluetooth Concurrently on a System-on-Chip
Converting a Zigbee Application into a Zigbee-OpenThread CMP Application

5. Select Micrium > Common > Micrium OS Common Module Core component and configure it to decrease “size of heap memory” to
0 to prevent Micrium RTOS from allocating its own heap memory.

) readme.html i = 8

Z3Light SOFTWARE COMPONENTS

Search keywords, component's name 9

Y Filter components by ¢ Configurable [| @ Installed [| & Installedbyyou [| (B3 SDK Extensions | | A Quality ~ T

v RTOS I Common APIs for CMSIS-Compliant Kernels
v Micrium 0S
v Common o
Description
@ Micrium 0S CPU Module] This component provides "sl cmsis 0s2 common.h” header file, which in turn provides typedefs
like osSemaphore_t and osThread_t.
v Kernel Those types are defined by CMSIS RTOS2 standard, yet their implementation is specific to the

o operating system. Traditionally, the user would need to include 0S-specific header file (like
@ Micrium OS Kernel 0 "os.h" for MicriumOS) to have access to those types. This implies that the application needs to

be aware of the kernel being used (Micrium0S, FreeRTOS, etc.)

v Ser\qices For applications that need to be OS-agnostiec, this component provides an abstract header file
"sl_emsis_os2_common.h" that provides the same functionality without the requirement of knowing
» Micrium which 05 is used per se.
v Common Quality
- . . PRODUCTION
Micrium OS Commeon Libraries Module
Micrium OS Common Libraries Optimized Mem Copy
@ Micrium 0S Common Module Core & DependenCIeS v

@ readme_html |n=| Z3Light.slcp [H Micrium OS Common Module Core X]

Micrium OS Common Module Core <[> View Source Files + X

»

| Memory Library Configuration

Replace common lib memory functions Enable Memory allocation usage tracking Size of heap memory (in octets). Padding alignment for hardware
with standard C lib functions » ~l allocations on heap (in octets)
» v “
w~

Enable Custom heap location

silabs.com | Building a more connected world.

AN1418: Running Zigbee, OpenThread, and Bluetooth Concurrently on a System-on-Chip
Converting a Zigbee Application into a Zigbee-OpenThread CMP Application

6. Add OpenThread CLI commands by installing the Zigbee > Zigbee 3.0 > OpenThread CLI using Silabs unified platform (ot_up_cli)
component.

& readme.html % Z3light_2.slep X I = B8

Z3Light_2 SOFTWARE COMPONENTS

rarch keywords, ci onent 13
Y Filter components by ## Configurable [] @ Installed [_| 2 Installed by you [] |B2 SDK Extensions | RQuality ~ “odlt_upwé‘ # components e (%]

v Zighee I OpenThread CLI using Silabs unified platform and CMSIS RT0S2 m
v Zighee 3.0

OpenThread CLI using Silabs unified platform and CMSIS RTOS2
Description

OpenThread CLI using Silabs unified platform and CMSIS RTOS2

Quality
PRODUCTION

Dependencies v

ot_up_cli requires 3 components

» OpenThread
» RTOS
» Zigbee

Dependents

7. Select the OpenThread > Platform Abstraction component and configure it by setting priority to 49 to match the Zigbee RTOS task
priority.

3 Platform Abstraction ‘ = O

ious Annotation (¢32.)

3Light SOFTWARE COMPONENTS

Search keyy ds, col t's 3
Y Filter components by £ Configurable [] @ Installed [] & Installed by you [] B2 SDK Extensions [_] Rouality ~ L';I;;';:::wo FompanEts e (]

Show anly components that are configurable

v OpenThread

@ Platform Abstraction o
v Platform
LRy - TSR = =
Platform Abstraction | Pin Tool | | 4[> View Source bid

Priority Configuration for OpenThread RTOS Task

OpenThread task priority OpenThread stack task stack size in bytes

~ ~
49 4096
v

~

silabs.com | Building a more connected world.

AN1418: Running Zigbee, OpenThread, and Bluetooth Concurrently on a System-on-Chip
Converting a Zigbee Application into a Zigbee-OpenThread CMP Application

8. Right click the Z3Light project in Simplicity Studio’s Project Explorer view and click Properties. Open C/C++ Build Settings and Under
GNU ARM C Compiler, select Preprocessor. Add two preprocessor define symbols:
e OS_CFG_COMPAT_INIT (Used in conjunction with LIB_MEM_CFG_HEAP_SIZE to allow the application to handle heap alloca-
tion)
e SL _OPENTHREAD_RADIO_RX_BUFFER_COUNT=1 (This is a workaround for an issue where the Zigbee network cannot send
beacons when the OpenThread network is up)

Click Apply and Close to save.

‘e & Properties for Z3Light_2
1 Settings =2 8
> Resource
Builders
v C/C++ Build Configuration: GNU ARM v10.3.1 - Default [Active] & Manage Configurations...
1 Board / Part | SDK

Build Variables
Environment

tinke.d ProjeEts %3 Tool Settings ﬁ‘ Build Steps Build Artifact |n-_ﬂ Binary Parsers 3 Error Parsers
ogging
gmj‘.ed Madules @Common Settings Do not search system directories (-nostdinc)
ettings .
> CJC++ General % Debug Settings Preprocess only (-E)
> MCU @ Memory Layout = =
Project Natures + 3 GNU ARM C Compiler Defined symbols (-D)) %
t Refactoring History @ Dialect EFR32MG12P432F1024GL125=1 .
Run/Debug Settings (2 Preprocessor 0S_CFG_COMPAT_INIT
(B includes SL_OPENTHREAD_RADIO_RX_BUFFER_COUNT=1

SL_APP_PROPERTIES=1

SL_BOARD_NAME="BRD4161A"

= ; SL_BOARD_REV="A03"
(2 Warnings HARDWARE_BOARD_DEFAULT_RF_BAND_2400=1
(2 Miscellaneous s

~ [%3 GNU ARM C++ Compiler
@ Dialect

) (Preprocessor

@ Includes

@ Optimization

@ Debugging

@ Warnings

¢ @ Miscellaneous

~ 53 GNU ARM Assembler

@ Optimization
@ Debugging

Undefined symbols (-U) 2]

Apply

1l @ Cancel Apply and Close

©

Open app.c file in the project folder and add the code below to the beginning of the file to initialize OpenThread. Save file and build
the project.

#if defined(OPENTHREAD_FTD)
#include <assert.h>
#include <openthread-core-config.h>
#include <openthread/config.h>

#include <openthread/ncp.h>
#include <openthread/diag.h>
#include <openthread/tasklet.h>

#include "openthread-system.h"

silabs.com | Building a more connected world. Rev.0.2 |10

AN1418: Running Zigbee, OpenThread, and Bluetooth Concurrently on a System-on-Chip
Converting a Zigbee Application into a Zigbee-OpenThread CMP Application

static otInstance * sInstance = NULL;

void sl ot create instance (void)

{
#if OPENTHREAD CONFIG MULTIPLE INSTANCE ENABLE
size t otInstanceBufferLength = 0;
uint8 t *otInstanceBuffer = NULL;

// Call to query the buffer size
(void) otInstanceInit (NULL, &otInstanceBufferLength);

// Call to allocate the buffer
otInstanceBuffer = (uint8 t *)malloc(otInstanceBufferLength);
assert (otInstanceBuffer);

// Initialize OpenThread with the buffer

sInstance = otInstancelInit (otInstanceBuffer, &otInstanceBufferLength);
#felse

sInstance = otInstanceInitSingle();

#endif

assert (sInstance);

}

otInstance *otGetInstance (void)

{

return sInstance;

}
#endif //#if defined (OPENTHREAD FTD)

This application can now form a distributed Zigbee network or join any Zigbee network (centralized or distributed). It can also function as
a leader, child, or router on the OpenThread network.

Caution: It is imperative to ensure that both networks operate on the same radio channel.

Any channel changes will need to be done in a controlled fashion. A channel change on one protocol’'s network can cause the other
protocol to stop working until its network is also switched to the same channel. It is important to note that only certain Zigbee device types
(trust center) may initiate a channel change on the Zigbee side.

3.1 Optional - Adding Bluetooth to the Concurrent Multiprotocol Application:

This section describes the steps involved in adding Bluetooth to the above application. Search for and install the following components:
¢ Dbluetooth_stack in the software components

o Z3light 2slep X =g
Z3Light_2 SOFTWARE COMPONENTS
Y Filter components by €% Configurable D @ Installed D 2 Installed by you D |BB SDK Extensions D I RKQuality ~ ‘ | Q Zia’;:ggyt}t'::‘;&mp""e"“s na
v Bluetooth

v Stack

Bluetooth Core

silabs.com | Building a more connected world. Rev.0.2 | 11

AN1418: Running Zigbee, OpenThread, and Bluetooth Concurrently on a System-on-Chip
Converting a Zigbee Application into a Zigbee-OpenThread CMP Application

e gatt_configuration

£ 73Light 2sicp X =g

Z3Light_2 JVERVIEW ~ SOFTWARE COMPONENTS NFIGURATION

Search keywords, component's n o
Launch advanced configurations compatible with iqurati
Y Filter components by % Configurable [] @ Installed [] SDKExzensinns O RKQuality ~ gatt_configuration &
v Bluetooth .
I Configuration

v GATT

Configuration e
Description

Adds basic GATT Configuration to the project that can be customized with the GATT Configurator tool.

Quality
PRODUCTION

Dependencies v

gatt_configuration requires 0 components
No Dependencies

Dependents

0 components require gatt_configuration
No Dependent Components

e Bluetooth_feature_legacy advertiser

£ ZaLight 2sicp X =5

Z3Light_2 OVERVIEW ~ SOFTWARE COMPONENTS CONFIGURATION TOOLS

Search keywords, component's name o

Y Filter components by £ Configurable D @ Installed D 2 Installed by you D |2 SDK Extensions D RKQuality v bluetooth_feature_legacy_adver..

ggEluetooth I Legacy Advertising

v Feature

Legacy Advertising
Description
This component, corresponding to the "legacy advertiser” class in Bluetooth APIs, provides the
legacy advertising feature. Specifically, this component enables advertisements that use legacy
advertising PDUs. Common advertising functionalities, e.g., advertising set creation, and address

settings etc., are provided by its base component <bluetooth_feature advertiser>.

Quality
PRODUCTION

Dependencies v

bluetooth_feature_legacy_advertiser requires 1 components
» Bluetooth

Dependents

0 components require bluetooth_feature_legacy_advertiser
No Dependent Comnonents

silabs.com | Building a more connected world. Rev.0.2 |12

AN1418: Running Zigbee, OpenThread, and Bluetooth Concurrently on a System-on-Chip
Converting a Zigbee Application into a Zigbee-OpenThread CMP Application

e Bluetooth_feature_connection
ezt 2se X, = c
Z3Light_2 OVERVIEW ~ SOFTWARE COMPONENTS CO ON TOOLS
Search keywords, component's name)
Y Filter components by % Configurable [] @ Installed [] 2 Installed by you [~] B3 SDK Extensions] bluetooth_feature_connection €
v Bluetooth .
I Connection
v Feature
Bluetooth Connection Phy Update
., o Description
Bluetooth connection feature
Quality
PRODUCTION
Dependencies v
bluetooth_feature_connection requires 2 components
» Bluetooth
Dependents
0 components require bluetooth_feature_connection
No Dependent Components
e Dbluetooth_feature_gatt — Install the GATT Client and GATT Server
=5

g 2sicp X

Z3Light_2 OVERVIEW

Y Filter components by £ Configurable D

v Bluetooth
v Stack
GATT Client

GATT Server

SOFTWARE COMPONENTS

CONFIGU 10

Sexchkepuonde compensats e gy
@ Installed D 2 Installed by you D SDK Extensions [_| RQuality v bluetooth_feature_gatt €
| GATT Client m
Description

GATT Client feature

Enables the ability to browse and manage attributes in a remote GATT server.

Quality
PRODUCTION

Dependencies

bluetooth_feature_gatt requires 1 components
» Bluetooth

Dependents

0 components require bluetooth_feature_gatt
No Dependent Components

silabs.com | Building a more connected world.

Rev.0.2 | 13

AN1418: Running Zigbee, OpenThread, and Bluetooth Concurrently on a System-on-Chip
Converting a Zigbee Application into a Zigbee-OpenThread CMP Application

2 Z3Light 2:icp X =5

Z3Light_2 OVERVIEV SOFTWARE COMPONENTS ~ CONFIGURATION TOOLS

Search keywords, component's name o

Y Filter components by £ Configurable [] @ Installed [] 2 Installed by you [] SDK Extensions [_] bluetooth_feature_gatt €

v Bluetooth | GATT Server @

v Stack

@ GATT Client
Description

GATT Server feature

GATT Server

Enables the ability to browse and manage attributes in a local GATT database.

Quality
PRODUCTION

Dependencies v

bluetooth_feature_gatt_server requires 1 components
» Bluetooth

Dependents

0 components require bluetooth_feature_gatt_server
No Dependent Components

e Dbluetooth_feature_legacy_scanner

£ zalight_2:sicp_ X =@

Z3Light_2 OVERVIEW ~ SOFTWARE COMPONENTS CONFIGURATION TOOLS

Search keywords, component's name o

Y Filter components by £ Configurable [] @ Installed [] 2 Installed by you [] B3 SDK Extensions [_] QQuality v Dbluetooth feature_legacy_scann.. &

Bluetooth .
M I Scanner for legacy advertisements m

v Feature

Scanner for legacy advertisements

Description

This component brings in necessary functionalities for scanning the advertisements that use legacy
advertising PDUs.

Include this component if the application does not need to scan advertisements that use extended
advertising PDUs. Advertisements received by the scanner are reported in the BGAPI
sl_bt_evt_scanner_legacy_advertisement_report event.

If this component is included and the <bluetooth_ feature_extended scanner> is not, the number of
received advertisement reports are reduced if advertising devices that use extended advertising PDUs
are in the radio range. Another benefit of including this component only is reduced application size
by eliminating the stack functionalities for scanning advertisements that use extended advertising
PDUs.

Quality
PRODUCTION

Dependencies ¥

bluetooth_feature_legacy_scanner requires 1 components

silabs.com | Building a more connected world. Rev.0.2 |14

AN1418: Running Zigbee, OpenThread, and Bluetooth Concurrently on a System-on-Chip
Converting a Zigbee Application into a Zigbee-OpenThread CMP Application

e Dbluetooth_feature_sm

I z3tight_2 =g
Z3Light_2 SOFTWARE COMPONENTS 10
Search keywords, component's na. o
Y Filter components by £ Configurable D @ Installed D 2 Installed by you D SDK Extensions ,:] RKQuality ~ bluetooth_feature_sm €
v Bluetooth .
I Security Manager m
v Stack
Security Manager
Description
Bluetooth security manager (SM) feature
Quality
PRODUCTION
Dependencies v
bluetooth_feature_sm requires 1 components
» Bluetooth
Dependents
0 components require bluetooth_feature_sm
No Dependent Components
e Bluetooth_feature_system
l Z3Ligh.2 =8
Z3Light_2 SOFTWARE COMPONENTS NFIGURATION T
Search keywords, component's name o
Y Filter components by ¢ Configurable D @ Installed I:‘ 2 Installed by you D SDK Extensions D bluetooth_feature_system &

v Bluetooth

v Stack

System

I System

Description

Local device configruation and software timers

Quality
PRODUCTION

Dependencies

bluetooth_feature_system requires 1 components
» Bluetooth

Dependents

0 components require bluetooth_feature_system
No Dependent Components

silabs.com | Building a more connected world.

Rev.0.2 |15

AN1418: Running Zigbee, OpenThread, and Bluetooth Concurrently on a System-on-Chip
Converting a Zigbee Application into a Zigbee-OpenThread CMP Application

e zigbee_ble_dmp_cli

lazaush2ae X, =0
Z3Light_2 SOFTWARE COMPONENTS
Search keywords, component's n
Y Filter components by £ Configurable [] @ Installed [] 2 Installed by you [] SDK Extensions [_] zigbee_ble_dmp_cli &
v Zigbee . .
I Zigbee BLE DMP Command Line Interface Install
v Zigbee 3.0

Zigbee BLE DMP Command Line Interface

Description

zigbee Bluetooth LE DMP Command Line Interface

Quality
PRODUCTION

Dependencies v

zigbee_ble_dmp_cli requires 3 components

» Bluetooth
» Zigbee

Dependents

0 components require zigbee_ble_dmp_cli
No Dependent Components

In addition to the above, add the following snippet of code in the project app.c file. This sample code provides an implementation for the
Bluetooth event handler (sl_bt_on_event function)

#Include “sl component catalog.h”
#ifdef S L CATALOG BLUETOOTH PRESENT

// Bluetooth Event handler

#include "zigbee app framework event.h"

#include "zigbee app framework common.h"

#include "sl bluetooth.h"

#include "sl bluetooth advertiser config.h"

#include "sl bluetooth connection config.h"

#include "sl component catalog.h"

static uint8 t cli adv handle;

void zb ble dmp print ble address(uint8 t *address)

{

sl zigbee app debug print ("\nBLE address: [$02X %02X %02X %02X %02X %02X]\n",

address[5], address[4], address[3],
address[2], address[l], address[0]);

}

void sl bt on event(sl bt msg t* evt)
{
switch (SL BT MSG ID(evt->header)) {
case sl bt evt system boot id: {
bd addr ble address;
uint8 t type;
sl status t status = sl bt system hello();
sl zigbee app debug println("BLE hello: %s",
(status == SL STATUS OK) ? "success" : "error");

#define SCAN WINDOW 5
#define SCAN INTERVAL 10

status = sl bt scanner set parameters(sl bt scanner scan mode active,
(uintl6 t)SCAN INTERVAL,
(uintl6 t)SCAN WINDOW) ;

silabs.com | Building a more connected world. Rev.0.2 |16

AN1418: Running Zigbee, OpenThread, and Bluetooth Concurrently on a System-on-Chip
Converting a Zigbee Application into a Zigbee-OpenThread CMP Application

status = sl bt system get identity address(&ble address, &type);
zb ble dmp print ble address(ble address.addr);

status = sl bt advertiser create set(&cli adv handle);
if (status) {
sl zigbee app debug println("sl bt advertiser create set status 0x%02x", status);
}
}

break;

case sl bt evt connection opened id: {
sl zigbee app debug println("sl bt evt connection opened id \n");
sl bt evt connection opened t *conn evt =
(sl bt evt connection opened t*) & (evt->data);
sl bt connection set preferred phy(conn evt->connection, sl bt test phy 1lm, 0xff);
sl zigbee app debug println("BLE connection opened");
}
break;
case sl bt evt connection phy status id: {
sl bt evt connection phy status t *conn evt =
(sl bt evt connection phy status t *)é&(evt->data);
// indicate the PHY that has been selected
sl zigbee app debug println("now using the %dMPHY\r\n",
conn_evt->phy) ;
}
break;
case sl bt evt connection closed id: {
sl bt evt connection closed t *conn evt =
(sl bt evt connection closed t*) & (evt->data);

sl zigbee app debug println(
"BLE connection closed, handle=0x%02x, reason=0x%02x",
conn_evt->connection, conn evt->reason);
}

break;

case sl bt evt scanner legacy advertisement report id: {
sl zigbee app debug print("Scan response, address type=0x%02x",
evt->data.evt scanner legacy advertisement report.address type);
zb ble dmp print ble address(evt->data.evt scanner legacy advertisement report.address.addr);
sl zigbee app debug println("");
}

break;

case sl bt evt connection parameters id: {
sl bt evt connection parameters t* param evt =
(sl bt evt connection parameters t*) & (evt->data);
sl zigbee app debug println(
"BLE connection parameters are updated, handle=0x%02x, interval=0x%02x, latency=0x%02x,
timeout=0x%02x, security=0x%02x, txsize=0x%02x",
param evt->connection,
param:evt—>interval,
param evt->latency,
param evt->timeout,
param evt->security mode,
param evt->txsize);
}

break;

case sl bt evt gatt service id: {
sl bt evt gatt service t* service evt =
(sl bt evt gatt service t*) &(evt->data);
uint8 t i;
sl zigbee app debug println(
"GATT service, conn handle=0x%02x, service handle=0x%04x",
service evt->connection, service evt->service);

silabs.com | Building a more connected world. Rev.0.2 |17

AN1418: Running Zigbee, OpenThread, and Bluetooth Concurrently on a System-on-Chip
Converting a Zigbee Application into a Zigbee-OpenThread CMP Application

sl zigbee app debug print ("UUID=[");
for (i = 0; 1 < service evt->uuid.len; i++) {
sl zigbee app debug print ("0x%04x ", service evt->uuid.datal[i]);
}
sl zigbee app debug println("]");
}

break;

default:
break;
}

}
#endif //SL CATALOG BLUETOOTH PRESENT

silabs.com | Building a more connected world. Rev.0.2 |18

Simplicity Studio

One-click access to MCU and wireless
tools, documentation, software,
source code libraries & more. Available
for Windows, Mac and Linux!

loT Portfolio SW/HW Quality Support & Community

www.silabs.com/IoT www.silabs.com/simplicity www.silabs.com/quality www.silabs.com/community

Disclaimer

Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software imple-
menters using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each
specific device, and “Typical” parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon
Labs reserves the right to make changes without further notice to the product information, specifications, and descriptions herein, and does not give warranties as to the
accuracy or completeness of the included information. Without prior notification, Silicon Labs may update product firmware during the manufacturing process for security or
reliability reasons. Such changes will not alter the specifications or the performance of the product. Silicon Labs shall have no liability for the consequences of use of the infor-
mation supplied in this document. This document does notimply or expressly grant any license to design or fabricate any integrated circuits. The products are not designed or
authorized to be used within any FDA Class Il devices, applications for which FDA premarket approval is required or Life Support Systems without the specific written consent
of Silicon Labs. A “Life Support System” is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in
significant personalinjury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used
in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. Silicon Labs disclaims
allexpress and implied warranties and shall not be responsible or liable for any injuries or damages related to use of a Silicon Labs product in such unauthorized applications.
Note: This content may contain offensive terminology thatis now obsolete. Silicon Labs is replacing these terms with inclusive language wherever possible. For more
information, visit www.silabs.com/about-us/inclusive-lexicon-project

Trademark Information

Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labs®, SiLabs®and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy
Micro logo and combinations thereof, “the world’s most energy friendly microcontrollers”, Redpine Signals®, WiSeConnect, n-Link, ThreadArch®, EZLink®, EZRadio®, EZRadioPRO®,
Gecko®, Gecko OS, Gecko OS Studio, Precision32®, Simplicity Studio®, Telegesis, the Telegesis Logo® USBXpress®, Zentri, the Zentri logo and Zentri DMS, Z-Wave®, and others
are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered
trademark of ARM Limited. Wi-Fiis a registered trademark of the Wi-Fi Alliance. All other products or brand names mentioned herein are trademarks of their respective holders.

Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701

USA

SILICON LABS www.silabs.com

	1 Introduction
	2 Concurrent Multiprotocol (CMP) Sample Application (z3-light_ot-ftd)
	2.1 RTOS
	2.2 Command Line Interface
	2.2.1 OpenThread Commissioning

	3 Converting a Zigbee Application into a Zigbee-OpenThread CMP Application
	3.1 Optional - Adding Bluetooth to the Concurrent Multiprotocol Application:

