
 

 

silabs.com | Building a more connected world. Copyright © 2023 by Silicon Laboratories Rev. 0.2 

AN1418: Running Zigbee, OpenThread, and 
Bluetooth® Concurrently on a System-on-
Chip 

This document describes how to run a combination of Zigbee, 
OpenThread, and Bluetooth networking stacks and the Zigbee 
application layer on a System-on-Chip (SoC). One of the main 
functions of a Concurrent Multiprotocol (CMP) device is to act as a 
bridge between Zigbee and OpenThread networks.  

Note that, depending on the chip, memory size restrictions may prevent running Matter 
on SoC devices. 

 

 
  

KEY POINTS 

• Important features of the sample applica-
tion 

• Making a Zigbee-OpenThread CMP ap-
plication from a Z3Light 
 



 AN1418: Running  Zigbee, OpenThread, and Bluetooth Concurrently on a System-on-Chip 
 Introduction 

 

silabs.com | Building a more connected world.  Rev. 0.2  | 2 

1 Introduction 

This document describes a Concurrent Multiprotocol (CMP) application that runs Zigbee, Bluetooth, and OpenThread stacks on a single 
EFR32 radio. The primary use for such an application is to allow Zigbee line-powered devices to also be part of an OpenThread network 
simultaneously and therefore serve as a bridge between the two networks.  



 AN1418: Running  Zigbee, OpenThread, and Bluetooth Concurrently on a System-on-Chip 
 Concurrent Multiprotocol (CMP) Sample Application (z3-light_ot-ftd) 

 

silabs.com | Building a more connected world.  Rev. 0.2  | 3 

2 Concurrent Multiprotocol (CMP) Sample Application (z3-light_ot-ftd) 

 

 
Figure 2-1. Zigbee + OpenThread Concurrent Multiprotocol Application 

 

Figure 2-2. Zigbee + Bluetooth + OpenThread Concurrent Multiprotocol Application 

The CMP sample application consists of a Z3Light, which is a Zigbee router, and an OpenThread FTD (Full Thread Device). Both protocol 
stacks operate by multiplexing a single EFR32 radio. Both protocols need to use the same radio channel to ensure proper operation. 
Bluetooth functionality can be added to the sample application by including additional components. 

2.1 RTOS  

Within the CMP application, scheduling is managed using a Real Time Operating System (RTOS). Each protocol runs in a dedicated 
RTOS task. The Zigbee and OpenThread tasks operate at the same priority while the Command Line Interface (CLI) is made available 
using a CLI RTOS task that operates at a lower priority.  

Caution: It is critical to note that Zigbee and OpenThread APIs are not thread-safe. Calling them from different threads can result in 
unexpected behavior. In addition, any references to EmberMessageBuffer must be contained within the Zigbee task.  

2.2 Command Line Interface 

This application supports all CLI commands that can be found in the Z3Light sample application. A subset of the OpenThread CLI has 
been ported to demonstrate form, join and ping operations. This functionality can be extended further, if necessary, by following the 
example commands in the ot_up_cli.c file from the ot_up_cli component. Note that OpenThread APIs are only invoked from sl_ot_rtos_ap-
plication_tick since they are not thread-safe.  



 AN1418: Running  Zigbee, OpenThread, and Bluetooth Concurrently on a System-on-Chip 
 Concurrent Multiprotocol (CMP) Sample Application (z3-light_ot-ftd) 

 

silabs.com | Building a more connected world.  Rev. 0.2  | 4 

2.2.1 OpenThread Commissioning 

This device can be commissioned on to an OpenThread network out-of-band using CLI commands. Setting the OpenThread network 
parameters, such as network key and channel, before starting the network allows the CMP device to join a Thread network as a child or 
router device.  

Table 2.1. OpenThread CLI commands 

CLI Command Description 
dataset View OpenThread network configuration. 
dataset_new Creates a new OpenThread dataset. 
dataset_commit_active Commits dataset to NVM. 
factory_reset Removes all NVM OpenThread settings. 

dataset_networkkey Presets the network key on the device to help with joining an existing OpenThread network 
out-of-band. 

dataset_channel Presets the radio channel used by the OpenThread network. This command can be used 
to force both Zigbee and OpenThread networks to use the same radio channel. 

dataset_pan_id Presets the PAN ID on the device to help with joining the OpenThread network out-of-
band. 

dataset_extended_pan_id Presets the extended PAN ID on the device to help with joining the OpenThread network 
out-of-band. 

ifconfig_up Enables OpenThread interface. 
thread_start Enables and attaches OpenThread protocol operation. 
thread_state Reads current status: offline, disabled, detached, child, router, or leader. 

 



 AN1418: Running  Zigbee, OpenThread, and Bluetooth Concurrently on a System-on-Chip 
 Converting a Zigbee Application into a Zigbee-OpenThread CMP Application 

 

silabs.com | Building a more connected world.  Rev. 0.2  | 5 

3 Converting a Zigbee Application into a Zigbee-OpenThread CMP Application 

This section describes the steps involved in converting a Z3Light into a Concurrent Multiprotocol application that includes the OpenThread 
stack.  
1. Use the Simplicity Studio “Create New Project” wizard to create a Zigbee – SoC Light project for your board of choice.  
2. Open the Software Components tab of the generated project to add the OpenThread > Stack (FTD) component. Note that the addition 

of this component automatically adds a Real Time Operating System (RTOS) to the project.  

 



 AN1418: Running  Zigbee, OpenThread, and Bluetooth Concurrently on a System-on-Chip 
 Converting a Zigbee Application into a Zigbee-OpenThread CMP Application 

 

silabs.com | Building a more connected world.  Rev. 0.2  | 6 

3. Select the IO Stream > Driver > IOS Stream: USART > vcom component and configure it by increasing “Receive buffer size” to 128. 

 

 



 AN1418: Running  Zigbee, OpenThread, and Bluetooth Concurrently on a System-on-Chip 
 Converting a Zigbee Application into a Zigbee-OpenThread CMP Application 

 

silabs.com | Building a more connected world.  Rev. 0.2  | 7 

4. Select the Toolchain > Memory Configuration component and configure it by increasing stack size to 4608 and heap size to 16384 
to account for the addition of OpenThread networking stack.  

 

 



 AN1418: Running  Zigbee, OpenThread, and Bluetooth Concurrently on a System-on-Chip 
 Converting a Zigbee Application into a Zigbee-OpenThread CMP Application 

 

silabs.com | Building a more connected world.  Rev. 0.2  | 8 

5. Select Micrium > Common > Micrium OS Common Module Core component and configure it to decrease “size of heap memory” to 
0 to prevent Micrium RTOS from allocating its own heap memory. 

 

 



 AN1418: Running  Zigbee, OpenThread, and Bluetooth Concurrently on a System-on-Chip 
 Converting a Zigbee Application into a Zigbee-OpenThread CMP Application 

 

silabs.com | Building a more connected world.  Rev. 0.2  | 9 

6. Add OpenThread CLI commands by installing the Zigbee > Zigbee 3.0 > OpenThread CLI using Silabs unified platform (ot_up_cli) 
component.  

 
7. Select the OpenThread > Platform Abstraction component and configure it by setting priority to 49 to match the Zigbee RTOS task 

priority. 

 

 



 AN1418: Running  Zigbee, OpenThread, and Bluetooth Concurrently on a System-on-Chip 
 Converting a Zigbee Application into a Zigbee-OpenThread CMP Application 

 

silabs.com | Building a more connected world.  Rev. 0.2  | 10 

8. Right click the Z3Light project in Simplicity Studio’s Project Explorer view and click Properties. Open C/C++ Build Settings and Under 
GNU ARM C Compiler, select Preprocessor. Add two preprocessor define symbols:  
• OS_CFG_COMPAT_INIT (Used in conjunction with LIB_MEM_CFG_HEAP_SIZE to allow the application to handle heap alloca-

tion)  
• SL_OPENTHREAD_RADIO_RX_BUFFER_COUNT=1 (This is a workaround for an issue where the Zigbee network cannot send 

beacons when the OpenThread network is up)  

Click Apply and Close to save.  

 

 

 
9. Open app.c file in the project folder and add the code below to the beginning of the file to initialize OpenThread. Save file and build 

the project.  

#if defined(OPENTHREAD_FTD) 
  #include <assert.h> 
  #include <openthread-core-config.h> 
  #include <openthread/config.h> 
 
  #include <openthread/ncp.h> 
  #include <openthread/diag.h> 
  #include <openthread/tasklet.h> 
 
  #include "openthread-system.h" 
 



 AN1418: Running  Zigbee, OpenThread, and Bluetooth Concurrently on a System-on-Chip 
 Converting a Zigbee Application into a Zigbee-OpenThread CMP Application 

 

silabs.com | Building a more connected world.  Rev. 0.2  | 11 

static otInstance *     sInstance       = NULL; 
 
void sl_ot_create_instance(void) 
{ 
  #if OPENTHREAD_CONFIG_MULTIPLE_INSTANCE_ENABLE 
  size_t   otInstanceBufferLength = 0; 
  uint8_t *otInstanceBuffer       = NULL; 
 
  // Call to query the buffer size 
  (void)otInstanceInit(NULL, &otInstanceBufferLength); 
 
  // Call to allocate the buffer 
  otInstanceBuffer = (uint8_t *)malloc(otInstanceBufferLength); 
  assert(otInstanceBuffer); 
 
  // Initialize OpenThread with the buffer 
  sInstance = otInstanceInit(otInstanceBuffer, &otInstanceBufferLength); 
  #else 
  sInstance = otInstanceInitSingle(); 
  #endif 
  assert(sInstance); 
} 
 
otInstance *otGetInstance(void) 
{ 
  return sInstance; 
} 
#endif //#if defined(OPENTHREAD_FTD) 
 

This application can now form a distributed Zigbee network or join any Zigbee network (centralized or distributed). It can also function as 
a leader, child, or router on the OpenThread network.  

Caution: It is imperative to ensure that both networks operate on the same radio channel.  

Any channel changes will need to be done in a controlled fashion. A channel change on one protocol’s network can cause the other 
protocol to stop working until its network is also switched to the same channel. It is important to note that only certain Zigbee device types 
(trust center) may initiate a channel change on the Zigbee side.  

3.1 Optional - Adding Bluetooth to the Concurrent Multiprotocol Application: 

This section describes the steps involved in adding Bluetooth to the above application. Search for and install the following components:  
• bluetooth_stack in the software components 

 
  



 AN1418: Running  Zigbee, OpenThread, and Bluetooth Concurrently on a System-on-Chip 
 Converting a Zigbee Application into a Zigbee-OpenThread CMP Application 

 

silabs.com | Building a more connected world.  Rev. 0.2  | 12 

• gatt_configuration  

 
• Bluetooth_feature_legacy_advertiser 

 
  



 AN1418: Running  Zigbee, OpenThread, and Bluetooth Concurrently on a System-on-Chip 
 Converting a Zigbee Application into a Zigbee-OpenThread CMP Application 

 

silabs.com | Building a more connected world.  Rev. 0.2  | 13 

• Bluetooth_feature_connection 

 
• bluetooth_feature_gatt – Install the GATT Client and GATT Server 

 



 AN1418: Running  Zigbee, OpenThread, and Bluetooth Concurrently on a System-on-Chip 
 Converting a Zigbee Application into a Zigbee-OpenThread CMP Application 

 

silabs.com | Building a more connected world.  Rev. 0.2  | 14 

 
• bluetooth_feature_legacy_scanner 

 
  



 AN1418: Running  Zigbee, OpenThread, and Bluetooth Concurrently on a System-on-Chip 
 Converting a Zigbee Application into a Zigbee-OpenThread CMP Application 

 

silabs.com | Building a more connected world.  Rev. 0.2  | 15 

 
• bluetooth_feature_sm 

 
• Bluetooth_feature_system 

 
  



 AN1418: Running  Zigbee, OpenThread, and Bluetooth Concurrently on a System-on-Chip 
 Converting a Zigbee Application into a Zigbee-OpenThread CMP Application 

 

silabs.com | Building a more connected world.  Rev. 0.2  | 16 

• zigbee_ble_dmp_cli 

 

In addition to the above, add the following snippet of code in the project app.c file. This sample code provides an implementation for the 
Bluetooth event handler (sl_bt_on_event function) 

 
#Include “sl_component_catalog.h” 
#ifdef SL_CATALOG_BLUETOOTH_PRESENT 
 
//------------------------------------------------------------------------------ 
// Bluetooth Event handler 
 
#include "zigbee_app_framework_event.h" 
#include "zigbee_app_framework_common.h" 
#include "sl_bluetooth.h" 
#include "sl_bluetooth_advertiser_config.h" 
#include "sl_bluetooth_connection_config.h" 
#include "sl_component_catalog.h" 
static uint8_t cli_adv_handle; 
void zb_ble_dmp_print_ble_address(uint8_t *address) 
{ 
  sl_zigbee_app_debug_print("\nBLE address: [%02X %02X %02X %02X %02X %02X]\n", 
                            address[5], address[4], address[3], 
                            address[2], address[1], address[0]); 
} 
 
void sl_bt_on_event(sl_bt_msg_t* evt) 
{ 
  switch (SL_BT_MSG_ID(evt->header)) { 
    case sl_bt_evt_system_boot_id: { 
      bd_addr ble_address; 
      uint8_t type; 
      sl_status_t status = sl_bt_system_hello(); 
      sl_zigbee_app_debug_println("BLE hello: %s", 
                                  (status == SL_STATUS_OK) ? "success" : "error"); 
 
      #define SCAN_WINDOW 5 
      #define SCAN_INTERVAL 10 
 
      status = sl_bt_scanner_set_parameters(sl_bt_scanner_scan_mode_active, 
                                            (uint16_t)SCAN_INTERVAL, 
                                            (uint16_t)SCAN_WINDOW); 



 AN1418: Running  Zigbee, OpenThread, and Bluetooth Concurrently on a System-on-Chip 
 Converting a Zigbee Application into a Zigbee-OpenThread CMP Application 

 

silabs.com | Building a more connected world.  Rev. 0.2  | 17 

 
      status = sl_bt_system_get_identity_address(&ble_address, &type); 
      zb_ble_dmp_print_ble_address(ble_address.addr); 
 
      status = sl_bt_advertiser_create_set(&cli_adv_handle); 
      if (status) { 
        sl_zigbee_app_debug_println("sl_bt_advertiser_create_set status 0x%02x", status); 
      } 
    } 
    break; 
 
    case sl_bt_evt_connection_opened_id: { 
      sl_zigbee_app_debug_println("sl_bt_evt_connection_opened_id \n"); 
      sl_bt_evt_connection_opened_t *conn_evt = 
        (sl_bt_evt_connection_opened_t*) &(evt->data); 
      sl_bt_connection_set_preferred_phy(conn_evt->connection, sl_bt_test_phy_1m, 0xff); 
      sl_zigbee_app_debug_println("BLE connection opened"); 
    } 
    break; 
    case sl_bt_evt_connection_phy_status_id: { 
      sl_bt_evt_connection_phy_status_t *conn_evt = 
        (sl_bt_evt_connection_phy_status_t *)&(evt->data); 
      // indicate the PHY that has been selected 
      sl_zigbee_app_debug_println("now using the %dMPHY\r\n", 
                                  conn_evt->phy); 
    } 
    break; 
    case sl_bt_evt_connection_closed_id: { 
      sl_bt_evt_connection_closed_t *conn_evt = 
        (sl_bt_evt_connection_closed_t*) &(evt->data); 
 
      sl_zigbee_app_debug_println( 
        "BLE connection closed, handle=0x%02x, reason=0x%02x", 
        conn_evt->connection, conn_evt->reason); 
    } 
    break; 
 
    case sl_bt_evt_scanner_legacy_advertisement_report_id: { 
      sl_zigbee_app_debug_print("Scan response, address type=0x%02x", 
                                evt->data.evt_scanner_legacy_advertisement_report.address_type); 
      zb_ble_dmp_print_ble_address(evt->data.evt_scanner_legacy_advertisement_report.address.addr); 
      sl_zigbee_app_debug_println(""); 
    } 
    break; 
 
    case sl_bt_evt_connection_parameters_id: { 
      sl_bt_evt_connection_parameters_t* param_evt = 
        (sl_bt_evt_connection_parameters_t*) &(evt->data); 
      sl_zigbee_app_debug_println( 
        "BLE connection parameters are updated, handle=0x%02x, interval=0x%02x, latency=0x%02x, 
timeout=0x%02x, security=0x%02x, txsize=0x%02x", 
        param_evt->connection, 
        param_evt->interval, 
        param_evt->latency, 
        param_evt->timeout, 
        param_evt->security_mode, 
        param_evt->txsize); 
    } 
    break; 
 
    case sl_bt_evt_gatt_service_id: { 
      sl_bt_evt_gatt_service_t* service_evt = 
        (sl_bt_evt_gatt_service_t*) &(evt->data); 
      uint8_t i; 
      sl_zigbee_app_debug_println( 
        "GATT service, conn_handle=0x%02x, service_handle=0x%04x", 
        service_evt->connection, service_evt->service); 



 AN1418: Running  Zigbee, OpenThread, and Bluetooth Concurrently on a System-on-Chip 
 Converting a Zigbee Application into a Zigbee-OpenThread CMP Application 

 

silabs.com | Building a more connected world.  Rev. 0.2  | 18 

      sl_zigbee_app_debug_print("UUID=["); 
      for (i = 0; i < service_evt->uuid.len; i++) { 
        sl_zigbee_app_debug_print("0x%04x ", service_evt->uuid.data[i]); 
      } 
      sl_zigbee_app_debug_println("]"); 
    } 
    break; 
 
    default: 
      break; 
  } 
} 
#endif //SL_CATALOG_BLUETOOTH_PRESENT 
 
 



Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
USA

www.silabs.com

IoT Portfolio
www.silabs.com/IoT

SW/HW
www.silabs.com/simplicity

Quality
www.silabs.com/quality

Support & Community
www.silabs.com/community

Simplicity Studio
One-click access to MCU and wireless 
tools, documentation, software, 
source code libraries & more. Available 
for Windows, Mac and Linux!

Disclaimer
Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software imple-
menters using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each 
specific device, and “Typical” parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon 
Labs reserves the right to make changes without further notice to the product information, specifications, and descriptions herein, and does not give warranties as to the 
accuracy or completeness of the included information. Without prior notification, Silicon Labs may update product firmware during the manufacturing process for security or 
reliability reasons. Such changes will not alter the specifications or the performance of the product. Silicon Labs shall have no liability for the consequences of use of the infor-
mation supplied in this document. This document does not imply or expressly grant any license to design or fabricate any integrated circuits. The products are not designed or 
authorized to be used within any FDA Class III devices, applications for which FDA premarket approval is required or Life Support Systems without the specific written consent 
of Silicon Labs. A “Life Support System” is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in 
significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used 
in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. Silicon Labs disclaims 
all express and implied warranties and shall not be responsible or liable for any injuries or damages related to use of a Silicon Labs product in such unauthorized applications.  
Note: This content may contain offensive terminology that is now obsolete. Silicon Labs is replacing these terms with inclusive language wherever possible. For more 
information, visit  www.silabs.com/about-us/inclusive-lexicon-project

Trademark Information
Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy 
Micro logo and combinations thereof, “the world’s most energy friendly microcontrollers”, Redpine Signals®, WiSeConnect , n-Link, ThreadArch®, EZLink®, EZRadio®, EZRadioPRO®, 
Gecko®, Gecko OS, Gecko OS Studio, Precision32®, Simplicity Studio®, Telegesis, the Telegesis Logo®, USBXpress® , Zentri, the Zentri logo and Zentri DMS, Z-Wave®, and others 
are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered 
trademark of ARM Limited. Wi-Fi is a registered trademark of the Wi-Fi Alliance. All other products or brand names mentioned herein are trademarks of their respective holders.


	1 Introduction
	2 Concurrent Multiprotocol (CMP) Sample Application (z3-light_ot-ftd)
	2.1 RTOS
	2.2 Command Line Interface
	2.2.1 OpenThread Commissioning


	3 Converting a Zigbee Application into a Zigbee-OpenThread CMP Application
	3.1 Optional - Adding Bluetooth to the Concurrent Multiprotocol Application:


