
AN961: Bringing Up Custom Devices for
the EFR32MG and EFR32FG Families

This application note describes how to initialize a piece of custom
hardware (a “device”) based on the EFR32MG and EFR32FG
families so that it interfaces correctly with a network stack. The
same procedures can be used to restore devices whose settings
have been corrupted or erased.

KEY POINTS

• Information required before board bring-up
• Setting manufacturing tokens
• Bootloading
• Performing functional testing

silabs.com | Building a more connected world. Copyright © 2022 by Silicon Laboratories Rev. 1.0

1. Introduction

Before an EFR32-based product such as a member of the Wireless Gecko or Flex Gecko families (hereafter EFR32) can be initialized
and tested, manufacturing tokens within the EFR32 User Data Page and the Lock Bits Page must be configured. Similarly, before any
application specific code can be programmed into the EFR32 flash, a board header needs to be created either manually or from the
Application Builder tool set, in EmberZNet 6.10.x and lower, or the Software Components tab in the Project Configurator, in EmberZNet
7.0 and higher. In order to perform these tasks, the product design team must know how the EFR32 is to be used in the wireless sys-
tem.

In particular, the design team must know the following:
• PCB Manufacturing-specific information (serial number, product numbers, EUI, and so on)
• Bootloader architecture (serial dataflash)
• External components in the RF Path (PA, LNA, and so on)
• 38.4 MHz crystal oscillator specification and a CTUNE value to match your crystal so you hit the center frequency
• Application security tokens (Keys, certificates, and so on)

Note: Even though the EFR32 flash is fully tested during production test, the flash contents in the main flash block are not set to a
known state before shipment. The User Data and Lock Bits pages are erased to all 0xFF, except in kits where they might be preloa-
ded with configuration values such as CTUNE.

AN961: Bringing Up Custom Devices for the EFR32MG and EFR32FG Families
Introduction

silabs.com | Building a more connected world. Rev. 1.0 | 2

2. EFR32 Wireless System

Once the hardware design of a custom device has been completed, the assembled product is ready for test and functional validation.
Before testing, developers must understand how the device will operate at both the device-level and system-level. The following table
describes the different items that developers should know before board bring-up.

Table 2.1. Information Needed Before Board Bring-Up

Information Required or
Optional

Description

Device Level

Product Information Optional Most products have unique serial numbers as well as generic product codes that might be
stored in the EFR32. This information might include items such as where and when the de-
vice was assembled, a product serial number, and product name.

Custom EUI Optional IEEE 64-bit unique number. Each EFR32 comes with an EUI programmed into the Device In-
formation Page. Customers that have their own IEEE address block can use it in place of the
Device Information Page’s EUI.

RF Component Infor-
mation

Required If the product uses external PAs or LNAs, then developers must know the pin-connections be-
tween the off-chip components and the EFR32. They should also understand the LNA Gain
as it will be used to offset the clear channel assessment (CCA) threshold.

Protocol-Specific In-
formation

Optional If developing a product using the Zigbee networking protocol, obtain a Zigbee-assigned man-
ufacturer code before testing the application.

System Level

Bootloader Option Required Silicon Labs offers several bootloading options for different system designs. For more infor-
mation, see UG103.6: Bootloader Fundamentals.

System Security Optional If device-level security is required for the product, determine necessary security settings and
keys before setting up the device.

As detailed in the above table, Silicon Labs offers its customers an opportunity to guarantee a device’s uniqueness on the network. In
addition, it allows customers a way to store product descriptions, manufacturer-specific information and device information.

AN961: Bringing Up Custom Devices for the EFR32MG and EFR32FG Families
EFR32 Wireless System

silabs.com | Building a more connected world. Rev. 1.0 | 3

3. Setting Manufacturing Tokens

EFR32 chips are delivered to customers with all memory erased. Exceptions to this rule are chips that come with kits. Before the
EFR32 chips can be used to run applications for a networking stack, the customer or a contract manufacturer/test house must prepare
them. Preparation includes programming the proper application and bootloader, if necessary, into the Main flash block, as well as pro-
gramming customer manufacturing tokens in the User Data block and Lock Bits block.

Manufacturing tokens are values programmed into special, non-volatile storage area of flash. The User Data page and Lock Bits page
contain data that manufacturers of EFR32-based devices can program. The Device Information Page also contains manufacturing to-
kens, but these tokens are fixed values that cannot be modified.

Note: Applications and the stack can read any manufacturing tokens at any time.

Simplicity Commander is a single, all-purpose tool to be used in a production environment. It is invoked using a simple Command-Line
Interface (CLI) that is also scriptable. Simplicity Commander enables customers to complete these essential tasks:
• Flash their own applications.
• Configure their own applications.
• Create binaries for production.

For more information, refer to UG162: Simplicity Commander Reference Guide.

The following two tables identify the User Data manufacturing tokens that OEMs and CMs may want to program at manufacturing time.
Refer to platform\base\hal\micro\cortexm3\efm32\token-manufacturing.h for the token definition, because it may differ from
these tables depending on the stack release version.

Note: Using tokens to set up manufacturing data in the Silicon Labs Flex SDK only works if you use the Silicon Labs Connect stack. If
you’re interfacing the RAIL library directly, you can set up similar values using the board-specific header files.

Silicon Labs recommends that User Data and Lock Bits page tokens be written using Simplicity Commander at the same time as pro-
gramming the main flash. Simplicity Commander also allows for patching and reprogramming the manufacturing blocks as many times
as necessary. (See UG162: Simplicity Commander Reference Guide for details.) The following two tables describe the location of each
manufacturing token as an offset to the starting address of the relevant block. For the most accurate and specific information about
where the flash regions begin in the address map of your chip, please consult your IC’s Reference Manual or Data Sheet.

Some situations may require that a manufacturing token be programmed at runtime from code running on the chip itself. For wireless
mesh network SDKs, the manufacturing token module of the HAL provides a token API to write the manufacturing tokens. However,
this API only writes manufacturing tokens that are in a completely erased state. If a manufacturing token must be reprogrammed, you
must use an external utility.
• The API on SoC platforms is halCommonSetMfgToken(token, data). The parameters for this API are the same as the API
halCommonSetToken(token, data).

• For EmberZNet PRO EZSP NCP platforms, the host API is ezspSetMfgToken(tokenId, tokenDataLength,
tokenData). (See UG100: EZSP Reference Guide for details.)

In the next table, the Connect stack only uses the following tokens (rows in bold):
• TOKEN_MFG_CUSTOM_EUI_64
• TOKEN_MFG_CTUNE

AN961: Bringing Up Custom Devices for the EFR32MG and EFR32FG Families
Setting Manufacturing Tokens

silabs.com | Building a more connected world. Rev. 1.0 | 4

Table 3.1. User Data Manufacturing Tokens for the EFR32

Offset from User Data
starting address

Series 1 Series 2 Size (Bytes) Name Description

0x0000 0x000C 2 TOKEN_MFG_CUSTOM_VERSION Version number to signify which revision of
User Data manufacturing tokens you are
using. This value should match CUR-
RENT_MFG_CUSTOM_VERSION which is
currently set to 0x01FE. CUR-
RENT_MFG_CUSTOM_VERSION is de-
fined in \hal\micro
\cortexm3\efm32\token-

manufacturing.h.

Usage: Recommended for all devices using
User Data manufacturing tokens.

0x0002 0x0002 8 TOKEN_MFG_CUSTOM_EUI_64 IEEE 64-bit address, unique for each ra-
dio. Entered and stored in little-endian.
Setting a value here overrides the EUI64
stored in the Device Information Page.
This is for customers who have pur-
chased their own address block from
IEEE.

WARNING: If this value is set "live," it
may not propagate to all levels of the
stack and some outgoing messages
may continue to use the default value.
Silicon Labs recommends forcing a re-
set after setting EUI64 and before start-
ing the networking stack.

Usage: Optionally set by device manu-
facturer if using custom EUI64 address
block.

0x0080 0x008C 16 TOKEN_MFG_SERIAL_NUMBER Serial Number value of the entire product in
binary representation.

Usage: Optionally set by device manufac-
turer.

0x001A 0x0010 16 TOKEN_MFG_STRING Optional device-specific string, for example,
the serial number.

Usage: Optionally set by device manufac-
turer to identify device.

0x002A 0x0020 16 TOKEN_MFG_BOARD_NAME Optional string identifying the board name
or hardware model.

Usage: Optionally set by device manufac-
turer to identify device.

AN961: Bringing Up Custom Devices for the EFR32MG and EFR32FG Families
Setting Manufacturing Tokens

silabs.com | Building a more connected world. Rev. 1.0 | 5

Offset from User Data
starting address

Series 1 Series 2 Size (Bytes) Name Description

0x003A 0x0030 2 TOKEN_MFG_MANUF_ID 16-bit ID denoting the manufacturer of this
device. When you are programming with
EmberZNet PRO, Silicon Labs recom-
mends setting this value to match your Zig-
bee-assigned manufacturer code, such as
in the stack’s emberSetManufacturer-
Code()API call.

Usage: Recommended for EmberZNet
PRO devices utilizing the stand-alone boot-
loader.

0x003C 0x0034 2 TOKEN_MFG_PHY_CONFIG Reserved for future use; should be left un-
programmed (0xFFFF).

0x0104 0x009C 1 TOKEN_MFG_LFXO_TUNE Manufacturing token space for Low Fre-
quency XTAL tune value.

0x0108 0x0104 4 TOKEN_MFG_KIT_SIGNATURE Manufacturing token space for Kit Signa-
ture.

Usage: Optionally set by device manufac-
turer for kit identification.

0x003E 0x0038 40 TOKEN_MFG_ASH_CONFIG ASH configuration information.

Usage: Optional for EmberZNet PRO devi-
ces acting as network coprocessors
(NCPs) for EZSP-UART. Not used by any
SoC use cases.

0x00F0 0x0060 2 TOKEN_MFG_SYNTH_FREQ_OFFSET Reserved for future use; should be left un-
programmed (0xFFFF). Radio synthesizer
frequency adjustments should be made us-
ing the TOKEN_MFG_CTUNE token instead.

AN961: Bringing Up Custom Devices for the EFR32MG and EFR32FG Families
Setting Manufacturing Tokens

silabs.com | Building a more connected world. Rev. 1.0 | 6

Offset from User Data
starting address

Series 1 Series 2 Size (Bytes) Name Description

0x00F6 0x0064 2 TOKEN_MFG_CCA_THRESHOLD Threshold(s) used for energy detection
Clear Channel Assessment (CCA). You
may want to override the default CCA
threshold(s) by setting this token if your de-
sign uses a Low-Noise Amplifier (LNA). An
LNA changes the gain on the radio input
which results in the radio “seeing” a differ-
ent energy level than if no LNA was used.

Bits 0-7: Set to the two’s complement rep-
resentation of the 2.4GHz band CCA
threshold in dBm below which a 2.4GHz
channel will be considered clear. Valid val-
ues are -128 through +126, inclusive. +127
is not valid and must not be used.

Bit 8: Set to 0 if the threshold in Bits 0-7 is
valid and should be used. Set to 1 (the
erased state) if those bits are invalid or
have not been set; in this case, the default
2.4GHz band threshold of -75 dBm will be
used.

Bits 9-15: Applies only to SubGHz-capable
PHYs. These bits can be used to override
the default CCA threshold that is applied to
channels in the SubGHz band (for exam-
ple, in GB868, the default SubGHz CCA
threshold is -87 dBm).

The interpretation of the SubGHz CCA
threshold value in bits 9..15 is as a 7-bit un-
signed value in the range 1..126 which is
negated to be the CCA threshold to apply
(that is, token values 1..126 in bits 15..9
map to SubGHz CCA thresholds of -1..-126
dBm respectively). The values 0 and 127
(the 7 bits all 0s or all 1s) are interpreted as
no override—the default SubGHz CCA
threshold will be used.

AN961: Bringing Up Custom Devices for the EFR32MG and EFR32FG Families
Setting Manufacturing Tokens

silabs.com | Building a more connected world. Rev. 1.0 | 7

Offset from User Data
starting address

Series 1 Series 2 Size (Bytes) Name Description

0x00F6
(Cont.)

0x0064
(Cont.)

TOKEN_MFG_CCA_THRESHOLD (Cont.) Example 1: A 2.4GHz design uses an LNA
that provides a gain of +12 dB. Add that
gain to the 2.4GHz default threshold of -75
dBm to get the dBm value for the token:
-75 + 12 = -63 dBm. The two’s complement
signed representation of -63 is 0xC1 so the
complete token value to be programmed is
0xFEC1.

Example 2: A GB868 SubGHz design uses
an LNA that provides a gain of +12 dB. Add
that gain to the GB868 SubGHz default
threshold of -87 dBm to get the negated
dBm value for the token: -87 + 12 = -75
dBm. Negating, the value 75 or 0x4B goes
into bits 9..15 of the token so the complete
token value to be programmed is 0x97FF.

Example 3: A dual-PHY design has an
LNA like Example 1 for 2.4GHz and an
LNA as in Example 2 for GB868 SubGHz.
The token values in those examples com-
bine to be 0x96C1 for this design.

0x00F8 0x0068 8 TOKEN_MFG_EZSP_STORAGE An 8-byte, general-purpose token that can
be set at manufacturing time and read by
the host microcontroller via EZSP’s
getMfgToken command frame.

Usage: Not required. Device manufacturer
may populate or leave empty as desired.

0x0100 0x0100 2 TOKEN_MFG_CTUNE This token is for tuning the EFR32 sys-
tem XTAL and consequently also tunes
the radio synthesizer frequency.

Usage: Optional. Only necessary if addi-
tional crystal tuning is desired to reach
optimal timing and frequency output.

0x0102 0x0070 2 TOKEN_MFG_XO_TUNE This token is for tuning an attached Si446x
transceiver's system crystal and conse-
quently also tunes its radio synthesizer fre-
quency. A value in the least-significant byte
in the range 0x00 to 0x7F will be applied to
the Si446x's GLOBAL_XO_TUNE property.
All other values are currently ignored and
reserved for future use.

AN961: Bringing Up Custom Devices for the EFR32MG and EFR32FG Families
Setting Manufacturing Tokens

silabs.com | Building a more connected world. Rev. 1.0 | 8

In the next table, the Connect stack only uses the following tokens for the Gecko Bootloader (rows in bold):
• TOKEN_MFG_SECURE_BOOTLOADER KEY
• TOKEN_MFG_SIGNED_BOOTLOADER KEY_X
• TOKEN_MFG_SECURE_BOOTLOADER KEY_Y

Table 3.2. Lock Bits Manufacturing Tokens for the EFR32

Offset from Lock Bits
starting address

(Series 1) (Series 2)
Size
(Bytes) Name Description

0x0204 0x032C 16 TOKEN_MFG_BOOTLOAD_AES_KEY Reserved for future use; should be left un-
programmed (all 0xFF bytes).

0x0214 0x0204 92 TOKEN_MFG_CBKE_DATA Defines the security data necessary for
Smart Energy devices. It is used for Certifi-
cate Based Key Exchange to authenticate
a device on a Smart Energy network. The
first 48 bytes are the device’s implicit certifi-
cate, the next 22 bytes are the Root Certifi-
cate Authority’s Public Key, the next 21
bytes are the device’s private key (the oth-
er half of the public/private key pair stored
in the certificate), and the last byte is a
flags field. The flags field should be set to
0x00 to indicate that the security data is ini-
tialized.

For more information on the Smart Energy
tokens, see document AN708: Setting
Smart Energy Certificates for Zigbee De-
vices.

Usage: Required by Smart Energy Profile
certified devices.

AN961: Bringing Up Custom Devices for the EFR32MG and EFR32FG Families
Setting Manufacturing Tokens

silabs.com | Building a more connected world. Rev. 1.0 | 9

Offset from Lock Bits
starting address

(Series 1) (Series 2)
Size
(Bytes) Name Description

0x0270 0x0270 20 TOKEN_MFG_INSTALLATION_CODE Defines the installation code for Zigbee de-
vices. The installation code is used to cre-
ate a pre-configured link key for initially
joining a Zigbee 3.0 or Zigbee Smart Ener-
gy (ZSE) network. The first 2 bytes are a
flags field, the next 16 bytes are the instal-
lation code, and the last 2 bytes are a
CRC.

Valid installation code sizes for ZSE devi-
ces are 6, 8, 12, or 16 bytes in length, but
Zigbee 3.0 devices are required to use 16-
byte installation codes. All unused bytes
should be 0xFF. The flags field should be
set as follows depending on the size of the
install code:

6 bytes = 0x0000

8 bytes = 0x0002

12 bytes = 0x0004

16 bytes = 0x0006

For more information on working with Zig-
bee installation codes, see document
AN1089: Using Installation Codes with Zig-
bee Devices.

For more information on the Smart Energy
tokens, see document AN708: Setting
Smart Energy Certificates for Zigbee Devi-
ces.

Usage: Required by Zigbee 3.0 and Zigbee
Smart Energy compliant devices.

0x0284 0x0260 2 TOKEN_MFG_SECURITY_CONFIG (EmberZNet PRO only) Defines the securi-
ty policy for application calls into the stack
to retrieve key values. The API calls ember-
GetKey() and emberGetKeyTableEntry()
are affected by this setting. This prevents a
running application from reading the actual
encryption key values from the stack. This
token may also be set at runtime with em-
berSetMfgSecurityConfig() (see that API for
more information). The stack utilizes the
emberGetMfgSecurityConfig() to determine
the current security policy for encryption
keys. The token values are mapped to the
EmberKeySettings stack data type (defined
in ember-types.h). See the following table
for the mapping of token values to the
stack values.

Usage: Optional for EmberZNet NCP devi-
ces wishing to limit access to security data
over the serial interface.

AN961: Bringing Up Custom Devices for the EFR32MG and EFR32FG Families
Setting Manufacturing Tokens

silabs.com | Building a more connected world. Rev. 1.0 | 10

Offset from Lock Bits
starting address

(Series 1) (Series 2)
Size
(Bytes) Name Description

0x0286 0x0286 16 TOKEN_MFG_SECURE_BOOTLOADER_KEY This token holds the 128 bit key used by
the secure bootloader to decrypt en-
crypted Ember Bootloader (EBL) and
Gecko Bootloader (GBL) files. A value of
all F’s is considered an invalid key and
will not be used by the secure bootload-
er.

Usage: Required only if using one of the
Ember bootloaders with the “secure”
prefix, or the Gecko Bootloader with
support for encrypted GBL files ena-
bled. See UG266: Gecko Bootloader
User Guide for GSDK 3.2 and Lower or
UG489: Silicon Labs Gecko Bootloader
User's Guide for GSDK 4.0 and Higher,
for more information on the Gecko Boot-
loader.

0x0296 0x0298 148 TOKEN_MFG_CBKE_283K1_DATA Defines the security data necessary for
Smart Energy 1.2 devices using the ECC
283k1 curve. It is used for Certificate
Based Key Exchange to authenticate a de-
vice on a Smart Energy network. The first
74 bytes are the device’s implicit certificate,
the next 37 bytes are the Root Certificate
Authority’s Public Key, the next 36 bytes
are the device’s private key (the other half
of the public/private key pair stored in the
certificate), and the last byte is a flags field.
The flags field should be set to 0x00 to indi-
cate that the security data is initialized.

For more information on the Smart Energy
tokens, see document AN708: Setting
Smart Energy Certificates for Zigbee Devi-
ces.

Usage: Required for Zigbee Smart Energy
1.2 devices.

0x34A 0x034C 32 TOKEN_MFG_SIGNED_BOOTLOADER_KEY_X These tokens hold the 256-bit X and Y
components of the ECDSA P-256 public
key used by the Gecko bootloader to
perform cryptographic signature verifi-
cation of signed GBL files (“secure
bootload”) and signed application im-
ages (“secure boot”). A value of all F’s
is considered an invalid key. See
UG266: Gecko Bootloader User Guide
for GSDK 3.2 and Lower or UG489: Sili-
con Labs Gecko Bootloader User's
Guide for GSDK 4.0 and Higher, for
more information on the Gecko Boot-
loader.

Usage: Required only if using the Gecko
bootloader with secure boot or support
for signed GBL files is enabled.

0x36A 0x036C 32 TOKEN_MFG_SIGNED_BOOTLOADER_KEY_Y

AN961: Bringing Up Custom Devices for the EFR32MG and EFR32FG Families
Setting Manufacturing Tokens

silabs.com | Building a more connected world. Rev. 1.0 | 11

Offset from Lock Bits
starting address

(Series 1) (Series 2)
Size
(Bytes) Name Description

0x038A 0x038C 34 TOKEN_MFG_THREAD_JOIN_KEY This token is for saving the Join Key. The
Join Key has a max length of 32 Bytes.

Usage: Optional. Use with the Silicon Labs
Thread Stack only.

0x0448 0x03B0 16 TOKEN_MFG_NVM3_CRYPTO_KEY Manufacturer Token space for Storing
NVM3 Crypto Key.

Table 3.3. Mapping of EmberKeySettings to TOKEN_MFG_SECURITY_CONFIG

EmberKeySettings Value TOKEN_MFG_SECURITY_CONFIG Value

EMBER_KEY_PERMISSIONS_NONE 0x0000

EMBER_KEY_PERMISSIONS_READING_ALLOWED 0x00FF

EMBER_KEY_PERMISSIONS_HASHING_ALLOWED 0xFF00

AN961: Bringing Up Custom Devices for the EFR32MG and EFR32FG Families
Setting Manufacturing Tokens

silabs.com | Building a more connected world. Rev. 1.0 | 12

4. Testing

At this point, you may want to perform a simple send/receive test on the new device to determine its range and generally test its radio
functionality.

Note: Zigbee EmberZNet SDK 7.0 introduced a new component-based architecture, along with a Project Configurator and other tools
to replace AppBuilder and plugin configuration. In general, the new software components are comparable to the plugins. For more infor-
mation, see AN1301: Transitioning from Zigbee EmberZNet SDK 6.x to SDK 7.x.

For customers who are using mature applications with the EmberZNet PRO SDK, Silicon Labs recommends using the manufacturing
test library (also known as “mfglib”), a set of APIs or NCP serial commands provided for IEEE 802.15.4-based functional testing of the
radio from within a normal EmberZNet PRO application for an SoC or host platform. This library is typically used in the low-volume and
high-volume phases of testing and manufacturing, where additional programming steps for a dedicated RF test application add unnec-
essary test time. For SoC applications based on EmberZNet PRO, as well as for custom Zigbee NCP builds through the NCP Frame-
work, a “Manufacturing Library” component/plugin is provided as part of the corresponding application framework to enable this func-
tionality in the build. The user must then add code to the application to invoke these functions (described in stack/include/mfglib.has
well as UG100: EZSP Reference Guide) in the desired context. A serial command line-driven interface to these functions is available in
EmberZNet PRO SoC and Host applications via the Manufacturing Library CLI component/plugin, and an over-the-air (OTA)-driven in-
terface is available in EmberZNet PRO SoC applications via the Manufacturing Library OTA component/plugin.

If the new device fails to successfully transmit or receive packets with the known good device, you may want to attach the new device
to a signal generator or network analyzer to verify that generated packets on the target frequency can be received and that the new
device can transmit accurately at the center frequency of the selected channel. Other tests may be required for FCC or CE compliance
testing.

Note: The manufacturing test library is not available with Silicon Labs Connect.

AN961: Bringing Up Custom Devices for the EFR32MG and EFR32FG Families
Testing

silabs.com | Building a more connected world. Rev. 1.0 | 13

IoT Portfolio
www.silabs.com/products

Quality
www.silabs.com/quality

Support & Community
www.silabs.com/community

Smart. Connected.
Energy-Friendly.

Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
USA

www.silabs.com

Disclaimer
Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software imple-
menters using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each
specific device, and “Typical” parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon
Labs reserves the right to make changes without further notice to the product information, specifications, and descriptions herein, and does not give warranties as to the
accuracy or completeness of the included information. Without prior notification, Silicon Labs may update product firmware during the manufacturing process for security or
reliability reasons. Such changes will not alter the specifications or the performance of the product. Silicon Labs shall have no liability for the consequences of use of the infor-
mation supplied in this document. This document does not imply or expressly grant any license to design or fabricate any integrated circuits. The products are not designed or
authorized to be used within any FDA Class III devices, applications for which FDA premarket approval is required or Life Support Systems without the specific written consent
of Silicon Labs. A “Life Support System” is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in
significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used
in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. Silicon Labs disclaims
all express and implied warranties and shall not be responsible or liable for any injuries or damages related to use of a Silicon Labs product in such unauthorized applications.
Note: This content may contain offensive terminology that is now obsolete. Silicon Labs is replacing these terms with inclusive language wherever possible. For more
information, visit www.silabs.com/about-us/inclusive-lexicon-project

Trademark Information
Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy
Micro logo and combinations thereof, “the world’s most energy friendly microcontrollers”, Redpine Signals®, WiSeConnect , n-Link, ThreadArch®, EZLink®, EZRadio®, EZRadioPRO®,
Gecko®, Gecko OS, Gecko OS Studio, Precision32®, Simplicity Studio®, Telegesis, the Telegesis Logo®, USBXpress® , Zentri, the Zentri logo and Zentri DMS, Z-Wave®, and others
are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered
trademark of ARM Limited. Wi-Fi is a registered trademark of the Wi-Fi Alliance. All other products or brand names mentioned herein are trademarks of their respective holders.

	1. Introduction
	2. EFR32 Wireless System
	3. Setting Manufacturing Tokens
	4. Testing

