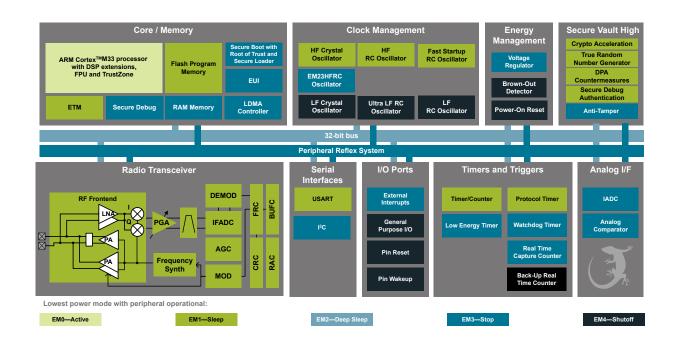


# EFR32MG21B Gecko 多协议无线 SoC 产品系列数据表



EFR32MG21B SoC 是无线 Gecko 产品组合的组成部分。 EFR32MG21BSoC 是实现 IoT 设备上节能的多协议、多波段连网 的理想之选。


这款单芯片解决方案结合了 80 MHz ARM Cortex-M33 和高性能 2.4 GHz 无线电,以及集成的 硬件安全引擎,旨在为 IoT 连接应用提供高度安全且节能的无线 SoC。

EFR32MG21B 应用包括:

- · IoT 多协议设备
- 照明
- 联网家庭
- 网关和数字助手
- 建筑自动化及安全

#### 主要特点

- 32 位 ARM® Cortex®-M33 内核,最高工作频率为 80 MHz
- 最高 1024 kB 闪存和 96 kB RAM
- 12 信道外围设备反射系统,可实现 MCU 外围设备的自主交互
- 集成 PA, TX 功率高达 20 dBm (2.4 GHz)
- 强大的外围设备, 4x4 QFN 封装内多达 20 个 GPIO



# 1. 功能列表

下方列出了 EFR32MG21B 的特色功能。

#### · 低功耗无线片上系统

- 高性能 32 位 80 MHz ARM Cortex<sup>®</sup>-M33, 带有 DSP 指令和浮点单元,可高效处理信号
- 高达 1024 kB 的的闪存程序存储器
- 高达 96 kB 的 RAM 数据存储器
- 2.4 GHz 无线电操作
- TX 功耗高达 20 dBm

#### ・低能耗

- 8.8 2.4 GHz 时 mA RX 电流 (1 Mbps GFSK)
- 9.4 2.4 GHz 时 mA RX 电流 (250 kbps O-QPSK DSSS)
- 9.3 2.4 GHz 和 0 dBm 输出功率时 mA TX 电流
- 33.8 2.4 GHz 和 10 dBm 输出功率时 mA TX 电流
- 50.9 主动模式 (EM0) 下的 μA/ MHz
- 5.0 µA EM2 深度睡眠电流

(96 kB RAM 保留和通过 LFXO 运行的 RTC)

• 4.5 µA EM2 深度睡眠电流

(16 kB RAM 保留和通过 LFXO 运行的 RTC)

#### ・高接收器性能

- -104.5 dBm 灵敏度 @ 250 kbps O-QPSK DSSS
- -97.5 dBm 灵敏度 @ 1 Mbit/s GFSK
- -94.4 dBm 灵敏度 @ 2 Mbit/s GFSK
- -104.9 dBm 灵敏度 @ 125 kbps GFSK

#### ・支持的调制格式

- GFSK
- OQPSK

#### ・协议支持

- 蓝牙低功耗 (Bluetooth 5)
- Zigbee
- Thread

# ・可广泛选择的 MCU 外围设备

- 12 位 1 Msps SAR 模数转换器 (ADC)
- 2 个 模拟比较器 (ACMP)
- 多达 20 个通用 I/O 引脚, 具有输出状态保持和异步中断功能
- 8 信道 DMA 控制器
- 12 信道外围反射系统 (PRS)
- 3 个 16 位定时器/计数器
  - 3 个比较/捕获/PWM 信道
- 1 个 32 位定时器/计数器
  - 3 个比较/捕获/PWM 信道
- 32 位实时计数器
- 24 位低功耗定时器, 用于产生波形
- 2 个看门狗定时器
- 3 个通用同步/异步接收器/发送器 (UART/SPI/SmartCard(ISO 7816)/ IrDA/I<sup>2</sup>S)
- 2 个 I<sup>2</sup>C 接口, 支持 SMBus

#### ・广泛的工作范围

- 1.71 V 至 3.8 V 单电源
- -40°C 至 125°C 环境温度

#### · Secure Vault High

- AES128/192/256、ChaCha20-Poly1305、SHA-1、 SHA-2/256/384/512、ECDSA+ECDH(P-192、P-256、P-384、 P-521)、Ed25519和 Curve25519、J-PAKE、PBKDF2的硬件加密加速
- 真随机数发生器 (TRNG)
- ARM® TrustZone®
- 安全启动(根信任安全加载程序)
- 安全调试解锁
- DPA 对策
- 使用 PUF 进行安全密钥管理
- 防篡改
- 安全证明

#### ・QFN32 4x4 mm 封装

• 0.4 mm 间距

# 2. Ordering Information

**Table 2.1. Ordering Information** 

| Ordering Code            | Protocol Stack                                                        | Max TX Power @ Frequency Band | Flash<br>(kB) | RAM<br>(kB) | Secure<br>Vault | GPIO | Pack-<br>age |
|--------------------------|-----------------------------------------------------------------------|-------------------------------|---------------|-------------|-----------------|------|--------------|
| EFR32MG21B010F1024IM32-B | <ul><li>Bluetooth</li><li>5.1</li><li>Zigbee</li><li>Thread</li></ul> | 10 dBm @ 2.4 GHz              | 1024          | 96          | High            | 20   | QFN32        |
| EFR32MG21B010F512IM32-B  | <ul><li>Bluetooth</li><li>5.1</li><li>Zigbee</li><li>Thread</li></ul> | 10 dBm @ 2.4 GHz              | 512           | 64          | High            | 20   | QFN32        |
| EFR32MG21B010F768IM32-B  | <ul><li>Bluetooth</li><li>5.1</li><li>Zigbee</li><li>Thread</li></ul> | 10 dBm @ 2.4 GHz              | 768           | 64          | High            | 20   | QFN32        |
| EFR32MG21B020F1024IM32-B | <ul><li>Bluetooth</li><li>5.1</li><li>Zigbee</li><li>Thread</li></ul> | 20 dBm @ 2.4 GHz              | 1024          | 96          | High            | 20   | QFN32        |
| EFR32MG21B020F512IM32-B  | <ul><li>Bluetooth</li><li>5.1</li><li>Zigbee</li><li>Thread</li></ul> | 20 dBm @ 2.4 GHz              | 512           | 64          | High            | 20   | QFN32        |
| EFR32MG21B020F768IM32-B  | <ul><li>Bluetooth</li><li>5.1</li><li>Zigbee</li><li>Thread</li></ul> | 20 dBm @ 2.4 GHz              | 768           | 64          | High            | 20   | QFN32        |

# **Table of Contents**

| 2. Ordering Information  3. System Overview.  3.1 Introduction  3.2 Radio  3.2.1 Antenna Interface  3.2.2 Fractional-N Frequency Synthesizer  3.2.3 Receiver Architecture  3.2.4 Transmitter Architecture  3.2.5 Packet and State Trace  3.2.6 Data Buffering.  3.2.7 Radio Controller (RAC).  3.3 General Purpose Input/Output (GPIO)  3.4 Clocking. |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3.1 Introduction                                                                                                                                                                                                                                                                                                                                      |
| 3.2 Radio 3.2.1 Antenna Interface 3.2.2 Fractional-N Frequency Synthesizer 3.2.3 Receiver Architecture 3.2.4 Transmitter Architecture 3.2.5 Packet and State Trace 3.2.6 Data Buffering. 3.2.7 Radio Controller (RAC). 3.3 General Purpose Input/Output (GPIO)                                                                                        |
| 3.2.1 Antenna Interface 3.2.2 Fractional-N Frequency Synthesizer 3.2.3 Receiver Architecture 3.2.4 Transmitter Architecture 3.2.5 Packet and State Trace 3.2.6 Data Buffering. 3.2.7 Radio Controller (RAC).                                                                                                                                          |
| 3.2.3 Receiver Architecture 3.2.4 Transmitter Architecture 3.2.5 Packet and State Trace 3.2.6 Data Buffering. 3.2.7 Radio Controller (RAC).                                                                                                                                                                                                           |
| 3.2.5 Packet and State Trace                                                                                                                                                                                                                                                                                                                          |
| 3.2.7 Radio Controller (RAC)                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                       |
| 3.4.1 Clock Management Unit (CMU)                                                                                                                                                                                                                                                                                                                     |
| 3.5 Counters/Timers and PWM                                                                                                                                                                                                                                                                                                                           |
| 3.5.2 Low Energy Timer (LETIMER)                                                                                                                                                                                                                                                                                                                      |
| 3.5.4 Back-Up Real Time Counter (BURTC)                                                                                                                                                                                                                                                                                                               |
| <ul> <li>3.6 Communications and Other Digital Peripherals</li> <li>3.6.1 Universal Synchronous/Asynchronous Receiver/Transmitter (USART 3.6.2 Inter-Integrated Circuit Interface (I<sup>2</sup>C)</li> </ul>                                                                                                                                          |
| 3.6.3 Peripheral Reflex System (PRS)                                                                                                                                                                                                                                                                                                                  |
| 3.7 Secure Vault High Features                                                                                                                                                                                                                                                                                                                        |
| 3.7.3 True Random Number Generator                                                                                                                                                                                                                                                                                                                    |
| 3.7.5 DPA Countermeasures                                                                                                                                                                                                                                                                                                                             |
| 3.7.7 Anti-Tamper                                                                                                                                                                                                                                                                                                                                     |
| 3.8 Analog                                                                                                                                                                                                                                                                                                                                            |
| 3.9 Reset Management Unit (RMU)                                                                                                                                                                                                                                                                                                                       |
| 3.10 Core and Memory                                                                                                                                                                                                                                                                                                                                  |

|    | 3.10.3 Linked Direct Memory Access Controller (LDMA)       | .13  |
|----|------------------------------------------------------------|------|
|    | 3.11 Memory Map                                            | .14  |
|    | 3.12 Configuration Summary                                 | .15  |
| 4. | Electrical Specifications                                  | . 16 |
|    | 4.1 Electrical Characteristics                             |      |
|    | 4.1.1 Absolute Maximum Ratings                             |      |
|    | 4.1.2 General Operating Conditions                         |      |
|    | 4.1.3 Thermal Characteristics                              |      |
|    | 4.1.4 Current Consumption                                  |      |
|    | 4.1.5 2.4 GHz RF Transceiver Characteristics               |      |
|    | 4.1.6 Flash Characteristics                                |      |
|    | 4.1.7 Wake Up, Entry, and Exit times                       | .41  |
|    | 4.1.8 Oscillators                                          | .42  |
|    | 4.1.9 GPIO Pins (3V GPIO pins)                             | .47  |
|    | 4.1.10 Analog to Digital Converter (ADC)                   |      |
|    | 4.1.11 Analog Comparator (ACMP)                            |      |
|    | 4.1.12 Temperature Sense                                   |      |
|    | 4.1.13 Brown Out Detectors                                 |      |
|    | 4.1.14 USART SPI Master Timing                             |      |
|    | 4.1.15 USART SPI Slave Timing                              |      |
|    | 4.1.16 I2C Electrical Specifications                       |      |
|    | 4.1.18 Crypto Operation Timing for SE Manager API.         |      |
|    | 4.1.19 Crypto Operation Average Current for SE Manager API |      |
|    | 4.2 Typical Performance Curves                             |      |
|    | 4.2.1 Supply Current                                       |      |
|    | 4.2.2 2.4 GHz Radio                                        |      |
| _  |                                                            |      |
|    | Typical Connection Diagrams                                |      |
|    | 5.1 Power                                                  |      |
|    | 5.2 RF Matching Networks                                   |      |
|    | 5.2.1 2.4 GHz 0 dBm Matching Network                       |      |
|    | 5.2.2 2.4 GHz 10 dBm Matching Network                      |      |
|    | 5.2.3 2.4 GHz 20 dBm Matching Network                      |      |
|    | 5.3 Other Connections                                      | .73  |
| 6. | Pin Definitions                                            | 74   |
|    | 6.1 QFN32 2.4GHz Device Pinout                             | .74  |
|    | 6.2 Alternate Function Table                               |      |
|    | 6.3 Analog Peripheral Connectivity                         | .76  |
|    | 6.4 Digital Peripheral Connectivity                        |      |
| _  |                                                            |      |
| 7. | QFN32 Package Specifications                               |      |
|    | 7.1 QFN32 Package Dimensions                               | .80  |
|    | 7.2 OFN32 PCB Land Pattern                                 | 82   |

|   | 7.3 QFN32 Package Marking |  |  |  |  |  |  |  |  |  |  |  |  | .8 |
|---|---------------------------|--|--|--|--|--|--|--|--|--|--|--|--|----|
| 8 | Revision History          |  |  |  |  |  |  |  |  |  |  |  |  | 8  |

# 3. System Overview

#### 3.1 Introduction

The EFR32 product family combines an energy-friendly MCU with a high performance radio transceiver. The devices are well suited for secure connected IoT multiprotocol devices requiring high performance and low energy consumption. This section gives a short introduction to the full radio and MCU system. The detailed functional description can be found in the EFR32xG21 Reference Manual.

A block diagram of the EFR32MG21B family is shown in Figure 3.1 Detailed EFR32MG21B Block Diagram on page 7. The diagram shows a superset of features available on the family, which vary by OPN. For more information about specific device features, consult Ordering Information.

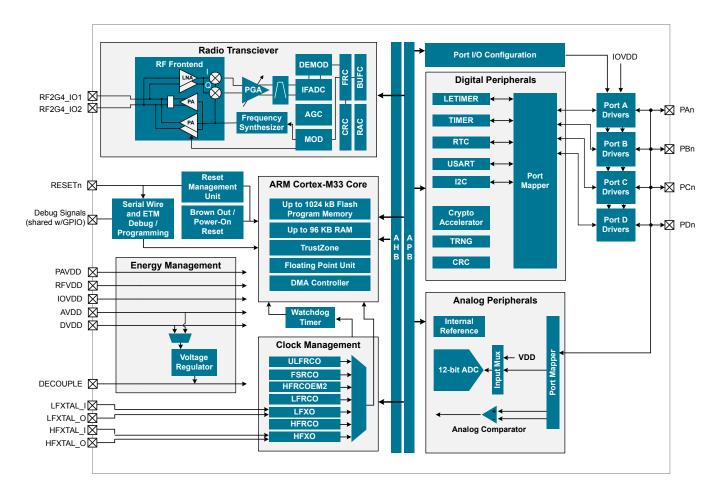



Figure 3.1. Detailed EFR32MG21B Block Diagram

#### 3.2 Radio

The EFR32MG21B features a highly configurable radio transceiver supporting Zigbee, Thread, and Bluetooth Low Energy wireless protocols.

#### 3.2.1 Antenna Interface

The 2.4 GHz antenna interface consists of two single-ended pins (RF2G4\_IO1 and RF2G4\_IO2) that interface directly to two LNAs and two 10 dBm PAs. For devices that support 20 dBm, these pins also interface to the 20 dBm on-chip balun. Integrated switches select either RF2G4\_IO1 or RF2G4\_IO2 to be the active path.

The external components and power supply connections for the antenna interface typical applications are shown in the RF Matching Networks section.

#### 3.2.2 Fractional-N Frequency Synthesizer

The EFR32MG21B contains a high performance, low phase noise, fully integrated fractional-N frequency synthesizer. The synthesizer is used in receive mode to generate the LO frequency for the down-conversion mixer. It is also used in transmit mode to directly generate the modulated RF carrier.

The fractional-N architecture provides excellent phase noise performance, frequency resolution better than 100 Hz, and low energy consumption. The synthesizer's fast frequency settling allows for very short receiver and transmitter wake up times to reduce system energy consumption.

#### 3.2.3 Receiver Architecture

The EFR32MG21B uses a low-IF receiver architecture, consisting of a Low-Noise Amplifier (LNA) followed by an I/Q down-conversion mixer. The I/Q signals are further filtered and amplified before being sampled by the IF analog-to-digital converter (IFADC).

The IF frequency is configurable from 150 kHz to 1371 kHz. The IF can further be configured for high-side or low-side injection, providing flexibility with respect to known interferers at the image frequency.

The Automatic Gain Control (AGC) module adjusts the receiver gain to optimize performance and avoid saturation for excellent selectivity and blocking performance. The 2.4 GHz radio is calibrated at production to improve image rejection performance.

Demodulation is performed in the digital domain. The demodulator performs configurable decimation and channel filtering to allow receive bandwidths ranging from 0.1 to 2530 kHz. High carrier frequency and baud rate offsets are tolerated by active estimation and compensation. Advanced features supporting high quality communication under adverse conditions include forward error correction by block and convolutional coding as well as Direct Sequence Spread Spectrum (DSSS).

A Received Signal Strength Indicator (RSSI) is available for signal quality metrics, for level-based proximity detection, and for RF channel access by Collision Avoidance (CA) or Listen Before Talk (LBT) algorithms. An RSSI capture value is associated with each received frame and the dynamic RSSI measurement can be monitored throughout reception.

#### 3.2.4 Transmitter Architecture

The EFR32MG21B uses a direct-conversion transmitter architecture. For constant envelope modulation formats, the modulator controls phase and frequency modulation in the frequency synthesizer. Transmit symbols or chips are optionally shaped by a digital shaping filter. The shaping filter is fully configurable, including the BT product, and can be used to implement Gaussian or Raised Cosine shaping.

Carrier Sense Multiple Access - Collision Avoidance (CSMA-CA) or Listen Before Talk (LBT) algorithms can be automatically timed by the EFR32MG21B. These algorithms are typically defined by regulatory standards to improve inter-operability in a given bandwidth between devices that otherwise lack synchronized RF channel access.

#### 3.2.5 Packet and State Trace

The EFR32MG21B Frame Controller has a packet and state trace unit that provides valuable information during the development phase. It features:

- · Non-intrusive trace of transmit data, receive data and state information
- Data observability on a single-pin UART data output, or on a two-pin SPI data output
- · Configurable data output bitrate / baudrate
- · Multiplexed transmitted data, received data and state / meta information in a single serial data stream

#### 3.2.6 Data Buffering

The EFR32MG21B features an advanced Radio Buffer Controller (BUFC) capable of handling up to 4 buffers of adjustable size from 64 bytes to 4096 bytes. Each buffer can be used for RX, TX or both. The buffer data is located in RAM, enabling zero-copy operations.

## 3.2.7 Radio Controller (RAC)

The Radio Controller controls the top level state of the radio subsystem in the EFR32MG21B. It performs the following tasks:

- · Precisely-timed control of enabling and disabling of the receiver and transmitter circuitry
- · Run-time calibration of receiver, transmitter and frequency synthesizer
- Detailed frame transmission timing, including optional LBT or CSMA-CA

#### 3.3 General Purpose Input/Output (GPIO)

EFR32MG21B has up to 20 General Purpose Input/Output pins. Each GPIO pin can be individually configured as either an output or input. More advanced configurations including open-drain, open-source, and glitch-filtering can be configured for each individual GPIO pin. The GPIO pins can be overridden by peripheral connections, like SPI communication. Each peripheral connection can be routed to several GPIO pins on the device. The input value of a GPIO pin can be routed through the Peripheral Reflex System to other peripherals. The GPIO subsystem supports asynchronous external pin interrupts.

All of the pins on ports A and port B are EM2 capable. These pins may be used by Low-Energy peripherals in EM2/3 and may also be used as EM2/3 pin wake-ups. Pins on ports C and D are latched/retained in their current state when entering EM2 until EM2 exit upon which internal peripherals could once again drive those pads.

A few GPIOs also have EM4 wake functionality. These pins are listed in .

## 3.4 Clocking

#### 3.4.1 Clock Management Unit (CMU)

The Clock Management Unit controls oscillators and clocks in the EFR32MG21B. Individual enabling and disabling of clocks to all peripheral modules is performed by the CMU. The CMU also controls enabling and configuration of the oscillators. A high degree of flexibility allows software to optimize energy consumption in any specific application by minimizing power dissipation in unused peripherals and oscillators.

#### 3.4.2 Internal and External Oscillators

The EFR32MG21B supports two crystal oscillators and fully integrates five RC oscillators, listed below.

- A high frequency crystal oscillator (HFXO) with integrated load capacitors, tunable in small steps, provides a precise timing reference for the MCU and RF synthesizer. The HFXO provides excellent RF clocking performance using a 38.4 MHz crystal. The HFXO can also support an external clock source such as a TCXO for applications that require an extremely accurate clock frequency over temperature.
- A 32.768 kHz crystal oscillator (LFXO) provides an accurate timing reference for low energy modes.
- An integrated high frequency RC oscillator (HFRCO) is available for the MCU system, when crystal accuracy is not required. The HFRCO employs fast start-up at minimal energy consumption combined with a wide frequency range, from 1 MHz to 80 MHz.
- An integrated high frequency RC oscillator (HFRCOEM2) runs down to EM2 and is available for timing the general-purpose ADC and the Serial Wire Viewer port with a wide frequency range.
- · An integrated fast start-up RC oscillator (FSRCO) that runs at a fixed 20 MHz
- An integrated low frequency 32.768 kHz RC oscillator (LFRCO) for low power operation where high accuracy is not required.
- An integrated ultra-low frequency 1 kHz RC oscillator (ULFRCO) is available to provide a timing reference at the lowest energy consumption in low energy modes.

#### 3.5 Counters/Timers and PWM

#### 3.5.1 Timer/Counter (TIMER)

TIMER peripherals keep track of timing, count events, generate PWM outputs and trigger timed actions in other peripherals through the Peripheral Reflex System (PRS). The core of each TIMER is a 16-bit or 32-bit counter with up to 3 compare/capture channels. Each channel is configurable in one of three modes. In capture mode, the counter state is stored in a buffer at a selected input event. In compare mode, the channel output reflects the comparison of the counter to a programmed threshold value. In PWM mode, the TIMER supports generation of pulse-width modulation (PWM) outputs of arbitrary waveforms defined by the sequence of values written to the compare registers. In addition some timers offer dead-time insertion.

See 3.12 Configuration Summary for information on the feature set of each timer.

#### 3.5.2 Low Energy Timer (LETIMER)

The unique LETIMER is a 24-bit timer that is available in energy mode EM0 Active, EM1 Sleep, EM2 Deep Sleep, and EM3 Stop. This allows it to be used for timing and output generation when most of the device is powered down, allowing simple tasks to be performed while the power consumption of the system is kept at an absolute minimum. The LETIMER can be used to output a variety of waveforms with minimal software intervention. The LETIMER is connected to the Peripheral Reflex System (PRS), and can be configured to start counting on compare matches from other peripherals such as the Real Time Clock.

#### 3.5.3 Real Time Clock with Capture (RTCC)

The Real Time Clock with Capture (RTCC) is a 32-bit counter providing timekeeping down to EM3. The RTCC can be clocked by any of the on-board low-frequency oscillators, and it is capable of providing system wake-up at user defined intervals.

A secondary RTC is used by the RF protocol stack for event scheduling, leaving the primary RTCC block available exclusively for application software.

#### 3.5.4 Back-Up Real Time Counter (BURTC)

The Back-Up Real Time Counter (BURTC) is a 32-bit counter providing timekeeping in all energy modes, including EM4. The BURTC can be clocked by any of the on-board low-frequency oscillators, and it is capable of providing system wake-up at user defined invervals.

#### 3.5.5 Watchdog Timer (WDOG)

The watchdog timer can act both as an independent watchdog or as a watchdog synchronous with the CPU clock. It has windowed monitoring capabilities, and can generate a reset or different interrupts depending on the failure mode of the system. The watchdog can also monitor autonomous systems driven by the Peripheral Reflex System (PRS).

#### 3.6 Communications and Other Digital Peripherals

#### 3.6.1 Universal Synchronous/Asynchronous Receiver/Transmitter (USART)

The Universal Synchronous/Asynchronous Receiver/Transmitter is a flexible serial I/O module. It supports full duplex asynchronous UART communication with hardware flow control as well as RS-485, SPI, MicroWire and 3-wire. It can also interface with devices supporting:

- · ISO7816 SmartCards
- IrDA
- I<sup>2</sup>S

#### 3.6.2 Inter-Integrated Circuit Interface (I<sup>2</sup>C)

The I<sup>2</sup>C module provides an interface between the MCU and a serial I<sup>2</sup>C bus. It is capable of acting as both a master and a slave and supports multi-master buses. Standard-mode, fast-mode and fast-mode plus speeds are supported, allowing transmission rates from 10 kbit/s up to 1 Mbit/s. Slave arbitration and timeouts are also available, allowing implementation of an SMBus-compliant system. The interface provided to software by the I<sup>2</sup>C module allows precise timing control of the transmission process and highly automated transfers. Automatic recognition of slave addresses is provided in active and low energy modes. Note that not all instances of I<sup>2</sup>C are avaliable in all energy modes.

#### 3.6.3 Peripheral Reflex System (PRS)

The Peripheral Reflex System provides a communication network between different peripheral modules without software involvement. Peripheral modules producing Reflex signals are called producers. The PRS routes Reflex signals from producers to consumer peripherals which in turn perform actions in response. Edge triggers and other functionality such as simple logic operations (AND, OR, NOT) can be applied by the PRS to the signals. The PRS allows peripherals to act autonomously without waking the MCU core, saving power.

#### 3.7 Secure Vault High Features

A dedicated Hardware Secure Engine containing its own CPU enables the Secure Vault High functions. It isolates cryptographic functions and data from the host Cortex-M33 core and provides the following security features:

- · Secure Boot with Root of Trust and Secure Loader (RTSL)
- · Cryptographic Accelerator
- True Random Number Generator (TRNG)
- · Secure Debug with Lock/Unlock
- DPA Countermeasures
- · Secure Key Management with PUF
- · Anti-Tamper
- · Secure Attestation

#### 3.7.1 Secure Boot with Root of Trust and Secure Loader (RTSL)

The Secure Boot with RTSL authenticates a chain of trusted firmware that begins from an immutable memory (ROM).

It prevents malware injection, prevents rollback, ensures that only authentic firmware is executed and protects Over The Air updates.

More information on this feature can be found in the Application Note AN1218: Series 2 Secure Boot with RTSL.

#### 3.7.2 Cryptographic Accelerator

The Cryptographic Accelerator is an autonomous hardware accelerator with Differential Power Analysis (DPA) countermeasures to protect keys.

It supports AES encryption and decryption with 128/192/256-bit keys, ChaCha20 encryption, and Elliptic Curve Cryptography (ECC) to support public key operations and hashes.

Supported block cipher modes of operation for AES include:

- · ECB (Electronic Code Book)
- CTR (Counter Mode)
- · CBC (Cipher Block Chaining)
- · CFB (Cipher Feedback)
- · GCM (Galois Counter Mode)
- CCM (Counter with CBC-MAC)
- CBC-MAC (Cipher Block Chaining Message Authentication Code)
- GMAC (Galois Message Authentication Code)

The Cryptographic Accelerator accelerates Elliptical Curve Cryptography and supports the NIST (National Institute of Standards and Technology) recommended curves including P-192, P-256, P-384, and P-521 for ECDH (Elliptic Curve Diffie-Hellman) key derivation and ECDSA (Elliptic Curve Digital Signature Algorithm) sign and verify operations. Also supported is the non-NIST Curve25519 for ECDH and Ed25519 for EdDSA (Edwards-curve Digital Signature Algorithm) sign and verify operations.

Secure Vault also supports ECJ-PAKE (Elliptic Curve variant of Password Authenticated Key Exchange by Juggling) and PBKDF2 (Password-Based Key Derivation Function 2).

Supported hashes include SHA-1, SHA-2/256/384/512 and Poly1305.

This implementation provides a fast and energy efficient solution to state of the art cryptographic needs.

## 3.7.3 True Random Number Generator

The True Random Number Generator module is a non-deterministic random number generator that harvests entropy from a thermal energy source. It includes start-up health tests for the entropy source as required by NIST SP800-90B and AIS-31 as well as online health tests required for NIST SP800-90C.

The TRNG is suitable for periodically generating entropy to seed an approved pseudo random number generator.

# 3.7.4 Secure Debug with Lock/Unlock

For obvious security reasons, it is critical for a product to have its debug interface locked before being released in the field.

In addition, Secure Vault High also provides a secure debug unlock function that allows authenticated access based on public key cryptography. This functionality is particularly useful for supporting failure analysis while maintaining confidentiality of IP and sensitive enduser data.

More information on this feature can be found in the Application Note AN1190: Series 2 Secure Debug.

#### 3.7.5 DPA Countermeasures

The AES and ECC accelerators have Differential Power Analysis (DPA) countermeasures support. This makes it very expensive from a time and effort standpoint to use DPA to recover secret keys.

#### 3.7.6 Secure Key Management with PUF

Key material in Secure Vault High products is protected by what is called "key wrapping" with a standardized symmetric encryption mechanism. This method has the advantage of being able to protect a virtually unlimited number of keys, limited only by the storage that is accessible by the Cortex-M33 (which includes off-chip storage as well). The symmetric key used for this wrapping and unwrapping must be highly secure as it can expose all other key material in the system. The Secure Vault Key Management system uses a Physically Unclonable Function (PUF) to generate a persistent device-unique seed key on power up to dynamically generate this critical wrapping/unwrapping key which is only visible to the AES encryption engine and is not retained when the device loses power.

#### 3.7.7 Anti-Tamper

Secure Vault High devices provide internal tampers monitoring the system such as voltage, temperature, and electro-mechanical pulses as well as detecting tamper of the security sub-system itself. There are also 8 external configurable tamper pins for supporting external tamper sources like case tamper switches.

For each tamper event, the user is able to select the severity of the tamper response ranging from an interrupt, to a reset, to destroying the PUF reconstruction data which will make all the protected key material un-recoverable and effectively render the device inoperable. The tamper system also has an internal resettable event counter with programmable trigger threshold and refresh periods to mitigate false positive tamper events.

More information on this feature can be found in the Application Note AN1247: Anti-Tamper Protection Configuration and Use.

#### 3.7.8 Secure Attestation

Secure Vault High products support Secure Attestation, which begins with a secure identity that is created during the Silicon Labs manufacturing process. During device production, each device generates its own public/private keypair and securely stores the wrapped private key into immutable OTP memory, and this key never leaves the device. The corresponding public key is extracted from the device and inserted into a binary DER-encoded X.509 device certificate which is signed into a Silicon Labs CA chain and then programmed back into the chip into an immutable OTP memory.

This secure identity can be used to authenticate the chip at any time in the life of the product. The production certification chain can be requested remotely from the product. This certification chain can be used to verify that the device was authentically produced by Silicon Labs. The device unique public key is also bound to the device certificate in the certification chain. A challenge can be sent to the chip at any point in time to be signed by the device private key. The public key in the device certificate can then be used to verify the challenge response, proving that the device has access to the securely-stored private key, which prevents counterfeit products or impersonation attacks.

More information on this feature can be found in the Application Note AN1268: Authenticating Silicon Labs Devices Using Device Certificates.

# 3.8 Analog

#### 3.8.1 Analog Comparator (ACMP)

The Analog Comparator is used to compare the voltage of two analog inputs, with a digital output indicating which input voltage is higher. Inputs are selected from among internal references and external pins. The tradeoff between response time and current consumption is configurable by software. Two 6-bit reference dividers allow for a wide range of internally-programmable reference sources. The ACMP can also be used to monitor the supply voltage. An interrupt can be generated when the supply falls below or rises above the programmable threshold.

#### 3.8.2 Analog to Digital Converter (IADC)

The IADC is a hybrid architecture combining techniques from both SAR and Delta-Sigma style converters. It has a resolution of up to 12 bits at up to 1 Msps. Hardware oversampling reduces system-level noise over multiple front-end samples. The IADC includes integrated voltage references. Inputs are selectable from a wide range of sources, including pins configurable as either single-ended or differential.

#### 3.9 Reset Management Unit (RMU)

The RMU is responsible for handling reset of the EFR32MG21B. A wide range of reset sources are available, including several power supply monitors, pin reset, software controlled reset, core lockup reset, and watchdog reset.

#### 3.10 Core and Memory

#### 3.10.1 Processor Core

The ARM Cortex-M processor includes a 32-bit RISC processor integrating the following features and tasks in the system:

- ARM Cortex-M33 RISC processor achieving 1.50 Dhrystone MIPS/MHz
- ARM TrustZone security technology
- · Embedded Trace Macrocell (ETM) for real-time trace and debug
- · Up to 1024 kB flash program memory
- · Up to 96 kB RAM data memory
- · Configuration and event handling of all modules
- · 2-pin Serial-Wire debug interface

# 3.10.2 Memory System Controller (MSC)

The Memory System Controller (MSC) is the program memory unit of the microcontroller. The flash memory is readable and writable from both the Cortex-M and DMA. In addition to the main flash array where Program code is normally written the MSC also provides an Information block where additional information such as special user information or flash-lock bits are stored. There is also a read-only page in the information block containing system and device calibration data. Read and write operations are supported in energy modes EM0 Active and EM1 Sleep.

# 3.10.3 Linked Direct Memory Access Controller (LDMA)

The Linked Direct Memory Access (LDMA) controller allows the system to perform memory operations independently of software. This reduces both energy consumption and software workload. The LDMA allows operations to be linked together and staged, enabling sophisticated operations to be implemented.

# 3.11 Memory Map

The EFR32MG21B memory map is shown in the figures below. RAM and flash sizes are for the largest memory configuration.

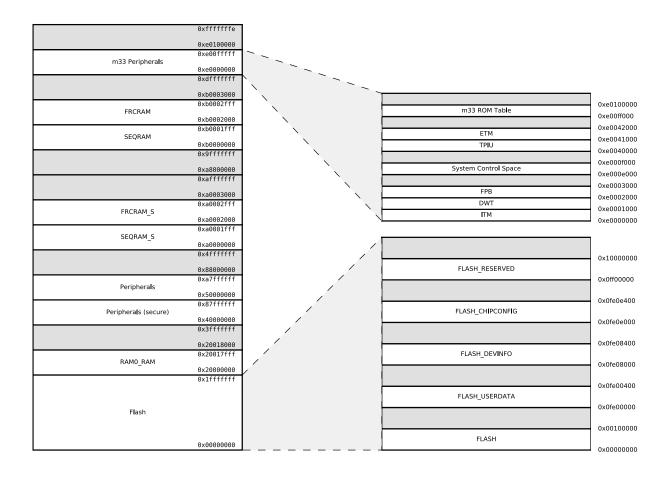



Figure 3.2. EFR32MG21B Memory Map — Core Peripherals and Code Space

# 3.12 Configuration Summary

The features of the EFR32MG21B are a subset of the feature set described in the device reference manual. The table below describes device specific implementation of the features. Remaining modules support full configuration.

**Table 3.1. Configuration Summary** 

| Module | Lowest Energy Mode | Configuration            |
|--------|--------------------|--------------------------|
| TIMER0 | EM1                | 32-bit, 3-channels, +DTI |
| TIMER1 | EM1                | 16-bit, 3-channels, +DTI |
| TIMER2 | EM1                | 16-bit, 3-channels, +DTI |
| TIMER3 | EM1                | 16-bit, 3-channels, +DTI |
| USART0 | EM1                | +IrDA, +I2S, +SmartCard  |
| USART1 | EM1                | +IrDA, +I2S, +SmartCard  |
| USART2 | EM1                | +IrDA, +I2S, +SmartCard  |
| I2C0   | EM2 / EM3          |                          |
| I2C1   | EM1                |                          |

# 4. Electrical Specifications

#### 4.1 Electrical Characteristics

All electrical parameters in all tables are specified under the following conditions, unless stated otherwise:

- Typical values are based on T<sub>A</sub>=25 °C and all supplies at 3.0 V, by production test and/or technology characterization.
- Radio performance numbers are measured in conducted mode, based on Silicon Laboratories reference designs using output power-specific external RF impedance-matching networks for interfacing to a 50 Ω antenna.
- Minimum and maximum values represent the worst conditions across supply voltage, process variation, and operating temperature, unless stated otherwise.

# **Power Supply Pin Dependencies**

Due to on-chip circuitry (e.g., diodes), some EFR32 power supply pins have a dependent relationship with one or more other power supply pins. These internal relationships between the external voltages applied to the various EFR32 supply pins are defined below. Exceeding the below constraints can result in damage to the device and/or increased current draw.

- DVDD ≥ DECOUPLE
- PAVDD ≥ RFVDD
- · AVDD, IOVDD: No dependency with each other or any other supply pin

# 4.1.1 Absolute Maximum Ratings

Stresses above those listed below may cause permanent damage to the device. This is a stress rating only and functional operation of the devices at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. For more information on the available quality and reliability data, see the Quality and Reliability Monitor Report at <a href="https://www.silabs.com/about-us/corporate-responsibility/commitment-to-quality">https://www.silabs.com/about-us/corporate-responsibility/commitment-to-quality</a>.

**Table 4.1. Absolute Maximum Ratings** 

| Parameter                                            | Symbol                 | Test Condition | Min  | Тур | Max                      | Unit   |
|------------------------------------------------------|------------------------|----------------|------|-----|--------------------------|--------|
| Storage temperature range                            | T <sub>STG</sub>       |                | -50  | _   | +150                     | °C     |
| Junction temperature                                 | T <sub>JMAX</sub>      | -I grade       | _    | _   | +135                     | °C     |
| Voltage on any supply pin                            | V <sub>DDMAX</sub>     |                | -0.3 | _   | 3.8                      | V      |
| Voltage ramp rate on any supply pin                  | V <sub>DDRAMPMAX</sub> |                | _    | _   | 1.0                      | V / µs |
| Voltage on HFXO pins                                 | V <sub>HFXOPIN</sub>   |                | -0.3 | _   | 1.2                      | V      |
| DC voltage on any GPIO pin                           | V <sub>DIGPIN</sub>    |                | -0.3 | _   | V <sub>IOVDD</sub> + 0.3 | V      |
| Input RF level on pins<br>RF2G4_IO1 and<br>RF2G4_IO2 | P <sub>RFMAX2G4</sub>  |                | _    | _   | +10                      | dBm    |
| Absolute voltage on RF pins RF2G4_IOx                | V <sub>MAX2G4</sub>    |                | -0.3 | _   | V <sub>PAVDD</sub>       | V      |
| Total current into VDD power lines                   | I <sub>VDDMAX</sub>    | Source         | _    | _   | 200                      | mA     |
| Total current into VSS ground lines                  | I <sub>VSSMAX</sub>    | Sink           | _    | _   | 200                      | mA     |
| Current per I/O pin                                  | I <sub>IOMAX</sub>     | Sink           | _    | _   | 50                       | mA     |
|                                                      |                        | Source         | _    | _   | 50                       | mA     |
| Current for all I/O pins                             | I <sub>IOALLMAX</sub>  | Sink           | _    | _   | 200                      | mA     |
|                                                      |                        | Source         | _    | _   | 200                      | mA     |

#### 4.1.2 General Operating Conditions

This table specifies the general operating temperature range and supply voltage range for all supplies. The minimum and maximum values of all other tables are specifed over this operating range, unless otherwise noted.

**Table 4.2. General Operating Conditions** 

| Parameter                                        | Symbol                    | Test Condition                       | Min  | Тур  | Max                | Unit |
|--------------------------------------------------|---------------------------|--------------------------------------|------|------|--------------------|------|
| Operating ambient temperature range              | T <sub>A</sub>            | -I temperature grade <sup>1</sup>    | -40  | _    | +125               | ° C  |
| DVDD supply voltage                              | V <sub>DVDD</sub>         | EM0/1                                | 1.71 | 3.0  | 3.8                | V    |
|                                                  |                           | EM2/3/4 <sup>2</sup>                 | 1.71 | 3.0  | 3.8                | V    |
| AVDD supply voltage                              | V <sub>AVDD</sub>         |                                      | 1.71 | 3.0  | 3.8                | V    |
| IOVDDx operating supply voltage (All IOVDD pins) | V <sub>IOVDDx</sub>       |                                      | 1.71 | 3.0  | 3.8                | V    |
| PAVDD operating supply voltage                   | V <sub>PAVDD</sub>        |                                      | 1.71 | 3.0  | 3.8                | V    |
| RFVDD operating supply voltage                   | V <sub>RFVDD</sub>        |                                      | 1.71 | 3.0  | V <sub>PAVDD</sub> | V    |
| DECOUPLE output capacitor <sup>3</sup>           | C <sub>DECOUPLE</sub>     |                                      | 0.75 | 1.0  | 2.75               | μF   |
| HCLK and Core frequency                          | f <sub>HCLK</sub>         | MODE = WS1, RAMWSEN = 1 <sup>4</sup> | _    | _    | 80                 | MHz  |
|                                                  |                           | MODE = WS1, RAMWSEN = 0 <sup>4</sup> | _    | _    | 50                 | MHz  |
|                                                  |                           | MODE = WS0, RAMWSEN = 0 <sup>4</sup> | _    | _    | 39                 | MHz  |
| PCLK frequency                                   | f <sub>PCLK</sub>         |                                      | _    | _    | 50                 | MHz  |
| EM01 Group A clock frequency                     | f <sub>EM01</sub> GRPACLK |                                      | _    | _    | 80                 | MHz  |
| HCLK Radio frequency <sup>5</sup>                | f <sub>HCLKRADIO</sub>    |                                      | 38   | 38.4 | 40                 | MHz  |

- 1. The device may operate continuously at the maximum allowable ambient  $T_A$  rating as long as the absolute maximum  $T_{JMAX}$  is not exceeded. For an application with significant power dissipation, the allowable  $T_A$  may be lower than the maximum  $T_A$  rating.  $T_A = T_{JMAX}$  (THETA $_{JA}$  x PowerDissipation). Refer to the Absolute Maximum Ratings table and the Thermal Characteristics table for  $T_{JMAX}$  and THETA $_{JA}$ .
- 2. The DVDD supply is monitored by the DVDD BOD in EM0/1 and the LE DVDD BOD in EM2/3/4.
- 3. The system designer should consult the characteristic specs of the capacitor used on DECOUPLE to ensure its capacitance value stays within the specified bounds across temperature and DC bias.
- 4. Flash wait states are set by the MODE field in the MSC\_READCTRL register. RAM wait states are enabled by setting the RAMW-SEN bit in the SYSYCFG\_DMEM0RAMCTRL register.
- 5. The recommended radio crystal frequency is 38.4 MHz. Any crystal frequency other than 38.4 MHz is expressly not supported. The minimum and maximum HCLKRADIO frequency in this table represent the design limits, which are much wider than the typical crystal tolerance.

# 4.1.3 Thermal Characteristics

**Table 4.3. Thermal Characteristics** 

| Parameter                                                                     | Symbol                             | Test Condition                               | Min | Тур  | Max | Unit |
|-------------------------------------------------------------------------------|------------------------------------|----------------------------------------------|-----|------|-----|------|
| Thermal Resistance Junction to Ambient QFN32 (4x4mm) Package                  | THE-<br>TA <sub>JA_QFN32_4X4</sub> | 2-Layer PCB, Natural Convection <sup>1</sup> | _   | 94.3 | _   | °C/W |
|                                                                               |                                    | 4-Layer PCB, Natural Convection <sup>1</sup> | _   | 35.4 | _   | °C/W |
| Thermal Resistance Junction to Case QFN32 (4x4mm) TA <sub>JC_QF</sub> Package |                                    | 2-Layer PCB, Natural Convection <sup>1</sup> | _   | 36.3 | _   | °C/W |
|                                                                               | TA <sub>JC_QFN32_4X4</sub>         | 4-Layer PCB, Natural Convection <sup>1</sup> | _   | 23.5 | _   | °C/W |

<sup>1.</sup> Measured according to JEDEC standard JESD51-2A. Integrated Circuit Thermal Test Method Environmental Conditions - Natural Convection (Still Air).

# 4.1.4 Current Consumption

# 4.1.4.1 MCU current consumption at 1.8V

Unless otherwise indicated, typical conditions are: AVDD = DVDD = RFVDD = PAVDD = 1.8V.  $T_A$  = 25 °C. Minimum and maximum values in this table represent the worst conditions across process variation at  $T_A$  = 25 °C.

Table 4.4. MCU current consumption at 1.8V

| Parameter                                                 | Symbol              | Test Condition                                          | Min | Тур  | Max | Unit   |
|-----------------------------------------------------------|---------------------|---------------------------------------------------------|-----|------|-----|--------|
| Current consumption in EM0 mode with all peripherals dis- | I <sub>ACTIVE</sub> | 80 MHz HFRCO, CPU running<br>Prime from flash           | _   | 50.9 | _   | μA/MHz |
| abled <sup>1</sup>                                        |                     | 80 MHz HFRCO, CPU running while loop from flash         | _   | 45.5 | _   | μΑ/MHz |
|                                                           |                     | 80 MHz HFRCO, CPU running<br>CoreMark loop from flash   | _   | 59.7 | _   | μA/MHz |
|                                                           |                     | 38.4 MHz crystal, CPU running while loop from flash     | _   | 63.6 | _   | μΑ/MHz |
|                                                           |                     | 38 MHz HFRCO, CPU running while loop from flash         | _   | 55.5 | _   | μΑ/MHz |
|                                                           |                     | 26 MHz HFRCO, CPU running while loop from flash         | _   | 59.1 | _   | μA/MHz |
|                                                           |                     | 16 MHz HFRCO, CPU running while loop from flash         | _   | 67.0 | _   | μA/MHz |
|                                                           |                     | 1 MHz HFRCO, CPU running while loop from flash          | _   | 360  | _   | μA/MHz |
| Current consumption in EM1                                | I <sub>EM1</sub>    | 80 MHz HFRCO                                            | _   | 28.7 | _   | µA/MHz |
| mode with all peripherals dis-<br>abled <sup>1</sup>      |                     | 38.4 MHz crystal                                        | _   | 46.7 | _   | µA/MHz |
|                                                           |                     | 38 MHz HFRCO                                            | _   | 38.7 | _   | µA/MHz |
|                                                           |                     | 26 MHz HFRCO                                            | _   | 42.2 | _   | µA/MHz |
|                                                           |                     | 16 MHz HFRCO                                            | _   | 50.0 | _   | µA/MHz |
|                                                           |                     | 1 MHz HFRCO                                             | _   | 343  | _   | µA/MHz |
| Current consumption in EM2 mode                           | I <sub>EM2</sub>    | Full RAM retention and RTC running from LFXO            | _   | 5.0  | _   | μА     |
|                                                           |                     | Full RAM retention and RTC running from LFRCO           | _   | 5.0  | _   | μА     |
|                                                           |                     | 1 bank (16kB) RAM retention and RTC running from LFRCO  | _   | 4.5  | _   | μА     |
| Current consumption in EM3 mode                           | I <sub>EM3</sub>    | Full RAM retention and RTC running from ULFRCO          | _   | 4.7  | _   | μА     |
|                                                           |                     | 1 bank (16kB) RAM retention and RTC running from ULFRCO | _   | 4.2  | _   | μА     |
| Current consumption in EM4                                | I <sub>EM4</sub>    | No BURTC, no LF oscillator                              | _   | 0.14 | _   | μA     |
| mode                                                      |                     | BURTC with LFXO                                         | _   | 0.51 | _   | μA     |
| Current consumption during reset                          | I <sub>RST</sub>    | Hard pin reset held                                     | _   | 107  | _   | μА     |

| Parameter                                             | Symbol           | Test Condition | Min | Тур  | Max | Unit |
|-------------------------------------------------------|------------------|----------------|-----|------|-----|------|
| Current Consumption per retained 16kB RAM bank in EM2 | I <sub>RAM</sub> |                | _   | 0.10 | _   | μA   |

# Note:

1. The typical EM0/EM1 current measurement includes some current consumed by the security core for periodical housekeeping purposes. This does not include current consumed by user-triggered security operations, such as cryptographic calculations.

# 4.1.4.2 MCU current consumption at 3.0V

Unless otherwise indicated, typical conditions are: AVDD = DVDD = RFVDD = PAVDD = 3.0 V.  $T_A$  = 25 °C. Minimum and maximum values in this table represent the worst conditions across process variation at  $T_A$  = 25 °C.

Table 4.5. MCU current consumption at 3.0V

| Parameter                                                 | Symbol              | Test Condition                                           | Min | Тур  | Max    | Unit   |
|-----------------------------------------------------------|---------------------|----------------------------------------------------------|-----|------|--------|--------|
| Current consumption in EM0 mode with all peripherals dis- | I <sub>ACTIVE</sub> | 80 MHz HFRCO, CPU running<br>Prime from flash            | _   | 50.9 | _      | μΑ/MHz |
| abled <sup>1</sup>                                        |                     | 80 MHz HFRCO, CPU running while loop from flash          | _   | 45.6 | 55.5   | μA/MHz |
|                                                           |                     | 80 MHz HFRCO, CPU running<br>CoreMark loop from flash    | _   | 59.8 | _      | µA/MHz |
|                                                           |                     | 38.4 MHz crystal, CPU running while loop from flash      | _   | 63.8 | _      | μA/MHz |
|                                                           |                     | 38 MHz HFRCO, CPU running while loop from flash          | _   | 55.6 | 75.1   | μA/MHz |
|                                                           |                     | 26 MHz HFRCO, CPU running while loop from flash          | _   | 59.1 | _      | μA/MHz |
|                                                           |                     | 16 MHz HFRCO, CPU running while loop from flash          | _   | 67.1 | _      | μA/MHz |
|                                                           |                     | 1 MHz HFRCO, CPU running while loop from flash           | _   | 362  | 37.6 μ | μA/MHz |
| Current consumption in EM1                                | I <sub>EM1</sub>    | 80 MHz HFRCO                                             | _   | 28.7 | 37.6   | μA/MHz |
| mode with all peripherals disabled <sup>1</sup>           |                     | 38.4 MHz crystal                                         | _   | 46.9 | _      | μA/MHz |
|                                                           |                     | 38 MHz HFRCO                                             | _   | 38.7 | 57.5   | μA/MHz |
|                                                           |                     | 26 MHz HFRCO                                             | _   | 42.2 | _      | μA/MHz |
|                                                           |                     | 16 MHz HFRCO                                             | _   | 50.2 | _      | μA/MHz |
|                                                           |                     | 1 MHz HFRCO                                              | _   | 345  | 994    | μA/MHz |
| Current consumption in EM2 mode                           | I <sub>EM2</sub>    | Full RAM retention and RTC running from LFXO             | _   | 5.1  | _      | μА     |
|                                                           |                     | Full RAM retention and RTC running from LFRCO            | _   | 5.0  | _      | μА     |
|                                                           |                     | 1 bank (16 kB) RAM retention and RTC running from LFRCO  | _   | 4.5  | 10.5   | μА     |
| Current consumption in EM3 mode                           | I <sub>EM3</sub>    | Full RAM retention and RTC running from ULFRCO           | _   | 4.8  | 11.4   | μА     |
|                                                           |                     | 1 bank (16 kB) RAM retention and RTC running from ULFRCO | _   | 4.3  | _      | μА     |
| Current consumption in EM4                                | I <sub>EM4</sub>    | No BURTC, no LF oscillator                               | _   | 0.21 | 0.5    | μA     |
| mode                                                      |                     | BURTC with LFXO                                          | _   | 0.61 | _      | μA     |
| Current consumption during reset                          | I <sub>RST</sub>    | Hard pin reset held                                      | _   | 146  | _      | μА     |
| Current consumption per retained 16kB RAM bank in EM2     | IRAM                |                                                          | _   | 0.10 | _      | μА     |

| Parameter | Symbol | Test Condition | Min | Тур | Max | Unit |
|-----------|--------|----------------|-----|-----|-----|------|
|-----------|--------|----------------|-----|-----|-----|------|

#### Note:

1. The typical EM0/EM1 current measurement includes some current consumed by the security core for periodical housekeeping purposes. This does not include current consumed by user-triggered security operations, such as cryptographic calculations.

# 4.1.4.3 Radio current consumption at 1.8V

RF current consumption measured with MCU in EM1, HCLK = 38.4 MHz, and all MCU peripherals disabled. Unless otherwise indicated, typical conditions are: AVDD = DVDD = IOVDD = RFVDD = PAVDD = 1.8V. Minimum and maximum values in this table represent the worst conditions across process variation at  $T_A = 25$  °C.

Table 4.6. Radio current consumption at 1.8V

| Parameter                            | Symbol                 | Test Condition                                   | Min | Тур  | Max | Unit |
|--------------------------------------|------------------------|--------------------------------------------------|-----|------|-----|------|
| Current consumption in re-           | I <sub>RX_ACTIVE</sub> | 125 kbit/s, 2GFSK, f = 2.4 GHz                   | _   | 9.0  | _   | mA   |
| ceive mode, active packet reception  |                        | 500 kbit/s, 2GFSK, f = 2.4 GHz                   | _   | 9.1  | _   | mA   |
|                                      |                        | 1 Mbit/s, 2GFSK, f = 2.4 GHz                     | _   | 8.8  | _   | mA   |
|                                      |                        | 2 Mbit/s, 2GFSK, f = 2.4 GHz                     | _   | 9.4  | _   | mA   |
|                                      |                        | 802.15.4 receiving frame, f = 2.4 GHz            | _   | 9.4  | _   | mA   |
| Current consumption in re-           | I <sub>RX_LISTEN</sub> | 125 kbit/s, 2GFSK, f = 2.4 GHz                   | _   | 9.0  | _   | mA   |
| ceive mode, listening for packet     |                        | 500 kbit/s, 2GFSK, f = 2.4 GHz                   | _   | 9.0  | _   | mA   |
|                                      |                        | 1 Mbit/s, 2GFSK, f = 2.4 GHz                     | _   | 9.0  | _   | mA   |
|                                      |                        | 2 Mbit/s, 2GFSK, f = 2.4 GHz                     | _   | 9.8  | _   | mA   |
|                                      |                        | 802.15.4, f = 2.4 GHz                            | _   | 9.2  | _   | mA   |
| Current consumption in transmit mode | I <sub>TX</sub>        | f = 2.4 GHz, CW, 0 dBm PA, 0<br>dBm output power | _   | 9.3  | _   | mA   |
|                                      |                        | f = 2.4 GHz, CW, 10 dBm PA, 0 dBm output power   | _   | 16.6 | _   | mA   |
|                                      |                        | f = 2.4 GHz, CW, 10 dBm PA, 10 dBm output power  | _   | 33.8 | _   | mA   |

# 4.1.4.4 Radio current consumption at 3.0V

RF current consumption measured with MCU in EM1, HCLK = 38.4 MHz, and all MCU peripherals disabled. Unless otherwise indicated, typical conditions are: AVDD = DVDD = IOVDD = RFVDD = PAVDD = 3.0V. Minimum and maximum values in this table represent the worst conditions across process variation at  $T_A = 25$  °C.

Table 4.7. Radio current consumption at 3.0V

| Parameter                            | Symbol                 | Test Condition                                                       | Min | Тур  | Max | Unit |
|--------------------------------------|------------------------|----------------------------------------------------------------------|-----|------|-----|------|
| Current consumption in re-           | I <sub>RX_ACTIVE</sub> | 125 kbit/s, 2GFSK, f = 2.4 GHz                                       | _   | 9.0  | _   | mA   |
| ceive mode, active packet reception  |                        | 500 kbit/s, 2GFSK, f = 2.4 GHz                                       | _   | 9.1  | _   | mA   |
|                                      |                        | 1 Mbit/s, 2GFSK, f = 2.4 GHz                                         | _   | 8.8  | _   | mA   |
|                                      |                        | 2 Mbit/s, 2GFSK, f = 2.4 GHz                                         | _   | 9.4  | _   | mA   |
|                                      |                        | 802.15.4 receiving frame, f = 2.4 GHz                                | _   | 9.5  | _   | mA   |
| Current consumption in re-           | I <sub>RX_LISTEN</sub> | 125 kbit/s, 2GFSK, f = 2.4 GHz                                       | _   | 9.0  | _   | mA   |
| ceive mode, listening for packet     |                        | 500 kbit/s, 2GFSK, f = 2.4 GHz                                       | _   | 9.0  | _   | mA   |
|                                      |                        | 1 Mbit/s, 2GFSK, f = 2.4 GHz                                         | _   | 9.0  | _   | mA   |
|                                      |                        | 2 Mbit/s, 2GFSK, f = 2.4 GHz                                         | _   | 9.8  | _   | mA   |
|                                      |                        | 802.15.4, f = 2.4 GHz                                                | _   | 9.2  | _   | mA   |
| Current consumption in transmit mode | I <sub>TX</sub>        | f = 2.4 GHz, CW, 0 dBm PA, 0<br>dBm output power                     | _   | 10.5 | _   | mA   |
|                                      |                        | f = 2.4 GHz, CW, 10 dBm PA, 0 dBm output power                       | _   | 16.7 | _   | mA   |
|                                      |                        | f = 2.4 GHz, CW, 10 dBm PA, 10 dBm output power                      | _   | 34.0 | _   | mA   |
|                                      |                        | f = 2.4 GHz, CW, 20 dBm PA, 10<br>dBm output power, PAVDD = 3.0<br>V | _   | 60.8 | _   | mA   |
|                                      |                        | f = 2.4 GHz, CW, 20 dBm PA, 20<br>dBm output power, PAVDD = 3.3<br>V | _   | 185  | _   | mA   |

# 4.1.5 2.4 GHz RF Transceiver Characteristics

#### 4.1.5.1 RF Transmitter Characteristics

# 4.1.5.1.1 RF Transmitter General Characteristics for the 2.4 GHz Band

Unless otherwise indicated, typical conditions are:  $T_A$  = 25 °C, PAVDD = 3.0V, AVDD = DVDD = IOVDD = RFVDD = PAVDD. Crystal frequency=38.4 MHz. RF center frequency 2.45 GHz. Antenna port 2.

Table 4.8. RF Transmitter General Characteristics for the 2.4 GHz Band

| Parameter                                                                             | Symbol                | Test Condition                                                                                                    | Min  | Тур   | Max    | Unit |
|---------------------------------------------------------------------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------|------|-------|--------|------|
| RF tuning frequency range                                                             | F <sub>RANGE</sub>    |                                                                                                                   | 2400 | _     | 2483.5 | MHz  |
| Maximum TX power <sup>1</sup>                                                         | POUT <sub>MAX</sub>   | 20 dBm PA, PAVDD = 3.3V                                                                                           | _    | +20.2 | _      | dBm  |
| Maximum TX power                                                                      | POUT <sub>MAX10</sub> | 10 dBm PA                                                                                                         | _    | +10.5 | _      | dBm  |
| Maximum TX power                                                                      | POUT <sub>MAX0</sub>  | 0 dBm PA                                                                                                          | _    | +0.4  | _      | dBm  |
| Minimum active TX power                                                               | POUT <sub>MIN</sub>   | 20 dBm PA, PAVDD = 3.3 V                                                                                          | _    | -20.5 | _      | dBm  |
|                                                                                       |                       | 10 dBm PA                                                                                                         | _    | -19.3 | _      | dBm  |
|                                                                                       |                       | 0 dBm PA                                                                                                          | _    | -23.5 | _      | dBm  |
| Output power step size                                                                | POUT <sub>STEP</sub>  | 0 dBm PA,-15 dBm < Output<br>Power < -5 dBm                                                                       |      | 1.5   | _      | dB   |
|                                                                                       |                       | 0 dBm PA,-5 dBm < Output Pow-<br>er < 0 dBm                                                                       | _    | 0.3   | _      | dB   |
|                                                                                       |                       | 10 dBm PA, -5 dBm < Output power < 0 dBm                                                                          | _    | 1.5   | _      | dB   |
|                                                                                       |                       | 10 dBm PA, 0 dBm < Output power < 10 dBm                                                                          | _    | 1.0   | _      | dB   |
|                                                                                       |                       | 20 dBm PA, 0 dBm < Output Power < 5 dBm                                                                           | _    | 0.7   | _      | dB   |
|                                                                                       |                       | 20 dBm PA, 5 dBm < output pow-<br>er < POUT <sub>MAX</sub>                                                        | _    | 0.5   | _      | dB   |
| Output power variation vs<br>PAVDD supply voltage varia-<br>tion, frequency = 2450MHz | POUT <sub>VAR_V</sub> | 20 dBm PA P <sub>out</sub> = POUT <sub>MAX</sub> out-<br>put power with PAVDD voltage<br>swept from 3.0V to 3.8V. | _    | 0.8   | _      | dB   |
|                                                                                       |                       | 10 dbm PA output power with PAVDD voltage swept from 1.8 V to 3.0 V                                               | _    | 0.1   | _      | dB   |
|                                                                                       |                       | 0 dBm PA output power with PAVDD voltage swept from 1.8 V to 3.0 V                                                | _    | 0.1   | _      | dB   |
| Output power variation vs<br>temperature, Frequency =<br>2450MHz                      | POUT <sub>VAR_T</sub> | AVDD = 3.3V supply, 20 dBm PA at P <sub>out</sub> = POUT <sub>MAX</sub> , (-40 to +125 °C)                        | _    | 1.5   | _      | dB   |
|                                                                                       |                       | 10 dBm PA at 10 dBm, (-40 to +125 °C)                                                                             | _    | 0.3   | _      | dB   |
|                                                                                       |                       | 0 dBm PA at 0 dBm, (-40 to +125 °C)                                                                               | _    | 2.1   | _      | dB   |

| Parameter                                                                         | Symbol                           | Test Condition                                                                                                          | Min | Тур | Max | Unit |
|-----------------------------------------------------------------------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|------|
| Output power variation vs RF frequency                                            | POUT <sub>VAR_F</sub>            | 20 dBm PA, POUT <sub>MAX</sub> , PAVDD = 3.3 V.                                                                         | _   | 0.2 | _   | dB   |
|                                                                                   |                                  | 10 dBm PA, 10 dBm                                                                                                       | _   | 0.2 | _   | dB   |
|                                                                                   |                                  | 0 dBm PA, 0 dBm                                                                                                         | _   | 0.1 | _   | dB   |
| Spurious emissions of harmonics in restricted bands per FCC Part 15.205/15.209    | SPUR <sub>HRM_FCC_</sub><br>R    | Continuous transmission of CW carrier. P <sub>out</sub> = POUT <sub>MAX</sub> . PAVDD = 3.3V. Test Frequency = 2450MHz. | _   | -47 | _   | dBm  |
|                                                                                   |                                  | Continuous transmission of CW carrier, P <sub>out</sub> = 10 dBm, Test Frequency = 2450 MHz.                            | _   | -47 | _   | dBm  |
| Spurious emissions of harmonics in non-restricted bands per FCC Part 15.247/15.35 | SPUR <sub>HRM</sub> _FCC_<br>NRR | Continuous transmission of CW carrier, P <sub>out</sub> = POUT <sub>MAX</sub> , PAVDD = 3.3V, Test Frequency = 2450MHz. | _   | -26 | _   | dBc  |
|                                                                                   |                                  | Continuous transmission of CW carrier. Pout = 10 dBm. Test Frequency = 2450 MHz.                                        | _   | -26 | _   | dBc  |

| Parameter                                                                                                                      | Symbol                     | Test Condition                                                                                                                                                                | Min | Тур | Max | Unit |
|--------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|------|
| Spurious emissions out-of-<br>band (above 2.483 GHz or<br>below 2.4 GHz) in restricted<br>bands, per FCC part<br>15.205/15.209 | SPUR <sub>OOB_FCC_</sub> R | Restricted bands 30-88 MHz,<br>Continuous transmission of CW<br>carrier, 20 dBm PA, P <sub>out</sub> =<br>POUT <sub>MAX</sub> , PAVDD = 3.3V. Test<br>Frequency = 2450MHz.    | _   | -47 | _   | dBm  |
|                                                                                                                                |                            | Restricted bands 88 - 216 MHz,<br>Continuous transmission of CW<br>carrier, 20 dBm PA, P <sub>out</sub> =<br>POUT <sub>MAX</sub> , PAVDD = 3.3V. Test<br>Frequency = 2450MHz. | _   | -47 | _   | dBm  |
|                                                                                                                                |                            | Restricted bands 216 - 960 MHz,<br>Continuous transmission of CW<br>carrier, 20 dBm PA P <sub>out</sub> =<br>POUT <sub>MAX</sub> , PAVDD = 3.3V. Test<br>Frequency = 2450MHz. | _   | -47 | _   | dBm  |
|                                                                                                                                |                            | Restricted bands >960 MHz, Continuous transmission of CW carrier, 20 dBm PA, P <sub>out</sub> = POUT <sub>MAX</sub> , PAVDD = 3.3V, Test Frequency = 2450MHz.                 | _   | -47 | _   | dBm  |
|                                                                                                                                |                            | Restricted bands 30-88 MHz,<br>Continuous transmission of CW<br>carrier, P <sub>out</sub> = 10 dBm, Test Fre-<br>quency = 2450 MHz                                            | _   | -47 | _   | dBm  |
|                                                                                                                                |                            | Restricted bands 88 - 216 MHz,<br>Continuous transmission of CW<br>carrier, P <sub>out</sub> = 10 dBm, Test Fre-<br>quency = 2450 MHz                                         | _   | -47 | _   | dBm  |
|                                                                                                                                |                            | Restricted bands 216 - 960 MHz,<br>Continuous transmission of CW<br>carrier, P <sub>out</sub> = 10 dBm, Test Fre-<br>quency = 2450 MHz                                        | _   | -47 | _   | dBm  |
|                                                                                                                                |                            | Restricted bands > 960 MHz,<br>Continuous transmission of CW<br>carrier, P <sub>out</sub> = 10 dBm, Test Fre-<br>quency = 2450 MHz                                            | _   | -47 | _   | dBm  |
| Spurious emissions per ETSI<br>EN300.440                                                                                       | SPUR <sub>ETSI440</sub>    | 1G-14G, P <sub>out</sub> = 10 dBm, Test Frequency = 2450 MHz                                                                                                                  | _   | -36 | _   | dBm  |
|                                                                                                                                |                            | 47-74 MHz,87.5-108 MHz,<br>174-230 MHz, 470-862 MHz, P <sub>out</sub><br>= 10 dBm, Test Frequency = 2450<br>MHz                                                               | _   | -56 | _   | dBm  |
|                                                                                                                                |                            | 25-1000 MHz, excluding above frequencies. P <sub>out</sub> = 10 dBm, Test Frequency = 2450 MHz                                                                                | _   | -42 | _   | dBm  |
|                                                                                                                                |                            | 1G-12.75 GHz, excluding bands listed above, P <sub>out</sub> = 10 dBm, Test Frequency = 2450MHz.                                                                              | _   | -50 | _   | dBm  |

| Parameter                                                                         | Symbol                  | Test Condition                                                                                                                                                                  | Min | Тур | Max | Unit |
|-----------------------------------------------------------------------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|------|
| Spurious emissions out-of-<br>band in non-restricted bands<br>per FCC Part 15.247 | NR                      | Frequencies above 2.483 GHz or<br>below 2.4 GHz, continuous trans-<br>mission CW carrier, 20 dBm PA,<br>Pout = POUT <sub>MAX</sub> , PAVDD = 3.3<br>V,Test Frequency = 2450 MHz | _   | -26 | _   | dBc  |
|                                                                                   |                         | Frequencies above 2.483 GHz or<br>below 2.4 GHz, continuous trans-<br>mission CW carrier, P <sub>out</sub> = 10<br>dBm, Test Frequency = 2450<br>MHz                            | _   | -26 | _   | dBc  |
| Spurious emissions out-of-<br>band, per ETSI 300.328                              | SPUR <sub>ETSI328</sub> | [2400-2BW to 2400-BW],<br>[2483.5+BW to 2483.5+2BW],<br>P <sub>out</sub> = 10 dBm, Test Frequency =<br>2450 MHz                                                                 | _   | -26 | _   | dBm  |
|                                                                                   |                         | [2400-BW to 2400], [2483.5 to 2483.5+BW] P <sub>out</sub> = 10 dBm, Test Frequency = 2450MHz.                                                                                   | _   | -16 | _   | dB   |

<sup>1.</sup> Supported transmit power levels are determined by the ordering part number (OPN). Transmit power ratings for all devices covered in this data sheet can be found in the Max TX Power column of the Ordering Information Table.

# 4.1.5.1.2 RF Transmitter Characteristics for 802.15.4 DSSS-OQPSK in the 2.4 GHz Band

Unless otherwise indicated, typical conditions are:  $T_A = 25$  °C, PAVDD = 3.0V, AVDD = DVDD = IOVDD = RFVDD = PAVDD. Crystal frequency=38.4 MHz. RF center frequency 2.45 GHz. Antenna port 2.

Table 4.9. RF Transmitter Characteristics for 802.15.4 DSSS-OQPSK in the 2.4 GHz Band

| Parameter                                     | Symbol                 | Test Condition                                                                                             | Min | Тур   | Max | Unit           |
|-----------------------------------------------|------------------------|------------------------------------------------------------------------------------------------------------|-----|-------|-----|----------------|
| Error vector magnitude per 802.15.4-2011      | EVM                    | Average across frequency, signal is DSSS-OQPSK reference packet, PAVDD = 3.3 V, Pout = POUT <sub>MAX</sub> | _   | 2.7   | _   | % rms          |
|                                               |                        | Average across frequency, signal is DSSS-OQPSK reference packet, P <sub>out</sub> = 10 dBm                 | _   | 2.7   | _   | % rms          |
|                                               |                        | Average across frequency, signal is DSSS-OQPSK reference packet, P <sub>out</sub> = 0 dBm                  | _   | 2.8   | _   | % rms          |
| Power spectral density limit                  | PSD <sub>LIMIT</sub>   | Relative, at carrier ± 3.5 MHz,<br>PAVDD - 3.3 V, P <sub>out</sub> = POUT <sub>MAX</sub>                   | _   | -50.3 | _   | dBc/<br>100kHz |
|                                               |                        | Relative, at carrier ± 3.5 MHz,<br>P <sub>out</sub> = 10 dBm                                               | _   | -50.7 | _   | dBc/<br>100kHz |
|                                               |                        | Relative, at carrier ± 3.5 MHz,<br>P <sub>out</sub> = 0 dBm                                                | _   | -50.7 | _   | dBc/<br>100kHz |
|                                               |                        | Absolute, at carrier ± 3.5 MHz,<br>PAVDD = 3.3 V, P <sub>out</sub> = POUT <sub>MAX</sub>                   | _   | -38.8 | _   | dBm/<br>100kHz |
|                                               |                        | Absolute, at carrier ± 3.5 MHz,<br>P <sub>out</sub> = 10 dBm                                               | _   | -49   | _   | dBm/<br>100kHz |
|                                               |                        | Absolute, at carrier ± 3.5 MHz, P <sub>out</sub> = 0 dBm                                                   | _   | -58.9 | _   | dBm/<br>100kHz |
|                                               |                        | Per FCC part 15.247, PAVDD = 3.3 V, P <sub>out</sub> = POUT <sub>MAX</sub>                                 | _   | +5.6  | _   | dBm/<br>3kHz   |
|                                               |                        | Per FCC part 15.247, P <sub>out</sub> = 10 dBm                                                             | _   | -4.4  | _   | dBm/<br>3kHz   |
|                                               |                        | Per FCC part 15.247, P <sub>out</sub> = 0 dBm                                                              | _   | -14.2 | _   | dBm/<br>3kHz   |
|                                               |                        | ETSI 300.328 P <sub>out</sub> = 10 dBm                                                                     | _   | +8.1  | _   | dBm            |
|                                               |                        | ETSI 300.328 P <sub>out</sub> = 0 dbm                                                                      | _   | -1.9  | _   | dBm            |
| Occupied channel bandwidth per ETSI EN300.328 | OCP <sub>ETSI328</sub> | 99% BW at highest and lowest channels in band, P <sub>out</sub> = 10 dBm                                   | _   | 2.3   | _   | MHz            |
|                                               |                        | 99% BW at highest and lowest channels in band, P <sub>out</sub> = 0 dBm                                    | _   | 2.2   | _   | MHz            |

# 4.1.5.1.3 RF Transmitter Characteristics for Bluetooth Low Energy in the 2.4 GHz Band 1 Mbps Data Rate

Unless otherwise indicated, typical conditions are:  $T_A = 25$  °C, PAVDD = 3.0V, AVDD = DVDD = IOVDD = RFVDD = PAVDD. Crystal frequency=38.4 MHz. RF center frequency 2.45 GHz. Antenna port 2.

Table 4.10. RF Transmitter Characteristics for Bluetooth Low Energy in the 2.4 GHz Band 1 Mbps Data Rate

| Parameter                                                        | Symbol                 | Test Condition                                                                     | Min | Тур   | Max | Unit         |
|------------------------------------------------------------------|------------------------|------------------------------------------------------------------------------------|-----|-------|-----|--------------|
| Transmit 6 dB bandwidth                                          | TXBW                   | PAVDD = 3.3 V, P <sub>out</sub> = POUT <sub>MAX</sub>                              | _   | 635.1 | _   | kHz          |
|                                                                  |                        | P <sub>out</sub> = 10 dBm                                                          | _   | 672.9 | _   | kHz          |
|                                                                  |                        | P <sub>out</sub> = 0 dBm                                                           | _   | 646.5 | _   | kHz          |
| Power spectral density limit                                     | PSD <sub>LIMIT</sub>   | PAVDD = 3.3 V, P <sub>out</sub> = POUT <sub>MAX</sub> ,<br>Per FCC part 15.247     | _   | +6.4  | _   | dBm/<br>3kHz |
|                                                                  |                        | P <sub>out</sub> = 10 dBm, Per FCC part<br>15.247 at 10 dBm                        | _   | -3.7  | _   | dBm/<br>3kHz |
|                                                                  |                        | P <sub>out</sub> = 0 dBm, Per FCC part<br>15.247 at 0 dBm                          | _   | -13.6 | _   | dBm/<br>3kHz |
|                                                                  |                        | Per ETSI 300.328 at 10 dBm/1<br>MHz                                                | _   | +10.2 | _   | dBm          |
| Occupied channel bandwidth per ETSI EN300.328                    | OCP <sub>ETSI328</sub> | P <sub>out</sub> = 10 dBm 99% BW at highest and lowest channels in band            | _   | 1.1   | _   | MHz          |
|                                                                  |                        | P <sub>out</sub> = 0 dBm 99% BW at highest and lowest channels in band             | _   | 1.1   | _   | MHz          |
| In-band spurious emissions, with allowed exceptions <sup>1</sup> | SPUR <sub>INB</sub>    | PAVDD = 3.3 V, P <sub>out</sub> = POUT <sub>MAX</sub> ,<br>Inband spurs at ± 2 MHz | _   | -26.3 | _   | dBm          |
|                                                                  |                        | P <sub>out</sub> = 10 dbm, Inband spurs at ± 2 MHz                                 | _   | -36.4 | _   | dBm          |
|                                                                  |                        | P <sub>out</sub> = 0 dbm, Inband spurs at ± 2 MHz                                  | _   | -46.3 | _   | dBm          |
|                                                                  |                        | PAVDD = 3.3 V, P <sub>out</sub> = POUT <sub>MAX</sub><br>Inband spurs at ± 3 MHz   | _   | -20   | _   | dBm          |
|                                                                  |                        | P <sub>out</sub> = 10 dBm Inband spurs at ± 3 MHz                                  | _   | -41.9 | _   | dBm          |
|                                                                  |                        | P <sub>out</sub> = 0dbm Inband spurs at ± 3 MHz                                    | _   | -51.5 | _   | dBm          |

<sup>1.</sup> Per Bluetooth Core\_5.1, Vol.6 Part A, Section 3.2.2, exceptions are allowed in up to three bands of 1 MHz width, centered on a frequency which is an integer multiple of 1 MHz. These exceptions shall have an absolute value of -20 dBm or less.

# 4.1.5.1.4 RF Transmitter Characteristics for Bluetooth Low Energy in the 2.4 GHz Band 2 Mbps Data Rate

Unless otherwise indicated, typical conditions are:  $T_A = 25$  °C, PAVDD = 3.0V, AVDD = DVDD = IOVDD = RFVDD = PAVDD. Crystal frequency=38.4 MHz. RF center frequency 2.45 GHz. Antenna port 2.

Table 4.11. RF Transmitter Characteristics for Bluetooth Low Energy in the 2.4 GHz Band 2 Mbps Data Rate

| Parameter                                                        | Symbol                 | Test Condition                                                                    | Min | Тур    | Max | Unit         |
|------------------------------------------------------------------|------------------------|-----------------------------------------------------------------------------------|-----|--------|-----|--------------|
| Transmit 6 dB bandwidth                                          | TXBW                   | PAVDD = 3.3 V, P <sub>out</sub> = POUT <sub>MAX</sub>                             | _   | 1238.6 | _   | kHz          |
|                                                                  |                        | P <sub>out</sub> = 10 dBm                                                         | _   | 1182.5 | _   | kHz          |
|                                                                  |                        | P <sub>out</sub> = 0 dBm                                                          | _   | 1249.7 | _   | kHz          |
| Power spectral density limit                                     | PSD <sub>LIMIT</sub>   | PAVDD = 3.3 V, P <sub>out</sub> = POUT <sub>MAX</sub> ,<br>Per FCC part 15.247    | _   | +3.7   | _   | dBm/<br>3kHz |
|                                                                  |                        | P <sub>out</sub> = 10 dBm, Per FCC part<br>15.247 at 10 dBm                       | _   | -6.4   | _   | dBm/<br>3kHz |
|                                                                  |                        | P <sub>out</sub> = 0 dBm, Per FCC part<br>15.247 at 0 dBm                         | _   | -16.2  | _   | dBm/<br>3kHz |
|                                                                  |                        | Per ETSI 300.328 at 10 dBm/1<br>MHz                                               | _   | +9.0   | _   | dBm          |
| Occupied channel bandwidth per ETSI EN300.328                    | OCP <sub>ETSI328</sub> | P <sub>out</sub> = 10 dBm 99% BW at highest and lowest channels in band           | _   | 2.1    | _   | MHz          |
|                                                                  |                        | P <sub>out</sub> = 0 dBm 99% BW at highest and lowest channels in band            | _   | 2.1    | _   | MHz          |
| In-band spurious emissions, with allowed exceptions <sup>1</sup> | SPUR <sub>INB</sub>    | PAVDD = 3.3 V P <sub>out</sub> = POUT <sub>MAX</sub> ,<br>Inband spurs at ± 2 MHz | _   | -31.7  | _   | dBm          |
|                                                                  |                        | P <sub>out</sub> = 10 dBm, Inband spurs at ± 4 MHz                                | _   | -41.9  | _   | dBm          |
|                                                                  |                        | P <sub>out</sub> = 0 dBm, Inband spurs at ± 4 MHz                                 | _   | -51.7  | _   | dBm          |
|                                                                  |                        | PAVDD = 3.3 V P <sub>out</sub> = POUT <sub>MAX</sub><br>Inband spurs at ± 6 MHz   | _   | -35.7  | _   | dBm          |
|                                                                  |                        | P <sub>out</sub> = 10 dBm Inband spurs at ± 6 MHz                                 | _   | -46.0  | _   | dBm          |
|                                                                  |                        | P <sub>out</sub> = 0 dbm Inband spurs at ± 6 MHz                                  | _   | -55.7  | _   | dBm          |

<sup>1.</sup> Per Bluetooth Core\_5.1, Vol.6 Part A, Section 3.2.2, exceptions are allowed in up to three bands of 1 MHz width, centered on a frequency which is an integer multiple of 1 MHz. These exceptions shall have an absolute value of -20 dBm or less.

# 4.1.5.1.5 RF Transmitter Characteristics for Bluetooth Low Energy in the 2.4 GHz Band 500 kbps Data Rate

Unless otherwise indicated, typical conditions are:  $T_A = 25$  °C, PAVDD = 3.0V, AVDD = DVDD = IOVDD = RFVDD = PAVDD. Crystal frequency=38.4 MHz. RF center frequency 2.45 GHz. Antenna port 2.

Table 4.12. RF Transmitter Characteristics for Bluetooth Low Energy in the 2.4 GHz Band 500 kbps Data Rate

| Parameter                                                        | Symbol                 | Test Condition                                                                   | Min | Тур   | Max | Unit         |
|------------------------------------------------------------------|------------------------|----------------------------------------------------------------------------------|-----|-------|-----|--------------|
| Transmit 6 dB bandwidth                                          | TXBW                   | PAVDD = 3.3 V, P <sub>out</sub> = POUT <sub>MAX</sub>                            | _   | 770.9 | _   | kHz          |
|                                                                  |                        | P <sub>out</sub> = 10 dBm                                                        | _   | 760.1 | _   | kHz          |
|                                                                  |                        | P <sub>out</sub> = 0 dBm                                                         | _   | 775.1 | _   | kHz          |
| Power spectral density limit                                     | PSD <sub>LIMIT</sub>   | PAVDD = 3.3 V, P <sub>out</sub> = POUT <sub>MAX</sub> ,<br>Per FCC part 15.247   | _   | +5.4  | _   | dBm/<br>3kHz |
|                                                                  |                        | P <sub>out</sub> = 10 dBm, Per FCC part<br>15.247 at 10 dBm                      | _   | -4.6  | _   | dBm/<br>3kHz |
|                                                                  |                        | P <sub>out</sub> = 0 dBm, Per FCC part<br>15.247 at 0 dBm                        | _   | -14.4 | _   | dBm/<br>3kHz |
|                                                                  |                        | Per ETSI 300.328 at 10 dBm/1<br>MHz                                              | _   | +10.2 | _   | dBm          |
| Occupied channel bandwidth per ETSI EN300.328                    | OCP <sub>ETSI328</sub> | P <sub>out</sub> = 10 dBm 99% BW at highest and lowest channels in band          | _   | 1.1   | _   | MHz          |
|                                                                  |                        | P <sub>out</sub> = 0 dBm 99% BW at highest and lowest channels in band           | _   | 1.1   | _   | MHz          |
| In-band spurious emissions, with allowed exceptions <sup>1</sup> | SPUR <sub>INB</sub>    | P <sub>out</sub> = 10 dbm, Inband spurs at ± 2 MHz                               | _   | -38.3 | _   | dBm          |
|                                                                  |                        | P <sub>out</sub> = 0 dbm, Inband spurs at ± 2<br>MHz                             | _   | -47.6 | _   | dBm          |
|                                                                  |                        | PAVDD = 3.3 V, P <sub>out</sub> = POUT <sub>MAX</sub><br>Inband spurs at ± 3 MHz | _   | -20   | _   | dBm          |
|                                                                  |                        | P <sub>out</sub> = 10 dBm Inband spurs at ± 3 MHz                                | _   | -42.3 | _   | dBm          |
|                                                                  |                        | P <sub>out</sub> = 0dbm Inband spurs at ± 3 MHz                                  | _   | -51.8 | _   | dBm          |

<sup>1.</sup> Per Bluetooth Core\_5.1, Vol.6 Part A, Section 3.2.2, exceptions are allowed in up to three bands of 1 MHz width, centered on a frequency which is an integer multiple of 1 MHz. These exceptions shall have an absolute value of -20 dBm or less.

# 4.1.5.1.6 RF Transmitter Characteristics for Bluetooth Low Energy in the 2.4 GHz Band 125 kbps Data Rate

Unless otherwise indicated, typical conditions are:  $T_A = 25$  °C, PAVDD = 3.0V, AVDD = DVDD = IOVDD = RFVDD = PAVDD. Crystal frequency=38.4 MHz. RF center frequency 2.45 GHz. Antenna port 2.

Table 4.13. RF Transmitter Characteristics for Bluetooth Low Energy in the 2.4 GHz Band 125 kbps Data Rate

| Parameter                                                        | Symbol                 | Test Condition                                                                     | Min | Тур   | Max | Unit         |
|------------------------------------------------------------------|------------------------|------------------------------------------------------------------------------------|-----|-------|-----|--------------|
| Transmit 6 dB bandwidth                                          | TXBW                   | PAVDD = 3.3 V, P <sub>out</sub> = POUT <sub>MAX</sub>                              | _   | 609.7 | _   | kHz          |
|                                                                  |                        | P <sub>out</sub> = 10 dBm                                                          | _   | 619.3 | _   | kHz          |
|                                                                  |                        | P <sub>out</sub> = 0 dBm                                                           | _   | 617.4 | _   | kHz          |
| Power spectral density limit                                     | PSD <sub>LIMIT</sub>   | PAVDD = 3.3 V, P <sub>out</sub> = POUT <sub>MAX</sub> ,<br>Per FCC part 15.247     | _   | +14.6 | _   | dBm/<br>3kHz |
|                                                                  |                        | P <sub>out</sub> = 10 dBm, Per FCC part<br>15.247 at 10 dBm                        | _   | +4.5  | _   | dBm/<br>3kHz |
|                                                                  |                        | P <sub>out</sub> = 0 dBm, Per FCC part<br>15.247 at 0 dBm                          | _   | -5.3  | _   | dBm/<br>3kHz |
|                                                                  |                        | Per ETSI 300.328 at 10 dBm/1<br>MHz                                                | _   | +10.1 | _   | dBm          |
| Occupied channel bandwidth per ETSI EN300.328                    | OCP <sub>ETSI328</sub> | P <sub>out</sub> = 10 dBm 99% BW at highest and lowest channels in band            | _   | 1.1   | _   | MHz          |
|                                                                  |                        | P <sub>out</sub> = 0 dBm 99% BW at highest and lowest channels in band             | _   | 1.1   | _   | MHz          |
| In-band spurious emissions, with allowed exceptions <sup>1</sup> | SPUR <sub>INB</sub>    | PAVDD = 3.3 V, P <sub>out</sub> = POUT <sub>MAX</sub> ,<br>Inband spurs at ± 2 MHz | _   | -27.7 | _   | dBm          |
|                                                                  |                        | P <sub>out</sub> = 10 dbm, Inband spurs at ± 2 MHz                                 | _   | -38.5 | _   | dBm          |
|                                                                  |                        | P <sub>out</sub> = 0 dbm, Inband spurs at ± 2 MHz                                  | _   | -47.8 | _   | dBm          |
|                                                                  |                        | PAVDD = 3.3 V, P <sub>out</sub> = POUT <sub>MAX</sub><br>Inband spurs at ± 3 MHz   | _   | -20   | _   | dBm          |
|                                                                  |                        | P <sub>out</sub> = 10 dBm Inband spurs at ± 3 MHz                                  | _   | -42.4 | _   | dBm          |
|                                                                  |                        | P <sub>out</sub> = 0dbm Inband spurs at ± 3 MHz                                    | _   | -51.8 | _   | dBm          |

<sup>1.</sup> Per Bluetooth Core\_5.1, Vol.6 Part A, Section 3.2.2, exceptions are allowed in up to three bands of 1 MHz width, centered on a frequency which is an integer multiple of 1 MHz. These exceptions shall have an absolute value of -20 dBm or less.

# 4.1.5.2 RF Receiver Characteristics

# 4.1.5.2.1 RF Receiver General Characteristics for the 2.4 GHz Band

Unless otherwise indicated, typical conditions are:  $T_A = 25$  °C, PAVDD = 3.0V, AVDD = DVDD = IOVDD = RFVDD = PAVDD. Crystal frequency=38.4 MHz. RF center frequency 2.45 GHz. Antenna port 2.

Table 4.14. RF Receiver General Characteristics for the 2.4 GHz Band

| Parameter                                              | Symbol                 | Test Condition                            | Min  | Тур   | Max    | Unit |
|--------------------------------------------------------|------------------------|-------------------------------------------|------|-------|--------|------|
| RF tuning frequency range                              | F <sub>RANGE</sub>     |                                           | 2400 | _     | 2483.5 | MHz  |
| Receive mode maximum spurious emission                 | SPUR <sub>RX</sub>     | 30 MHz to 1 GHz                           | _    | -54.8 | _      | dBm  |
|                                                        |                        | 1 GHz to 12 GHz                           | _    | -57.1 | _      | dBm  |
| Max spurious emissions during active receive mode, per | SPUR <sub>RX_FCC</sub> | 216 MHz to 960 MHz, conducted measurement | _    | -54.8 | _      | dBm  |
| FCC Part 15.109(a)                                     |                        | Above 960 MHz, conducted measurement.     | _    | -77.3 | _      | dBm  |

#### 4.1.5.2.2 RF Receiver Characteristics for 802.15.4 DSSS-OQPSK in the 2.4 GHz Band

Unless otherwise indicated, typical conditions are:  $T_A = 25$  °C, PAVDD = 3.0V, AVDD = DVDD = IOVDD = RFVDD = PAVDD. Crystal frequency=38.4 MHz. RF center frequency 2.45 GHz. Antenna port 2.

Table 4.15. RF Receiver Characteristics for 802.15.4 DSSS-OQPSK in the 2.4 GHz Band

| Parameter                                                                                                                                                             | Symbol              | Test Condition                                                       | Min         | Тур    | Max | Unit |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------------------------------------------------------|-------------|--------|-----|------|
| Max usable receiver input level, 1% PER                                                                                                                               | SAT                 | Signal is reference signal <sup>1</sup> , packet length is 20 octets | _           | 10     | _   | dBm  |
| Sensitivity, 1% PER                                                                                                                                                   | SENS                | Signal is reference signal, packet length is 20 octets               | _           | -104.5 | _   | dBm  |
| Co-channel interferer rejection, 1% PER                                                                                                                               | CCR                 | Desired signal 3 dB above sensitivity limit                          | _           | -0.2   | _   | dB   |
| Adjacent channel rejection,<br>Interferer is reference signal,<br>1% PER, desired is refer-<br>ence signal at 3 dB above<br>reference sensitivity level <sup>2</sup>  | ACR <sub>REF1</sub> | Interferer is reference signal at +1 channel spacing                 | <del></del> | 39.9   | _   | dB   |
|                                                                                                                                                                       |                     | Interferer is reference signal at -1 channel spacing                 | _           | 39.2   | _   | dB   |
| Alternate channel rejection, interferer is reference signal, 1% PER, desired is reference signal at 3 dB above reference sensitivity level <sup>2</sup>               | ACR <sub>REF2</sub> | Interferer is reference signal at +2 channel spacing                 | _           | 51.1   | _   | dB   |
|                                                                                                                                                                       |                     | Interferer is reference signal at -2 channel spacing                 | _           | 51.6   | _   | dB   |
| Image rejection, 1% PER,<br>desired is reference signal at<br>3 dB above reference sensi-<br>tivity level <sup>2</sup>                                                | IR                  | Interferer is CW in image band <sup>3</sup>                          | _           | 43.5   | _   | dB   |
| Blocking rejection of all other channels, 1% PER, desired is reference signal at 3 dB above reference sensitivity level <sup>2</sup> , interferer is reference signal | BLOCK               | Interferer frequency < desired frequency -3 channel spacing          | _           | 57.6   | _   | dB   |
|                                                                                                                                                                       |                     | Interferer frequency > desired frequency +3 channel spacing          | _           | 57.5   | _   | dB   |
| RSSI resolution                                                                                                                                                       | RSSI <sub>RES</sub> | -100 dBm to +5 dBm                                                   | _           | 0.25   | _   | dB   |
| RSSI accuracy in the linear region as defined by 802.15.4-2003                                                                                                        | RSSI <sub>LIN</sub> |                                                                      | _           | +/-6   | _   | dB   |

- 1. Reference signal is defined as O-QPSK DSSS per 802.15.4, Frequency range = 2400-2483.5 MHz, Symbol rate = 62.5 ksymbols/s.
- 2. Reference sensitivity level is -85 dBm.
- 3. Due to low-IF frequency, there is some overlap of adjacent channel and image channel bands. Adjacent channel CW blocker tests place the Interferer center frequency at the Desired frequency ± 5 MHz on the channel raster, whereas the image rejection test places the CW interferer near the image frequency of the Desired signal carrier, regardless of the channel raster.

# 4.1.5.2.3 RF Receiver Characteristics for Bluetooth Low Energy in the 2.4 GHz Band 1 Mbps Data Rate

Unless otherwise indicated, typical conditions are:  $T_A = 25$  °C, PAVDD = 3.0V, AVDD = DVDD = IOVDD = RFVDD = PAVDD. Crystal frequency=38.4 MHz. RF center frequency 2.45 GHz. Antenna port 2.

Table 4.16. RF Receiver Characteristics for Bluetooth Low Energy in the 2.4 GHz Band 1 Mbps Data Rate

| Parameter                              | Symbol              | Test Condition                                                                               | Min | Тур   | Max | Unit |
|----------------------------------------|---------------------|----------------------------------------------------------------------------------------------|-----|-------|-----|------|
| Max usable receiver input level        | SAT                 | Signal is reference signal, packet length is 37 bytes <sup>1</sup>                           | _   | 10    | _   | dBm  |
| Sensitivity                            | SENS                | Signal is reference signal, 37 byte payload <sup>1</sup>                                     | _   | -97.5 | _   | dBm  |
|                                        |                     | With non-ideal signals <sup>2</sup> <sup>1</sup>                                             | _   | -97.1 | _   | dBm  |
| Signal to co-channel interferer        | C/I <sub>CC</sub>   | (see notes) <sup>1 3</sup>                                                                   | _   | +6.6  | _   | dB   |
| N ± 1 Adjacent channel selectivity     | C/I <sub>1</sub>    | Interferer is reference signal at +1 MHz offset <sup>1 4 3 5</sup>                           | _   | -8.3  | _   | dB   |
|                                        |                     | Interferer is reference signal at -1 MHz offset <sup>1 4 3 5</sup>                           | _   | -8.7  | _   | dB   |
| N ± 2 Alternate channel selectivity    | C/I <sub>2</sub>    | Interferer is reference signal at +2 MHz offset <sup>1 4 3 5</sup>                           | _   | -42.1 | _   | dB   |
|                                        |                     | Interferer is reference signal at -2 MHz offset <sup>1 4 3 5</sup>                           | _   | -48.9 | _   | dB   |
| N ± 3 Alternate channel selectivity    | C/I <sub>3</sub>    | Interferer is reference signal at +3 MHz offset <sup>1 4 3 5</sup>                           | _   | -42.4 | _   | dB   |
|                                        |                     | Interferer is reference signal at -3 MHz offset <sup>1 4 3 5</sup>                           | _   | -54.8 | _   | dB   |
| Selectivity to image frequency         | C/I <sub>IM</sub>   | Interferer is reference signal at image frequency with 1 MHz precision <sup>1 5</sup>        | _   | -42.1 | _   | dB   |
| Selectivity to image frequency ± 1 MHz | C/I <sub>IM_1</sub> | Interferer is reference signal at image frequency +1 MHz with 1 MHz precision <sup>1 5</sup> | _   | -42.4 | _   | dB   |
|                                        |                     | Interferer is reference signal at image frequency -1 MHz with 1 MHz precision <sup>1 5</sup> | _   | -8.3  | _   | dB   |
| Intermodulation performance            | IM                  | n = 3 <sup>6</sup>                                                                           | _   | -23   | _   | dBm  |

- 1.0.1% Bit Error Rate.
- 2. With non-ideal signals as specified in Bluetooth Test Specification RF-PHY.TS.5.0.1 section 4.7.1
- 3. Desired signal -67 dBm.
- 4. Desired frequency 2402 MHz  $\leq$  Fc  $\leq$  2480 MHz.
- 5. With allowed exceptions.
- 6. As specified in Bluetooth Core specification version 5.1, Vol 6, Part A, Section 4.4

## 4.1.5.2.4 RF Receiver Characteristics for Bluetooth Low Energy in the 2.4 GHz Band 2 Mbps Data Rate

Unless otherwise indicated, typical conditions are:  $T_A = 25$  °C, PAVDD = 3.0V, AVDD = DVDD = IOVDD = RFVDD = PAVDD. Crystal frequency=38.4 MHz. RF center frequency 2.45 GHz. Antenna port 2.

Table 4.17. RF Receiver Characteristics for Bluetooth Low Energy in the 2.4 GHz Band 2 Mbps Data Rate

| Parameter                              | Symbol              | Test Condition                                                                                      | Min | Тур   | Max | Unit |
|----------------------------------------|---------------------|-----------------------------------------------------------------------------------------------------|-----|-------|-----|------|
| Max usable receiver input level        | SAT                 | Signal is reference signal, packet length is 37 bytes <sup>1</sup>                                  | _   | 10    | _   | dBm  |
| Sensitivity                            | SENS                | Signal is reference signal, 37 byte payload <sup>1</sup>                                            | _   | -94.4 | _   | dBm  |
|                                        |                     | With non-ideal signals <sup>2</sup> 1                                                               | _   | -94.3 | _   | dBm  |
| Signal to co-channel interferer        | C/I <sub>CC</sub>   | (see notes) <sup>1 3</sup>                                                                          | _   | +6.0  | _   | dB   |
| N ± 1 Adjacent channel selectivity     | C/I <sub>1</sub>    | Interferer is reference signal at +2 MHz offset <sup>1 4 3 5</sup>                                  | _   | -8.0  | _   | dB   |
|                                        |                     | Interferer is reference signal at -2 MHz offset <sup>1</sup> <sup>4</sup> <sup>3</sup> <sup>5</sup> | _   | -8.8  | _   | dB   |
| N ± 2 Alternate channel selectivity    | C/I <sub>2</sub>    | Interferer is reference signal at +4 MHz offset <sup>1</sup> <sup>4</sup> <sup>3</sup> <sup>5</sup> | _   | -42.2 | _   | dB   |
|                                        |                     | Interferer is reference signal at -4 MHz offset <sup>1 4 3 5</sup>                                  | _   | -50.3 | _   | dB   |
| N ± 3 Alternate channel selectivity    | C/I <sub>3</sub>    | Interferer is reference signal at +6 MHz offset <sup>1 4 3 5</sup>                                  | _   | -54.4 | _   | dB   |
|                                        |                     | Interferer is reference signal at -6 MHz offset <sup>1 4 3 5</sup>                                  | _   | -55.4 | _   | dB   |
| Selectivity to image frequency         | C/I <sub>IM</sub>   | Interferer is reference signal at image frequency with 1 MHz precision <sup>1 5</sup>               | _   | -8.0  | _   | dB   |
| Selectivity to image frequency ± 1 MHz | C/I <sub>IM_1</sub> | Interferer is reference signal at image frequency +2 MHz with 1 MHz precision <sup>1 5</sup>        | _   | -42.2 | _   | dB   |
|                                        |                     | Interferer is reference signal at image frequency -2 MHz with 1 MHz precision <sup>1 5</sup>        | _   | +6.0  | _   | dB   |
| Intermodulation performance            | IM                  | n = 3 <sup>6</sup>                                                                                  | _   | -22.3 | _   | dBm  |

- 1.0.1% Bit Error Rate.
- 2. With non-ideal signals as specified in Bluetooth Test Specification RF-PHY.TS.5.0.1 section 4.7.1
- 3. Desired signal -67 dBm.
- 4. Desired frequency 2402 MHz  $\leq$  Fc  $\leq$  2480 MHz.
- 5. With allowed exceptions.
- 6. As specified in Bluetooth Core specification version 5.1, Vol 6, Part A, Section 4.4

## 4.1.5.2.5 RF Receiver Characteristics for Bluetooth Low Energy in the 2.4 GHz Band 500 kbps Data Rate

Unless otherwise indicated, typical conditions are:  $T_A$  = 25 °C, PAVDD = 3.0V, AVDD = DVDD = IOVDD = RFVDD = PAVDD. Crystal frequency=38.4 MHz. RF center frequency 2.45 GHz. Antenna port 2.

Table 4.18. RF Receiver Characteristics for Bluetooth Low Energy in the 2.4 GHz Band 500 kbps Data Rate

| Parameter                              | Symbol              | Test Condition                                                                               | Min | Тур    | Max | Unit |
|----------------------------------------|---------------------|----------------------------------------------------------------------------------------------|-----|--------|-----|------|
| Max usable receiver input level        | SAT                 | Signal is reference signal, packet length is 37 bytes <sup>1</sup>                           | _   | 10     | _   | dBm  |
| Sensitivity                            | SENS                | Signal is reference signal <sup>1</sup>                                                      | _   | -100.6 | _   | dBm  |
|                                        |                     | With non-ideal signals <sup>2</sup> 1                                                        | _   | -100.0 | _   | dBm  |
| Signal to co-channel interferer        | C/I <sub>CC</sub>   | (see notes) <sup>1 3</sup>                                                                   | _   | +2.1   | _   | dB   |
| N ± 1 Adjacent channel selectivity     | C/I <sub>1</sub>    | Interferer is reference signal at +1 MHz offset <sup>1 4 3 5</sup>                           | _   | -9.0   | _   | dB   |
|                                        |                     | Interferer is reference signal at -1 MHz offset <sup>1 4 3 5</sup>                           | _   | -9.5   | _   | dB   |
| N ± 2 Alternate channel selectivity    | C/I <sub>2</sub>    | Interferer is reference signal at +2 MHz offset <sup>1 4 3 5</sup>                           | _   | -44.4  | _   | dB   |
|                                        |                     | Interferer is reference signal at -2 MHz offset <sup>1 4 3 5</sup>                           | _   | -51.9  | _   | dB   |
| N ± 3 Alternate channel selectivity    | C/I <sub>3</sub>    | Interferer is reference signal at +3 MHz offset <sup>1 4 3 5</sup>                           | _   | -44.3  | _   | dB   |
|                                        |                     | Interferer is reference signal at -3 MHz offset <sup>1 4 3 5</sup>                           | _   | -58.3  | _   | dB   |
| Selectivity to image frequency         | C/I <sub>IM</sub>   | Interferer is reference signal at image frequency with 1 MHz precision <sup>15</sup>         | _   | -44.4  | _   | dB   |
| Selectivity to image frequency ± 1 MHz | C/I <sub>IM_1</sub> | Interferer is reference signal at image frequency +1 MHz with 1 MHz precision <sup>1 5</sup> | _   | -44.3  | _   | dB   |
|                                        |                     | Interferer is reference signal at image frequency -1 MHz with 1 MHz precision 1 5            | _   | -9.0   | _   | dB   |

- 1.0.1% Bit Error Rate.
- 2. With non-ideal signals as specified in Bluetooth Test Specification RF-PHY.TS.5.0.1 section 4.7.1
- 3. Desired signal -72 dBm.
- 4. Desired frequency 2402 MHz ≤ Fc ≤ 2480 MHz.
- 5. With allowed exceptions.

## 4.1.5.2.6 RF Receiver Characteristics for Bluetooth Low Energy in the 2.4 GHz Band 125 kbps Data Rate

Unless otherwise indicated, typical conditions are:  $T_A = 25$  °C, PAVDD = 3.0V, AVDD = DVDD = IOVDD = RFVDD = PAVDD. Crystal frequency=38.4 MHz. RF center frequency 2.45 GHz. Antenna port 2.

Table 4.19. RF Receiver Characteristics for Bluetooth Low Energy in the 2.4 GHz Band 125 kbps Data Rate

| Parameter                              | Symbol              | Test Condition                                                                                      | Min | Тур    | Max | Unit |
|----------------------------------------|---------------------|-----------------------------------------------------------------------------------------------------|-----|--------|-----|------|
| Max usable receiver input level        | SAT                 | Signal is reference signal, packet length is 37 bytes <sup>1</sup>                                  | _   | 10     | _   | dBm  |
| Sensitivity                            | SENS                | Signal is reference signal <sup>1</sup>                                                             | _   | -104.9 | _   | dBm  |
|                                        |                     | With non-ideal signals <sup>2</sup> 1                                                               | _   | -104.6 | _   | dBm  |
| Signal to co-channel interferer        | C/I <sub>CC</sub>   | (see notes) <sup>1 3</sup>                                                                          | _   | +0.8   | _   | dB   |
| N ± 1 Adjacent channel selectivity     | C/I <sub>1</sub>    | Interferer is reference signal at +1 MHz offset <sup>1 4 3 5</sup>                                  | _   | -13.1  | _   | dB   |
|                                        |                     | Interferer is reference signal at -1 MHz offset <sup>1</sup> <sup>4</sup> <sup>3</sup> <sup>5</sup> | _   | -13.6  | _   | dB   |
| N ± 2 Alternate channel selectivity    | C/I <sub>2</sub>    | Interferer is reference signal at +2 MHz offset <sup>1 4 3 5</sup>                                  | _   | -49.5  | _   | dB   |
|                                        |                     | Interferer is reference signal at -2 MHz offset <sup>1 4 3 5</sup>                                  | _   | -56.9  | _   | dB   |
| N ± 3 Alternate channel selectivity    | C/I <sub>3</sub>    | Interferer is reference signal at +3 MHz offset <sup>1 4 3 5</sup>                                  | _   | -47.0  | _   | dB   |
|                                        |                     | Interferer is reference signal at -3 MHz offset <sup>1 4 3 5</sup>                                  | _   | -63.1  | _   | dB   |
| Selectivity to image frequency         | C/I <sub>IM</sub>   | Interferer is reference signal at image frequency with 1 MHz precision <sup>15</sup>                | _   | -49.5  | _   | dB   |
| Selectivity to image frequency ± 1 MHz | C/I <sub>IM_1</sub> | Interferer is reference signal at image frequency +1 MHz with 1 MHz precision <sup>1 5</sup>        | _   | -47.0  | _   | dB   |
|                                        |                     | Interferer is reference signal at image frequency -1 MHz with 1 MHz precision 1 5                   | _   | -13.1  | _   | dB   |

- 1.0.1% Bit Error Rate.
- 2. With non-ideal signals as specified in Bluetooth Test Specification RF-PHY.TS.5.0.1 section 4.7.1
- 3. Desired signal -79 dBm.
- 4. Desired frequency 2402 MHz ≤ Fc ≤ 2480 MHz.
- 5. With allowed exceptions.

### 4.1.6 Flash Characteristics

Table 4.20. Flash Characteristics

| Parameter                                      | Symbol               | Test Condition                  | Min    | Тур  | Max  | Unit   |
|------------------------------------------------|----------------------|---------------------------------|--------|------|------|--------|
| Flash erase cycles before failure <sup>1</sup> | EC <sub>FLASH</sub>  | T <sub>A</sub> ≤ 125 °C         | 10,000 | _    | _    | cycles |
| Flash data retention <sup>1</sup>              | RET <sub>FLASH</sub> | T <sub>A</sub> ≤ 125 °C         | 10     | _    | _    | years  |
| Program Time                                   | t <sub>PROG</sub>    | one word (32-bits)              | 40.2   | 44.0 | 47.9 | uSec   |
|                                                |                      | average per word over 128 words | 9.97   | 10.9 | 11.9 | uSec   |
| Page Erase Time <sup>2</sup>                   | t <sub>PERASE</sub>  |                                 | 11.6   | 12.7 | 13.9 | ms     |
| Mass Erase Time <sup>3 4</sup>                 | t <sub>MERASE</sub>  |                                 | 11.7   | 12.8 | 14.1 | ms     |
| Page Erase Current                             | I <sub>ERASE</sub>   | T <sub>A</sub> = 25 °C          | _      | _    | 2.13 | mA     |
| Program Current                                | I <sub>WRITE</sub>   | T <sub>A</sub> = 25 °C          | _      | _    | 2.73 | mA     |
| Mass Erase Current                             | I <sub>MERASE</sub>  | T <sub>A</sub> = 25 °C          | _      | _    | 2.30 | mA     |
| Flash Supply voltage during write or erase     | V <sub>FLASH</sub>   |                                 | 1.71   | _    | 3.8  | V      |

- 1. Flash data retention information is published in the Quarterly Quality and Reliability Report.
- 2. Page Erase time is measured from setting the ERASEPAGE bit in the MSC\_WRITECMD register until the BUSY bit in the MSC\_STATUS register is cleared to 0. Internal set-up and hold times are included.
- 3. Mass Erase is issued by the CPU and erases all of User space.
- 4. Mass Erase time is measured from setting the ERASEMAIN0 bit in the MSC\_WRITECMD register until the BUSY bit in the MSC\_STATUS register is cleared to 0. Internal set-up and hold times are included.

# 4.1.7 Wake Up, Entry, and Exit times

Unless otherwise specified, these times are measured using the HFRCO at 19 MHz.

Table 4.21. Wake Up, Entry, and Exit times

| Parameter           | Symbol               | Test Condition                     | Min | Тур  | Max | Unit          |
|---------------------|----------------------|------------------------------------|-----|------|-----|---------------|
| WakeupTime from EM1 | t <sub>EM1_WU</sub>  | Code execution from flash          | _   | 3    | _   | AHB<br>Clocks |
|                     |                      | Code execution from RAM            | _   | 1.43 | _   | μs            |
| WakeupTime from EM2 | t <sub>EM2_WU</sub>  | Code execution from flash          | _   | 12.2 | _   | μs            |
|                     |                      | Code execution from RAM            | _   | 3.92 | _   | μs            |
|                     |                      | Code execution from flash @ 80 MHz | _   | 9.00 | _   | μs            |
|                     |                      | Code execution from RAM @ 80 MHz   | _   | 2.87 | _   | μs            |
| WakupTime from EM3  | t <sub>EM3_WU</sub>  | Code execution from flash          | _   | 12.2 | _   | μs            |
|                     |                      | Code execution from RAM            | _   | 3.92 | _   | μs            |
|                     |                      | Code execution from flash @ 80 MHz | _   | 9.00 | _   | μs            |
|                     |                      | Code execution from RAM @ 80 MHz   | _   | 2.87 | _   | μs            |
| WakeupTime from EM4 | t <sub>EM4_WU</sub>  | Code execution from Flash          | _   | 17.8 | _   | ms            |
| Entry time to EM1   | t <sub>EM1_ENT</sub> | Code execution from flash          | _   | 1.52 | _   | μs            |
| Entry time to EM2   | t <sub>EM2_ENT</sub> | Code execution from flash          | _   | 74.0 | _   | μs            |
| Entry time to EM3   | t <sub>EM3_ENT</sub> | Code execution from flash          | _   | 74.0 | _   | μs            |
| Entry time to EM4   | t <sub>EM4_ENT</sub> | Code execution from flash          | _   | 84.1 | _   | μs            |

#### 4.1.8 Oscillators

### 4.1.8.1 High Frequency Crystal Oscillator

Unless otherwise indicated, typical conditions are: AVDD = DVDD = RFVDD = 3.0 V.  $T_A = 25 ^{\circ}\text{C}$ . Minimum and maximum values in this table represent the worst conditions across process variation, operating supply voltage range, and operating temperature range.

Table 4.22. High Frequency Crystal Oscillator

| Parameter                                            | Symbol                   | Test Condition                     | Min | Тур  | Max | Unit |
|------------------------------------------------------|--------------------------|------------------------------------|-----|------|-----|------|
| Crystal Frequency                                    | F <sub>HFXO</sub>        | see note <sup>1 2</sup>            | _   | 38.4 | _   | MHz  |
| Supported crystal equivalent series resistance (ESR) | ESR <sub>HFXO_38M4</sub> | 38.4 MHz, CL = 10 pF <sup>3</sup>  | _   | _    | 40  | Ω    |
| Supported range of crystal load capacitance          | C <sub>HFXO_LC</sub>     | 38.4 MHz, ESR = 40 <sup>4</sup>    | _   | 10   | _   | pF   |
| Supply Current                                       | I <sub>HFXO</sub>        |                                    | _   | 500  | _   | μA   |
| Startup Time                                         | T <sub>STARTUP</sub>     | 38.4 MHz, ESR = 40 Ohm, CL = 10 pF | _   | 160  | _   | μs   |
| On-chip tuning cap step size <sup>5</sup>            | SS <sub>HFXO</sub>       |                                    | _   | 0.04 | _   | pF   |

- 1. The BLE radio requires a 38.4 MHz crystal with a tolerance of ± 50 ppm over temperature and aging. Please use the recommended crystal.
- 2. The ZigBee radio requires a 38.4 MHz crystal with a tolerance of ± 40 ppm over temperature and aging. Please use the recommended crystal.
- 3. The crystal should have a maximum ESR less than or equal to this maximum rating.
- 4. It is recommended to use a crystal with a 10 pF load capacitance rating. Only crystals with a 10 pF load cap rating have been characterized for RF use.
- 5. The tuning step size is the effective step size when incrementing one of the tuning capacitors by one count. The step size for the each of the indivdual tuning capacitors is twice this value.

## 4.1.8.2 Low Frequency Crystal Oscillator

Table 4.23. Low Frequency Crystal Oscillator

| Parameter                                                      | Symbol                | Test Condition                                                              | Min  | Тур    | Max  | Unit |
|----------------------------------------------------------------|-----------------------|-----------------------------------------------------------------------------|------|--------|------|------|
| Crystal Frequency                                              | F <sub>LFXO</sub>     |                                                                             | _    | 32.768 | _    | kHz  |
| Supported Crystal equivalent series resistance (ESR)           | ESR <sub>LFXO</sub>   | GAIN = 0                                                                    | _    | _      | 80   | kΩ   |
|                                                                |                       | GAIN = 1 to 3                                                               | _    | _      | 100  | kΩ   |
| Supported range of crystal                                     | C <sub>LFXO_CL</sub>  | GAIN = 0                                                                    | 4    | _      | 6    | pF   |
| load capacitance <sup>1</sup>                                  |                       | GAIN = 1                                                                    | 6    | _      | 10   | pF   |
|                                                                |                       | GAIN = 2 (see note <sup>2</sup> )                                           | 10   | _      | 12.5 | pF   |
|                                                                |                       | GAIN = 3 (see note <sup>2</sup> )                                           | 12.5 | _      | 18   | pF   |
| Current consumption                                            | I <sub>CL12p5</sub>   | ESR = 70 kOhm, CL = 12.5 pF,<br>GAIN <sup>3</sup> = 2, AGC <sup>4</sup> = 1 | _    | 357    | _    | nA   |
| Startup Time                                                   | T <sub>STARTUP</sub>  | ESR = 70 kOhm, CL = 7 pF,<br>GAIN <sup>3</sup> = 1, AGC <sup>4</sup> = 1    | _    | 63     | _    | ms   |
| On-chip tuning cap step size                                   | SS <sub>LFXO</sub>    |                                                                             | _    | 0.26   | _    | pF   |
| On-chip tuning capacitor value at minimum setting <sup>5</sup> | C <sub>LFXO_MIN</sub> | CAPTUNE = 0                                                                 | _    | 4      | _    | pF   |
| On-chip tuning capacitor value at maximum setting <sup>5</sup> | C <sub>LFXO_MAX</sub> | CAPTUNE = 0x4F                                                              | _    | 24.5   | _    | pF   |

- 1. Total load capacitance seen by the crystal
- 2. Crystals with a load capacitance of greater than 12 pF require external load capacitors.
- 3. In LFXO\_CAL Register
- 4. In LFXO\_CFG Register
- 5. The effective load capacitance seen by the crystal will be  $C_{LFXO}/2$ . This is because each XTAL pin has a tuning cap and the two caps will be seen in series by the crystal

## 4.1.8.3 High Frequency RC Oscillator (HFRCO)

Unless otherwise indicated, typical conditions are: AVDD = DVDD = 3.0 V.  $T_A = 25 ^{\circ}\text{C}$ . Minimum and maximum values in this table represent the worst conditions across process variation, operating supply voltage range, and operating temperature range.

Table 4.24. High Frequency RC Oscillator (HFRCO)

| Parameter                                       | Symbol                     | Test Condition                                                                  | Min | Тур  | Max | Unit   |
|-------------------------------------------------|----------------------------|---------------------------------------------------------------------------------|-----|------|-----|--------|
| Frequency Accuracy                              | F <sub>HFRCO_ACC</sub>     | For all production calibrated frequencies                                       | -3  | _    | +3  | %      |
| Current consumption on all                      | I <sub>HFRCO</sub>         | F <sub>HFRCO</sub> = 1 MHz                                                      | _   | 27   | _   | μA     |
| supplies <sup>1</sup>                           |                            | F <sub>HFRCO</sub> = 2 MHz                                                      | _   | 27   | _   | μA     |
|                                                 |                            | F <sub>HFRCO</sub> = 4 MHz                                                      | _   | 27   | _   | μΑ     |
|                                                 |                            | F <sub>HFRCO</sub> = 7 MHz                                                      | _   | 59   | _   | μΑ     |
|                                                 |                            | F <sub>HFRCO</sub> = 13 MHz                                                     | _   | 77   | _   | μA     |
|                                                 |                            | F <sub>HFRCO</sub> = 16 MHz                                                     | _   | 87   | _   | μΑ     |
|                                                 |                            | F <sub>HFRCO</sub> = 19 MHz                                                     | _   | 90   | _   | μΑ     |
|                                                 |                            | F <sub>HFRCO</sub> = 26 MHz                                                     | _   | 116  | _   | μA     |
|                                                 |                            | F <sub>HFRCO</sub> = 32 MHz                                                     | _   | 139  | _   | μA     |
|                                                 |                            | F <sub>HFRCO</sub> = 38 MHz <sup>2</sup>                                        | _   | 170  | _   | μA     |
|                                                 |                            | F <sub>HFRCO</sub> = 40 MHz <sup>3</sup>                                        | _   | 172  | _   | μA     |
|                                                 |                            | F <sub>HFRCO</sub> = 48 MHz <sup>2</sup>                                        | _   | 207  | _   | μА     |
|                                                 |                            | F <sub>HFRCO</sub> = 56 MHz <sup>2</sup>                                        | _   | 228  | _   | μA     |
|                                                 |                            | F <sub>HFRCO</sub> = 64 MHz <sup>2</sup>                                        | _   | 269  | _   | μА     |
|                                                 |                            | F <sub>HFRCO</sub> = 80 MHz <sup>2</sup>                                        | _   | 285  | _   | μА     |
| Clock out current for HFRCODPLL <sup>4</sup>    | I <sub>CLKOUT_HFRCOD</sub> | FORECEEN bit of HFRCO0_CTRL = 1                                                 | _   | 3.0  | _   | μΑ/MHz |
| Clock Out current for<br>HFRCOEM23 <sup>4</sup> | ICLKOUT_HFRCOE<br>M23      | FORECEEN bit of<br>HFRCOEM23_CTRL = 1                                           | _   | 1.6  | _   | µA/MHz |
| Coarse trim step Size (% of period)             | SS <sub>HFRCO_COARS</sub>  | Step size measured at coarse trim mid-scale. (Fine trim also set to mid scale.) | _   | 0.64 | _   | %      |
| Fine trim step Size (% of period)               | SS <sub>HFRCO_FINE</sub>   | Step size measured at fine trim mid-scale. (Coarse trim also set to mid scale.) | _   | 0.1  | _   | %      |
| Period jitter                                   | PJ <sub>HFRCO</sub>        | 19 MHz                                                                          | _   | 0.04 | _   | % RMS  |
| Startup Time <sup>5</sup>                       | T <sub>STARTUP</sub>       | FREQRANGE = 0 to 7                                                              |     | 3.2  |     | μs     |
|                                                 |                            | FREQRANGE = 8 to 15                                                             | _   | 1.2  | _   | μs     |

| Parameter                          | Symbol                  | Test Condition | Min  | Тур | Max  | Unit |
|------------------------------------|-------------------------|----------------|------|-----|------|------|
| Band Frequency Limits <sup>6</sup> | f <sub>HFRCO_BAND</sub> | FREQRANGE = 0  | 3.71 | _   | 5.24 | MHz  |
|                                    |                         | FREQRANGE = 1  | 4.39 | _   | 6.26 | MHz  |
|                                    |                         | FREQRANGE = 2  | 5.25 | _   | 7.55 | MHz  |
|                                    |                         | FREQRANGE = 3  | 6.22 | _   | 9.01 | MHz  |
|                                    |                         | FREQRANGE = 4  | 7.88 | _   | 11.6 | MHz  |
|                                    |                         | FREQRANGE = 5  | 9.9  | _   | 14.6 | MHz  |
|                                    |                         | FREQRANGE = 6  | 11.5 | _   | 17.0 | MHz  |
|                                    |                         | FREQRANGE = 7  | 14.1 | _   | 20.9 | MHz  |
|                                    |                         | FREQRANGE = 8  | 16.4 | _   | 24.7 | MHz  |
|                                    |                         | FREQRANGE = 9  | 19.8 | _   | 30.4 | MHz  |
|                                    |                         | FREQRANGE = 10 | 22.7 | _   | 34.9 | MHz  |
|                                    |                         | FREQRANGE = 11 | 28.6 | _   | 44.4 | MHz  |
|                                    |                         | FREQRANGE = 12 | 33.0 | _   | 51.0 | MHz  |
|                                    |                         | FREQRANGE = 13 | 42.2 | _   | 64.6 | MHz  |
|                                    |                         | FREQRANGE = 14 | 48.8 | _   | 74.8 | MHz  |
|                                    |                         | FREQRANGE = 15 | 57.6 | _   | 87.4 | MHz  |

- 1. Does not include additional clock tree current. See specifications for additional current when selected as a clock source for a particular clock multiplexer.
- 2. This frequency is calibrated for the HFRCODPLL only.
- 3. This frequency is calibrated for the HFRCOEM23 only.
- 4. When the HFRCO is enabled for characterization using the FORCEEN bit, the total current will be the HFRCO core current plus the specified CLKOUT current. When the HFRCO is enabled on demand, the clock current may be different.
- 5. Hardware delay ensures setting to within +-0.5%. Hardware also enforces this delay on a band change.
- 6. The frequency band limits represent the lowest and highest frequency which each band can achieve over the operating range.

### 4.1.8.4 Fast Start\_Up RC Oscillator (FSRCO)

Table 4.25. Fast Start\_Up RC Oscillator (FSRCO)

| Parameter       | Symbol             | Test Condition | Min  | Тур | Max  | Unit |
|-----------------|--------------------|----------------|------|-----|------|------|
| FSRCO frequency | F <sub>FSRCO</sub> |                | 17.2 | 20  | 21.2 | MHz  |

# 4.1.8.5 Low Frequency RC Oscillator

Table 4.26. Low Frequency RC Oscillator

| Parameter                     | Symbol                 | Test Condition                 | Min    | Тур    | Max          | Unit |
|-------------------------------|------------------------|--------------------------------|--------|--------|--------------|------|
| Nominal oscillation frequency | F <sub>LFRCO</sub>     |                                | 31.785 | 32.768 | 33.751       | kHz  |
| Frequency calibration step    | F <sub>TRIM_STEP</sub> | Typical trim step at mid-scale | _      | 0.33   | _            | %    |
| Startup time                  | T <sub>STARTUP</sub>   |                                | _      | 220    | _            | μs   |
| Current consumption           | I <sub>LFRCO</sub>     |                                | _      | 186    | <del>_</del> | nA   |

# 4.1.8.6 Ultra Low Frequency RC Oscillator

Table 4.27. Ultra Low Frequency RC Oscillator

| Parameter             | Symbol              | Test Condition | Min   | Тур | Max   | Unit |
|-----------------------|---------------------|----------------|-------|-----|-------|------|
| Oscillation Frequency | F <sub>ULFRCO</sub> |                | 0.944 | 1.0 | 1.095 | kHz  |

## 4.1.9 GPIO Pins (3V GPIO pins)

Unless otherwise indicated, typical conditions are: AVDD = DVDD = IOVDD = 3.0 V.

Table 4.28. GPIO Pins (3V GPIO pins)

| Parameter                            | Symbol                 | Test Condition                                                                        | Min            | Тур  | Max            | Unit |
|--------------------------------------|------------------------|---------------------------------------------------------------------------------------|----------------|------|----------------|------|
| Leakage current                      | I <sub>LEAK_IO</sub>   | MODEx = DISABLED, IOVDD = 1.71V                                                       | _              | 1.9  | _              | nA   |
|                                      |                        | MODEx = DISABLED, IOVDD = 3.0 V                                                       | _              | 2.5  | _              | nA   |
|                                      |                        | MODEx = DISABLED, IOVDD = 3.8 V T <sub>A</sub> = 125 °C                               | _              | _    | 200            | nA   |
| Input low voltage <sup>1</sup>       | V <sub>IL</sub>        | Any GPIO pin                                                                          | _              | _    | 0.3*IOVDD      | V    |
| Input high voltage <sup>1</sup>      | V <sub>IH</sub>        | Any GPIO pin                                                                          | 0.7*IOVDD      | _    | _              | V    |
| Hysteresis of input voltage          | V <sub>HYS</sub>       | Any GPIO pin                                                                          | 0.05*IOVD<br>D | _    | _              | V    |
|                                      |                        | RESETn                                                                                | 0.05*DVDD      | _    | _              | V    |
| Output low voltage                   | V <sub>OL</sub>        | Sinking 20mA, IOVDD = 3.0 V                                                           | _              |      | 0.2 *<br>IOVDD | V    |
|                                      |                        | Sinking 8mA, IOVDD = 1.62 V                                                           | _              | _    | 0.4 *<br>IOVDD | V    |
| Output high voltage                  | V <sub>OH</sub>        | Sourcing 20mA, IOVDD = 3.0 V                                                          | 0.8 *<br>IOVDD | _    | _              | V    |
|                                      |                        | Sourcing 8mA, IOVDD = 1.62 V                                                          | 0.6 *<br>IOVDD | _    | _              | V    |
| GPIO rise time                       | T <sub>GPIO_RISE</sub> | IOVDD = 3.0V, C <sub>load</sub> = 50pF,<br>SLEWRATE = 4, 10% to 90%                   | _              | 8.4  | _              | ns   |
|                                      |                        | IOVDD = 1.7V, C <sub>load</sub> = 50pF,<br>SLEWRATE = 4, 10% to 90%                   | _              | 13   | _              | ns   |
| GPIO fall time                       | T <sub>GPIO_FALL</sub> | IOVDD = 3.0V, C <sub>load</sub> = 50pF,<br>SLEWRATE = 4, 90% to 10%                   | _              | 7.1  | _              | ns   |
|                                      |                        | IOVDD = 1.7V, C <sub>load</sub> = 50pF,<br>SLEWRATE = 4, 90% to 10%                   | _              | 11.9 | _              | ns   |
| Pull up/down resistance <sup>2</sup> | R <sub>PULL</sub>      | pull-up: MODEn = DISABLE<br>DOUT=1, pull-down: MODEn =<br>WIREDORPULLDOWN DOUT =<br>0 | 35             | 44   | 55             | kΩ   |
| Maximum filtered glitch width        | T <sub>GF</sub>        | MODE = INPUT, DOUT = 1                                                                | _              | 26   | _              | ns   |

- 1. GPIO input thresholds are proportional to the IOVDD pin. RESETn input thresholds are proportional to DVDD.
- 2. GPIO pull-ups connect to IOVDD supply, pull-downs connect to VSS. RESETn pull-up connects to DVDD.

# 4.1.10 Analog to Digital Converter (ADC)

Unless otherwise indicated, typical conditions are: ADCCLK=10 MHz, OSR=2

Table 4.29. Analog to Digital Converter (ADC)

| Parameter                                                                    | Symbol                     | Test Condition                                                               | Min              | Тур                     | Max              | Unit  |
|------------------------------------------------------------------------------|----------------------------|------------------------------------------------------------------------------|------------------|-------------------------|------------------|-------|
| Main analog supply                                                           | V <sub>AVDD</sub>          | Normal mode                                                                  | 1.71             | _                       | 3.8              | V     |
| Maximum Input Range <sup>1</sup>                                             | V <sub>IN_MAX</sub>        | Maximum allowable input voltage                                              | 0                | _                       | AVDD             | V     |
| Full-Scale Voltage                                                           | V <sub>FS</sub>            | Voltage required for Full-Scale measurement                                  | _                | V <sub>REF</sub> / Gain | _                |       |
| Input Measurement Range                                                      | V <sub>IN</sub>            | Differential Mode - Plus and Minus inputs                                    | -V <sub>FS</sub> | _                       | +V <sub>FS</sub> | V     |
|                                                                              |                            | Single Ended Mode - One input tied to ground                                 | 0                | _                       | V <sub>FS</sub>  | V     |
| Input Sampling Capacitance                                                   | Cs                         | Analog Gain = 1x                                                             | _                | 1.8                     | _                | pF    |
|                                                                              |                            | Analog Gain = 2x                                                             | _                | 3.6                     | _                | pF    |
|                                                                              |                            | Analog Gain = 4x                                                             | _                | 7.2                     | _                | pF    |
|                                                                              |                            | Analog Gain = 0.5x                                                           | _                | 0.9                     | _                | pF    |
| ADC clock frequency                                                          | f <sub>CLK</sub>           | (1 Mbps)                                                                     | _                | _                       | 10               | MHz   |
| Throughput rate                                                              | f <sub>SAMPLE</sub>        | f <sub>CLK</sub> = 10 MHz                                                    | _                | _                       | 1                | Msps  |
| Current from all supplies,<br>Continuous operation                           | I <sub>ADC_CONTINU</sub> - | 1 Msps, OSR=2, f <sub>CLK</sub> = 10 MHz                                     | _                | 290                     | 385              | μА    |
| Current in Standby mode.<br>ADC is not functional but can<br>wake up in 1us. | I <sub>STBY</sub>          | Normal Mode                                                                  | _                | 16.3                    | _                | μА    |
| ADC Startup Time                                                             | t <sub>startup</sub>       | From power down state                                                        | <del>_</del>     | 5                       | _                | μs    |
|                                                                              |                            | From Standby state                                                           | _                | 1                       | _                | μs    |
| ADC Resolution                                                               | Resolution                 | Max value is at OSR=64                                                       | _                | 12                      | _                | bits  |
| Differential Nonlinearity                                                    | DNL                        | Differential Input. (No missing codes)                                       | -1               | +/- 0.25                | +1.5             | LSB12 |
| Integral Nonlinearity                                                        | INL                        | Differential Input.                                                          | -2.5             | +/- 0.65                | -+2.5            | LSB12 |
| Effective number of bits                                                     | ENOB                       | Differential Input. Gain=1x, f <sub>IN</sub> = 10 kHz, Internal VREF=1.21V.  | 10.5             | 11.18                   | _                | bits  |
| Signal to Noise + Distortion<br>Ratio Normal Mode                            | SNDR                       | Differential Input. Gain=1x,f <sub>IN</sub> = 10<br>kHz, Internal VREF=1.21V | 65               | 69.1                    | _                | dB    |
|                                                                              |                            | Differential Input. Gain=2x, f <sub>IN</sub> = 10 kHz, Internal VREF=1.21V   | _                | 68.8                    | _                | dB    |
|                                                                              |                            | Differential Input. Gain=4x, f <sub>IN</sub> = 10 kHz, Internal VREF=1.21V   | _                | 66.9                    | _                | dB    |
|                                                                              |                            | Differential Input. Gain=0.5x, f <sub>IN</sub> = 10 kHz, Internal VREF=1.21V | _                | 69.2                    | _                | dB    |
| Total Harmonic Distortion                                                    | THD                        | Differential Input. Gain=1x, f <sub>IN</sub> =10 kHz, Internal VREF=1.21V    | _                | -80.3                   | -70              | dB    |

| Parameter                                     | Symbol             | Test Condition                                                             | Min      | Тур   | Max  | Unit |
|-----------------------------------------------|--------------------|----------------------------------------------------------------------------|----------|-------|------|------|
| Spurious-Free Dynamic<br>Range                | SFDR               | Differential Input. Gain=1x, f <sub>IN</sub> = 10 kHz, Internal VREF=1.21V | 72       | 86.5  | _    | dB   |
| Common Mode Rejection                         | CMRR               | Normal mode. DC to 100 Hz                                                  | _        | 87.0  | _    | dB   |
| Ratio                                         |                    | Normal mode. AC (measured at 500 kHz)                                      | _        | 68.6  | _    | dB   |
| Power Supply Rejection Ra-                    | PSRR               | DC to 100 Hz                                                               | _        | 80.4  | _    | dB   |
| tio                                           |                    | AC high frequency, using<br>VREF_pad (measured at 500 kHz)                 | _        | 33.4  | _    | dB   |
|                                               |                    | AC high frequency, using internal VBGR (measured at 500 kHz)               | <u>—</u> | 65.2  | _    | dB   |
| Gain Error                                    | GE                 | GAIN = 1 and 0.5, using external VREF, direct mode.                        | -0.3     | 0.069 | 0.3  | %    |
|                                               |                    | GAIN = 2, using external VREF, direct mode.                                | -0.4     | 0.151 | 0.4  | %    |
|                                               |                    | GAIN = 3, using external VREF, direct mode.                                | -0.7     | 0.186 | 0.7  | %    |
|                                               |                    | GAIN = 4, using external VREF, direct mode.                                | -1.1     | 0.227 | 1.1  | %    |
|                                               |                    | Internal VREF, Gain=1                                                      | _        | 0.023 | _    | %    |
| Offset                                        | OFFSET             | GAIN = 1 and 0.5, Differential Input                                       | -3       | 0.27  | 3    | LSB  |
|                                               |                    | GAIN = 2, Differential Input                                               | -4       | 0.27  | 4    | LSB  |
|                                               |                    | GAIN = 3, Differential Input                                               | -4       | 0.25  | 4    | LSB  |
|                                               |                    | GAIN = 4, Differential Input                                               | -4       | 0.29  | 4    | LSB  |
| External reference voltage range <sup>1</sup> | V <sub>EVREF</sub> |                                                                            | 1.0      | _     | AVDD | V    |
| Internal Reference voltage                    | V <sub>IVREF</sub> |                                                                            | _        | 1.21  | _    | V    |

1. When inputs are routed to external GPIO pins, the maximum pin voltage is limited to the lower of the IOVDD and AVDD supplies.

# 4.1.11 Analog Comparator (ACMP)

Table 4.30. Analog Comparator (ACMP)

| Parameter                   | Symbol                 | Test Condition                      | Min  | Тур  | Max  | Unit |
|-----------------------------|------------------------|-------------------------------------|------|------|------|------|
| ACMP Supply current from    | I <sub>ACMP</sub>      | BIAS = 4, HYST = DISABLED           | _    | 4.17 | _    | μA   |
| AVDD pin                    |                        | BIAS = 5, HYST = DISABLED           | _    | 8.96 | _    | μA   |
|                             |                        | BIAS = 6, HYST = DISABLED           | _    | 23.1 | _    | μA   |
|                             |                        | BIAS = 7, HYST = DISABLED           | _    | 43.9 | 70   | μA   |
| ACMP Supply current from    | I <sub>ACMP_WHYS</sub> | BIAS = 4, HYST = SYM30MV            | _    | 5.98 | _    | μA   |
| AVDD pin with Hysteresis    |                        | BIAS = 5, HYST = SYM30MV            | _    | 13.0 | _    | μA   |
|                             |                        | BIAS = 6, HYST = SYM30MV            | _    | 33.6 | _    | μA   |
|                             |                        | BIAS = 7, HYST = SYM30MV            | _    | 64.2 | _    | μA   |
| Comparator delay with       | T <sub>DELAY</sub>     | BIAS = 4                            | _    | 155  | _    | ns   |
| 100mV overdrive             |                        | BIAS = 5                            | _    | 86.6 | _    | ns   |
|                             |                        | BIAS = 6                            | _    | 50.6 | _    | ns   |
|                             |                        | BIAS = 7                            | _    | 39.9 | _    | ns   |
| nput offset voltage         | V <sub>OFFSET</sub>    | BIAS = 4, VCM = 0.15 to AVDD - 0.15 | -25  | _    | +25  | mV   |
|                             |                        | BIAS = 7, VCM = 0.15 to AVDD - 0.15 | -30  | _    | +30  | mV   |
| Input Range                 | V <sub>IN</sub>        | Input Voltage Range                 | 0    | _    | AVDD | V    |
| Hysteresis (BIAS = 4)       | V <sub>HYST</sub>      | HYST = SYM10MV <sup>1</sup>         | _    | 21.2 | _    | mV   |
|                             |                        | HYST = SYM20MV <sup>1</sup>         | _    | 39.9 | _    | mV   |
|                             |                        | HYST = SYM30MV <sup>1</sup>         | _    | 57.6 | _    | mV   |
| Reference Voltage           | V <sub>ACMPREF</sub>   | Internal 1.25 V Reference           | 1.19 | 1.25 | 1.31 | V    |
|                             |                        | Internal 2.5 V Reference            | 2.34 | 2.5  | 2.75 | V    |
| Capacitive Sense Oscillator | R <sub>CSRESSEL</sub>  | CSRESSEL = 0                        | _    | 14   | _    | kΩ   |
| Resistance                  |                        | CSRESSEL = 1                        | _    | 24   | _    | kΩ   |
|                             |                        | CSRESSEL = 2                        | _    | 43   | _    | kΩ   |
|                             |                        | CSRESSEL = 3                        | _    | 60   | _    | kΩ   |
|                             |                        | CSRESSEL = 4                        | _    | 80   | _    | kΩ   |
|                             |                        | CSRESSEL = 5                        | _    | 99   | _    | kΩ   |
|                             |                        | CSRESSEL = 6                        | _    | 120  | _    | kΩ   |

Note:

1. V<sub>CM</sub> = 1.25 V

# 4.1.12 Temperature Sense

# Table 4.31. Temperature Sense

| Parameter                     | Symbol                   | Test Condition | Min | Тур  | Max | Unit |
|-------------------------------|--------------------------|----------------|-----|------|-----|------|
| Temperature sensor range      | T <sub>sense_range</sub> |                | -40 | _    | 125 | °C   |
| Temperature sensor resolution | T <sub>senseRes</sub>    |                | _   | 0.25 | _   | °C   |

#### 4.1.13 Brown Out Detectors

#### 4.1.13.1 DVDD BOD

BOD Thresholds on DVDD in EM0 and EM1 only, unless otherwise noted. Typical conditions are at  $T_A$  = 25 °C. Minimum and maximum values in this table represent the worst conditions across process variation, operating supply voltage range, and operating temperature range.

Table 4.32. DVDD BOD

| Parameter         | Symbol                     | Test Condition                                     | Min  | Тур  | Max  | Unit |
|-------------------|----------------------------|----------------------------------------------------|------|------|------|------|
| BOD threshold     | V <sub>DVDD_BOD</sub>      | Supply Rising                                      | _    | 1.67 | 1.71 | V    |
|                   |                            | Supply Falling                                     | 1.62 | 1.65 | _    | V    |
| BOD response time | t <sub>DVDD_BOD_DE</sub> - | Supply dropping at 100mV/µs slew rate <sup>1</sup> | _    | 0.95 | _    | μs   |
| BOD hysteresis    | V <sub>DVDD_BOD_HYS</sub>  |                                                    | _    | 20   | _    | mV   |

#### Note:

### 4.1.13.2 LE DVDD BOD

BOD thresholds on DVDD pin for low energy modes EM2 to EM4, unless otherwise noted.

Table 4.33. LE DVDD BOD

| Parameter         | Symbol                             | Test Condition                                   | Min | Тур | Max  | Unit |
|-------------------|------------------------------------|--------------------------------------------------|-----|-----|------|------|
| BOD threshold     | V <sub>DVDD_LE_BOD</sub>           | Supply Falling                                   | 1.5 | _   | 1.71 | V    |
| BOD response time | t <sub>DVDD_LE_BOD_D</sub><br>ELAY | Supply dropping at 2mV/µs slew rate <sup>1</sup> | _   | 50  | _    | μs   |
| BOD hysteresis    | V <sub>DVDD_LE_BOD_</sub><br>HYST  |                                                  | _   | 20  | _    | mV   |

### Note:

1. If the supply slew rate exceeds the specified slew rate, the BOD may trip later than expected (at a threshold below the minimum specified threshold), or the BOD may not trip at all (e.g., if the supply ramps down and then back up at a very fast rate)

<sup>1.</sup> If the supply slew rate exceeds the specified slew rate, the BOD may trip later than expected (at a threshold below the minimum specified threshold), or the BOD may not trip at all (e.g., if the supply ramps down and then back up at a very fast rate)

## 4.1.13.3 AVDD and VIO BODs

BOD Thresholds for AVDD BOD and BOD for VIO supply or supplies. All energy modes.

## Table 4.34. AVDD and VIO BODs

| Parameter         | Symbol                 | Test Condition                                   | Min  | Тур | Max  | Unit |
|-------------------|------------------------|--------------------------------------------------|------|-----|------|------|
| BOD threshold     | V <sub>BOD</sub>       | Supply falling                                   | 1.45 | _   | 1.71 | V    |
| BOD response time | t <sub>BOD_DELAY</sub> | Supply dropping at 2mV/µs slew rate <sup>1</sup> | _    | 50  | _    | μs   |
| BOD hysteresis    | V <sub>BOD_HYST</sub>  |                                                  | _    | 20  | _    | mV   |

<sup>1.</sup> If the supply slew rate exceeds the specified slew rate, the BOD may trip later than expected (at a threshold below the minimum specified threshold), or the BOD may not trip at all (e.g., if the supply ramps down and then back up at a very fast rate)

## 4.1.14 USART SPI Master Timing

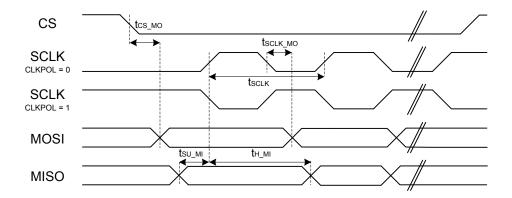



Figure 4.1. SPI Master Timing (SMSDELAY = 0)

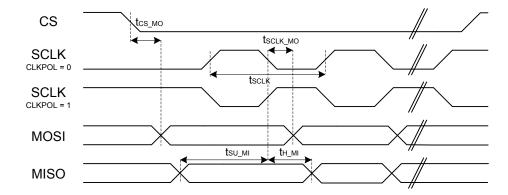



Figure 4.2. SPI Master Timing (SMSDELAY = 1)

## 4.1.14.1 SPI Master Timing

Timing specifications are for all SPI signals routed to the same DBUS (DBUSAB or DBUSCD). All GPIO set to slew rate = 6.

## Table 4.35. SPI Master Timing

| Parameter                      | Symbol             | Test Condition | Min                    | Тур | Max  | Unit |
|--------------------------------|--------------------|----------------|------------------------|-----|------|------|
| SCLK period <sup>1 2 3</sup>   | t <sub>SCLK</sub>  |                | 2*t <sub>HFPERCL</sub> | _   | _    | ns   |
|                                |                    |                | К                      |     |      |      |
| CS to MOSI 12                  | t <sub>CS_MO</sub> |                | -18.5                  | _   | 22.5 | ns   |
| SCLK to MOSI <sup>1 2</sup>    | tsclk_mo           |                | -13                    | _   | 11   | ns   |
| MISO setup time <sup>1 2</sup> | t <sub>SU_MI</sub> | IOVDD = 1.62 V | 44                     | _   | _    | ns   |
|                                |                    | IOVDD = 3.0 V  | 34                     | _   | _    | ns   |
| MISO hold time <sup>1 2</sup>  | t <sub>H_MI</sub>  |                | -8.5                   | _   | _    | ns   |

- 1. Applies for both CLKPHA = 0 and CLKPHA = 1
- 2. Measurement done with 8 pF output loading at 10% and 90% of  $\ensuremath{V_{DD}}.$
- 3. t<sub>HFPERCLK</sub> is one period of the selected HFPERCLK.

## 4.1.15 USART SPI Slave Timing

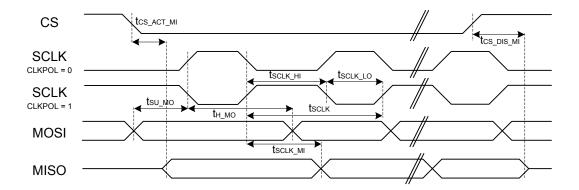



Figure 4.3. SPI Slave Timing

## 4.1.15.1 SPI Slave Timing

Timing specifications are for all SPI signals routed to the same DBUS (DBUSAB or DBUSCD). All GPIO set to slew rate = 6.

Table 4.36. SPI Slave Timing

| Parameter                         | Symbol                 | Test Condition | Min                                     | Тур | Max                                   | Unit |
|-----------------------------------|------------------------|----------------|-----------------------------------------|-----|---------------------------------------|------|
| SCLK period <sup>1 2 3</sup>      | t <sub>SCLK</sub>      |                | 6*t <sub>HFPERCL</sub><br>K             | _   | _                                     | ns   |
| SCLK high time <sup>1 2 3</sup>   | t <sub>SCLK_HI</sub>   |                | 2.5*t <sub>HFPER</sub>                  | _   | _                                     | ns   |
| SCLK low time <sup>1 2 3</sup>    | tsclk_lo               |                | 2.5*t <sub>HFPER</sub>                  | _   | _                                     | ns   |
| CS active to MISO <sup>1 2</sup>  | t <sub>CS_ACT_MI</sub> |                | 16                                      | _   | 52.5                                  | ns   |
| CS disable to MISO <sup>1 2</sup> | tcs_dis_mi             |                | 15                                      | _   | 46                                    | ns   |
| MOSI setup time <sup>1 2</sup>    | t <sub>su_мo</sub>     |                | 3.5                                     | _   | _                                     | ns   |
| MOSI hold time <sup>1 2 3</sup>   | t <sub>H_MO</sub>      |                | 4.5                                     | _   | _                                     | ns   |
| SCLK to MISO <sup>1 2 3</sup>     | t <sub>SCLK_MI</sub>   |                | 13.5 +<br>1.5*t <sub>HFPER</sub><br>CLK | _   | 31 +<br>2.5*t <sub>HFPER</sub><br>CLK | ns   |

- 1. Applies for both CLKPHA = 0 and CLKPHA = 1 (figure only shows CLKPHA = 0).
- 2. Measurement done with 8 pF output loading at 10% and 90% of  $V_{DD}$  (figure shows 50% of  $V_{DD}$ ).
- 3. t<sub>HFPERCLK</sub> is one period of the selected HFPERCLK.

## 4.1.16 I2C Electrical Specifications

## 4.1.16.1 I2C Standard-mode (Sm)

CLHR set to 0 in the I2Cn\_CTRL register.

Table 4.37. I2C Standard-mode (Sm)

| Parameter                                        | Symbol              | Test Condition | Min | Тур | Max | Unit |
|--------------------------------------------------|---------------------|----------------|-----|-----|-----|------|
| SCL clock frequency <sup>1</sup>                 | f <sub>SCL</sub>    |                | 0   | _   | 100 | kHz  |
| SCL clock low time                               | t <sub>LOW</sub>    |                | 4.7 | _   | _   | μs   |
| SCL clock high time                              | t <sub>HIGH</sub>   |                | 4   | _   | _   | μs   |
| SDA set-up time                                  | t <sub>SU_DAT</sub> |                | 250 | _   | _   | ns   |
| SDA hold time                                    | t <sub>HD_DAT</sub> |                | 0   | _   | _   | ns   |
| Repeated START condition set-up time             | t <sub>SU_STA</sub> |                | 4.7 | _   | _   | μs   |
| Repeated START condition hold time               | t <sub>HD_STA</sub> |                | 4.0 | _   | _   | μs   |
| STOP condition set-up time                       | t <sub>SU_STO</sub> |                | 4.0 | _   | _   | μs   |
| Bus free time between a STOP and START condition | t <sub>BUF</sub>    |                | 4.7 | _   | _   | μs   |

<sup>1.</sup> The maximum SCL clock frequency listed is assuming that an arbitrary clock frequency is available. The maximum attainable SCL clock frequency may be slightly less using the HFXO or HFRCO due to the limited frequencies available. The CLKDIV should be set to a value that keeps the SCL clock frequency below the max value listed.

## 4.1.16.2 I2C Fast-mode (Fm)

CLHR set to 1 in the I2Cn\_CTRL register.

Table 4.38. I2C Fast-mode (Fm)

| Parameter                                        | Symbol              | Test Condition | Min | Тур | Max | Unit |
|--------------------------------------------------|---------------------|----------------|-----|-----|-----|------|
| SCL clock frequency <sup>1</sup>                 | f <sub>SCL</sub>    |                | 0   | _   | 400 | kHz  |
| SCL clock low time                               | t <sub>LOW</sub>    |                | 1.3 | _   | _   | μs   |
| SCL clock high time                              | tніgн               |                | 0.6 | _   | _   | μs   |
| SDA set-up time                                  | t <sub>SU_DAT</sub> |                | 100 | _   | _   | ns   |
| SDA hold time                                    | t <sub>HD_DAT</sub> |                | 0   | _   | _   | ns   |
| Repeated START condition set-up time             | t <sub>SU_STA</sub> |                | 0.6 | _   | _   | μs   |
| Repeated START condition hold time               | t <sub>HD_STA</sub> |                | 0.6 | _   | _   | μs   |
| STOP condition set-up time                       | t <sub>SU_STO</sub> |                | 0.6 | _   | _   | μs   |
| Bus free time between a STOP and START condition | t <sub>BUF</sub>    |                | 1.3 | _   | _   | μs   |

<sup>1.</sup> The maximum SCL clock frequency listed is assuming that an arbitrary clock frequency is available. The maximum attainable SCL clock frequency may be slightly less using the HFXO or HFRCO due to the limited frequencies available. The CLKDIV should be set to a value that keeps the SCL clock frequency below the max value listed.

### 4.1.16.3 I2C Fast-mode Plus (Fm+)

CLHR set to 1 in the I2Cn CTRL register.

Table 4.39. I2C Fast-mode Plus (Fm+)

| Parameter                                        | Symbol              | Test Condition | Min  | Тур | Max  | Unit |
|--------------------------------------------------|---------------------|----------------|------|-----|------|------|
| SCL clock frequency <sup>1</sup>                 | f <sub>SCL</sub>    |                | 0    | _   | 1000 | kHz  |
| SCL clock low time                               | t <sub>LOW</sub>    |                | 0.5  | _   | _    | μs   |
| SCL clock high time                              | tніgн               |                | 0.26 | _   | _    | μs   |
| SDA set-up time                                  | t <sub>SU_DAT</sub> |                | 50   | _   | _    | ns   |
| SDA hold time                                    | t <sub>HD_DAT</sub> |                | 0    | _   | _    | ns   |
| Repeated START condition set-up time             | t <sub>SU_STA</sub> |                | 0.26 | _   | _    | μs   |
| Repeated START condition hold time               | t <sub>HD_STA</sub> |                | 0.26 | _   | _    | μs   |
| STOP condition set-up time                       | t <sub>SU_STO</sub> |                | 0.26 | _   | _    | μs   |
| Bus free time between a STOP and START condition | t <sub>BUF</sub>    |                | 0.5  | _   | _    | μs   |

#### Note:

## 4.1.17 Boot Timing

Secure boot impacts the recovery time from all sources of device reset. In addition to the root code authentication process, which cannot be disabled or bypassed, the root code can authenticate a bootloader, and the bootloader can authenticate the application. In projects that include only an application and no bootloader, the root code can authenticate the application directly. The duration of each authentication operation depends on two factors: the computation of the associated image hash, which is proportional to the size of the image, and the verification of the image signature, which is independent of image size.

The duration for the root code to authenticate the bootloader will depend on the SE firmware version as well as on the size of the bootloader.

The duration for the bootloader to authenticate the application can depend on the size of the application.

The configurations below assume that the associated bootloader and application code images do not contain a bootloader certificate or an application certificate. Authenticating a bootloader certificate or an application certificate will extend the boot time by an additional 6 to 7 ms.

The table below provides the durations from the termination of reset until the completion of the secure boot process (start of main() function in the application image) under various conditions.

### Conditions:

- · SE firmware version 1.2.4
- Gecko Bootloader size 16 KB

<sup>1.</sup> The maximum SCL clock frequency listed is assuming that an arbitrary clock frequency is available. The maximum attainable SCL clock frequency may be slightly less using the HFXO or HFRCO due to the limited frequencies available. The CLKDIV should be set to a value that keeps the SCL clock frequency below the max value listed.

Table 4.40. Boot Timing

| Parameter                               | Symbol            | Test Condition                                                 | Min | Тур  | Max | Unit |
|-----------------------------------------|-------------------|----------------------------------------------------------------|-----|------|-----|------|
| Boot time <sup>1</sup> t <sub>BOO</sub> | t <sub>BOOT</sub> | Secure boot application check disabled, 50 kB application size | _   | 29.2 | _   | ms   |
|                                         |                   | Secure boot application check enabled, 50 kB application size  | _   | 38.6 | _   | ms   |
|                                         |                   | Secure boot application check enabled, 150 kB application size | _   | 42.6 | _   | ms   |
|                                         |                   | Secure boot application check enabled, 350 kB application size | _   | 50.4 | _   | ms   |

### 4.1.18 Crypto Operation Timing for SE Manager API

Values in this table represent timing from SE Manager API call to return. The Cortex-M33 HCLK frequency is 38.4 MHz. The timing specifications below are measured at the SE Manager function call API. Each duration in the table contains some portion that is influenced by SE Manager build compilation and Cortex-M33 operating frequency and some portion that is influenced by the Hardware Secure Engine's firmware version and its operating speed (typically 80 MHz). The contributions of the Cortex-M33 properties to the overall specification timing are most pronounced for the shorter operations such as AES and hash when operating on small payloads. The overhead of command processing at the mailbox interface can also dominate the timing for shorter operations.

### Conditions:

- · SE firmware version 1.2.4
- · GSDK version 3.0.1

<sup>1.</sup> Secure boot check of second stage bootloader enabled for all measurements.

Table 4.41. Crypto Operation Timing for SE Manager API

| Parameter                       | Symbol                  | Test Condition                            | Min | Тур  | Max          | Unit |
|---------------------------------|-------------------------|-------------------------------------------|-----|------|--------------|------|
| AES-128 timing                  | t <sub>AES128</sub>     | AES-128 CCM encryption, PT 1 kB           | _   | 265  | _            | μs   |
|                                 |                         | AES-128 CCM encryption, PT 32 kB          | _   | 1450 | _            | μs   |
|                                 |                         | AES-128 CTR encryption, PT 1 kB           | _   | 231  | _            | μs   |
|                                 |                         | AES-128 CTR encryption, PT 32 kB          | _   | 798  | _            | μs   |
|                                 |                         | AES-128 GCM encryption, PT 1 kB           | _   | 246  | _            | μs   |
|                                 |                         | AES-128 GCM encryption, PT 32 kB          | _   | 810  | _            | μs   |
| AES-256 timing                  | t <sub>AES256</sub>     | AES-256 CCM encryption, PT 1 kB           | _   | 279  | _            | μs   |
|                                 |                         | AES-256 CCM encryption, PT 32 kB          | _   | 1880 | _            | μs   |
|                                 |                         | AES-256 CTR encryption, PT 1 kB           | _   | 239  | _            | μs   |
|                                 |                         | AES-256 CTR encryption, PT 32 kB          | _   | 1010 | _            | μs   |
|                                 |                         | AES-256 GCM encryption, PT 1 kB           | _   | 255  | _            | μs   |
|                                 |                         | AES-256 GCM encryption, PT 32 kB          | _   | 1030 | _            | μs   |
| ECC P-256 timing                | t <sub>ECC_P256</sub>   | ECC key generation, P-256                 | _   | 5.5  | _            | ms   |
|                                 |                         | ECC signing, P-256                        | _   | 5.7  | <del>-</del> | ms   |
|                                 |                         | ECC verification, P-256                   | _   | 6.1  | _            | ms   |
| ECC P-521 timing <sup>1</sup>   | t <sub>ECC_P521</sub>   | ECC key generation, P-521                 | _   | 29.7 | _            | ms   |
|                                 |                         | ECC signing, P-521                        | _   | 30.8 | _            | ms   |
|                                 |                         | ECC verification, P-521                   | _   | 37.2 | _            | ms   |
| ECC P-25519 timing <sup>1</sup> | t <sub>ECC_P25519</sub> | ECC key generation, P-25519               | _   | 4.3  | _            | ms   |
| -                               |                         | ECC signing, P-25519                      | _   | 4.4  | _            | ms   |
|                                 |                         | ECC verification, P-25519                 | _   | 6.0  | _            | ms   |
| ECDH compute secret timing      | t <sub>ECDH</sub>       | ECDH compute secret, P-521 <sup>1</sup>   | _   | 29.5 | _            | ms   |
|                                 |                         | ECDH compute secret, P-25519 <sup>1</sup> | _   | 41.8 | _            | ms   |
|                                 |                         | ECDH compute secret, P-256                | _   | 5.4  | _            | ms   |

| Parameter                                           | Symbol                 | Test Condition                 | Min | Тур  | Max | Unit |
|-----------------------------------------------------|------------------------|--------------------------------|-----|------|-----|------|
| ECJPAKE client timing                               | t <sub>ECJPAKE_C</sub> | ECJPAKE client write round one | _   | 21.4 | _   | ms   |
|                                                     |                        | ECJPAKE client read round one  | _   | 14.3 | _   | ms   |
|                                                     |                        | ECJPAKE client write round two | _   | 16.2 | _   | ms   |
|                                                     |                        | ECJPAKE client read round two  | _   | 7.6  | _   | ms   |
|                                                     |                        | ECJPAKE client derive secret   | _   | 10.5 | _   | ms   |
| ECJPAKE server timing                               | tecjpake_s             | ECJPAKE server write round one | _   | 21.4 | _   | ms   |
|                                                     |                        | ECJPAKE server read round one  | _   | 14.3 | _   | ms   |
|                                                     |                        | ECJPAKE server write round two | _   | 16.3 | _   | ms   |
|                                                     |                        | ECJPAKE server read round two  | _   | 7.6  | _   | ms   |
|                                                     |                        | ECJPAKE server derive secret   | _   | 10.5 | _   | ms   |
| POLY-1305 timing <sup>1</sup> t <sub>POLY1305</sub> |                        | POLY-1305, PT 1 kB             | _   | 212  | _   | μs   |
|                                                     |                        | POLY-1305, PT 32 kB            | _   | 1070 | _   | μs   |
| SHA-256 timing                                      | t <sub>SHA256</sub>    | SHA-256, PT 1 kB               | _   | 251  | _   | μs   |
|                                                     |                        | SHA-256, PT 32 kB              | _   | 677  | _   | μs   |
| SHA-512 timing <sup>1</sup>                         | t <sub>SHA512</sub>    | SHA-512, PT 1 kB               | _   | 251  | _   | μs   |
|                                                     |                        | SHA-512, PT 32 kB              | _   | 566  | _   | μs   |

## 4.1.19 Crypto Operation Average Current for SE Manager API

Values in this table represent current consumed by security core during the operation, and represent additions to the current consumed by the Cortex-M33 application CPU due to the Hardware Secure Engine CPU and its associated crypto accelerators. The current measurements below represent the average value of the current for the duration of the crypto operation. Instantaneous peak currents may be higher.

## Conditions:

- · SE firmware version 1.2.4
- GSDK version 3.0.1

<sup>1.</sup> Option is only available on OPNs with Secure Vault High feature set.

Table 4.42. Crypto Operation Average Current for SE Manager API

| Parameter                        | Symbol                 | Test Condition                            | Min | Тур | Max | Unit |
|----------------------------------|------------------------|-------------------------------------------|-----|-----|-----|------|
| AES-128 current                  | I <sub>AES128</sub>    | AES-128 CCM encryption, PT 1 kB           | _   | 5.0 | _   | mA   |
|                                  |                        | AES-128 CCM encryption, PT 32 kB          | _   | 8.8 | _   | mA   |
|                                  |                        | AES-128 CTR encryption, PT 1 kB           | _   | 4.5 | _   | mA   |
|                                  |                        | AES-128 CTR encryption, PT 32 kB          | _   | 8.8 | _   | mA   |
|                                  |                        | AES-128 GCM encryption, PT 1 kB           | _   | 4.7 | _   | mA   |
|                                  |                        | AES-128 GCM encryption, PT 32 kB          | _   | 9.0 | _   | mA   |
| AES-256 current                  | I <sub>AES256</sub>    | AES-256 CCM encryption, PT 1 kB           | _   | 5.2 | _   | mA   |
|                                  |                        | AES-256 CCM encryption, PT 32 kB          | _   | 8.8 | _   | mA   |
|                                  |                        | AES-256 CTR encryption, PT 1 kB           | _   | 4.7 | _   | mA   |
|                                  |                        | AES-256 CTR encryption, PT 32 kB          | _   | 8.8 | _   | mA   |
|                                  |                        | AES-256 GCM encryption, PT 1 kB           | _   | 4.8 | _   | mA   |
|                                  |                        | AES-256 GCM encryption, PT 32 kB          | _   | 9.0 | _   | mA   |
| ECC P-256 current                | I <sub>ECCP256</sub>   | ECC key generation, P-256                 | _   | 6.6 | _   | mA   |
|                                  |                        | ECC signing, P-256                        | _   | 6.6 | _   | mA   |
|                                  |                        | ECC verification, P-256                   | _   | 6.5 | _   | mA   |
| ECC P-521 current <sup>1</sup>   | I <sub>ECCP521</sub>   | ECC key generation, P-521                 | _   | 6.7 | _   | mA   |
|                                  |                        | ECC signing, P-521                        | _   | 6.7 | _   | mA   |
|                                  |                        | ECC verification, P-521                   | _   | 6.7 | _   | mA   |
| ECC P-25519 current <sup>1</sup> | I <sub>ECCP25519</sub> | ECC key generation, P-25519               | _   | 6.5 | _   | mA   |
|                                  |                        | ECC signing, P-25519                      | _   | 6.5 | _   | mA   |
|                                  |                        | ECC verification, P-25519                 | _   | 6.5 | _   | mA   |
| ECDH compute secret cur-         | I <sub>ECDH</sub>      | ECDH compute secret, P-521 <sup>1</sup>   | _   | 6.7 | _   | mA   |
| rent                             |                        | ECDH compute secret, P-25519 <sup>1</sup> | _   | 6.4 | _   | mA   |
|                                  |                        | ECDH compute secret, P-256                | _   | 6.5 | _   | mA   |

| Parameter                                            | Symbol                 | Test Condition                 | Min | Тур | Max | Unit |
|------------------------------------------------------|------------------------|--------------------------------|-----|-----|-----|------|
| ECJPAKE client current                               | I <sub>ECJPAKE_C</sub> | ECJPAKE client write round one | _   | 6.7 | _   | mA   |
|                                                      |                        | ECJPAKE client read round one  | _   | 6.6 | _   | mA   |
|                                                      |                        | ECJPAKE client write round two | _   | 6.6 | _   | mA   |
|                                                      |                        | ECJPAKE client read round two  | _   | 6.5 | _   | mA   |
|                                                      |                        | ECJPAKE client derive secret   | _   | 6.6 | _   | mA   |
| ECJPAKE server current                               | I <sub>ECJPAKE_S</sub> | ECJPAKE server write round one | _   | 6.6 | _   | mA   |
|                                                      |                        | ECJPAKE server read round one  | _   | 6.6 | _   | mA   |
|                                                      |                        | ECJPAKE server write round two | _   | 6.6 | _   | mA   |
|                                                      |                        | ECJPAKE server read round two  | _   | 6.5 | _   | mA   |
|                                                      |                        | ECJPAKE server derive secret   | _   | 6.5 | _   | mA   |
| POLY-1305 current <sup>1</sup> I <sub>POLY1305</sub> |                        | POLY-1305, PT 1 kB             | _   | 4.4 | _   | mA   |
|                                                      |                        | POLY-1305, PT 32 kB            | _   | 6.4 | _   | mA   |
| SHA-256 current                                      | I <sub>SHA256</sub>    | SHA-256, PT 1 kB               | _   | 3.4 | _   | mA   |
|                                                      |                        | SHA-256, PT 32 kB              | _   | 6.6 | _   | mA   |
| SHA-512 current <sup>1</sup>                         | I <sub>SHA512</sub>    | SHA-512, PT 1 kB               | _   | 3.4 | _   | mA   |
|                                                      |                        | SHA-512, PT 32 kB              | _   | 6.1 | _   | mA   |

## 4.2 Typical Performance Curves

Typical performance curves indicate typical characterized performance under the stated conditions.

<sup>1.</sup> Option is only available on OPNs with Secure Vault High feature set.

## 4.2.1 Supply Current

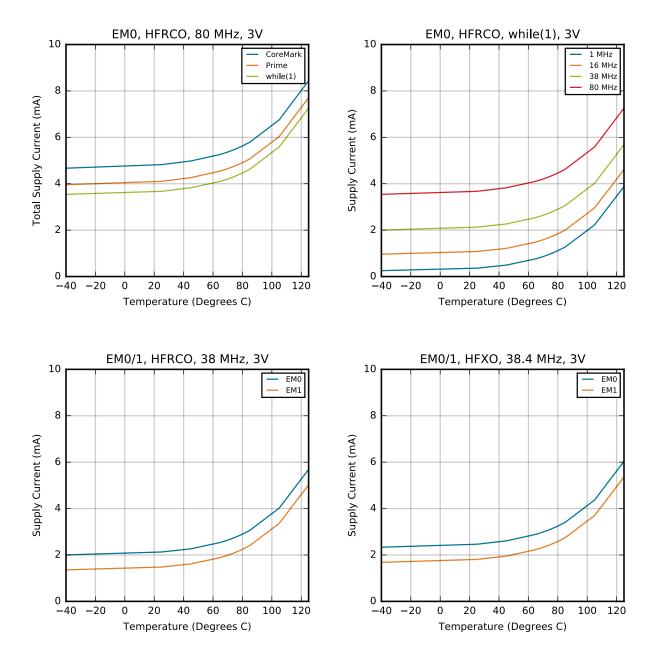



Figure 4.4. EM0 Active Mode Typical Supply Current vs. Temperature

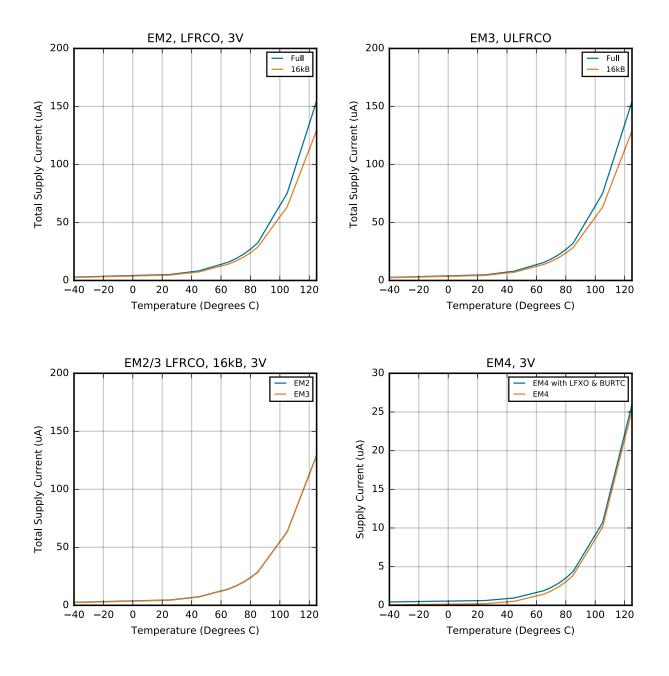



Figure 4.5. EM2, EM3, and EM4 Sleep Mode Typical Supply Current vs. Temperature

## 4.2.2 2.4 GHz Radio

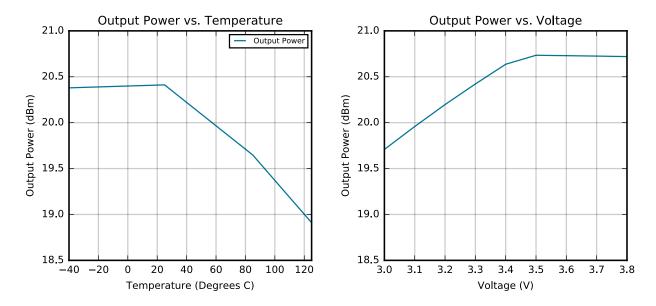



Figure 4.6. 2.4 GHz 20 dBm PA RF Transmitter Output Power

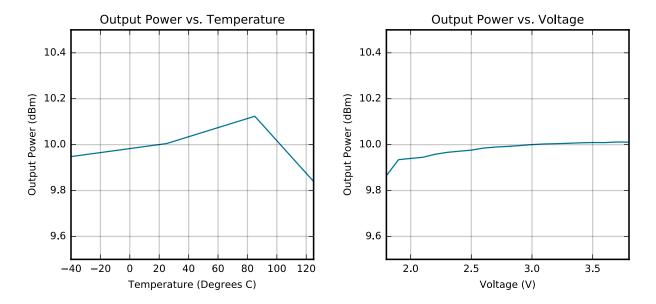



Figure 4.7. 2.4 GHz 10 dBm PA RF Transmitter Output Power

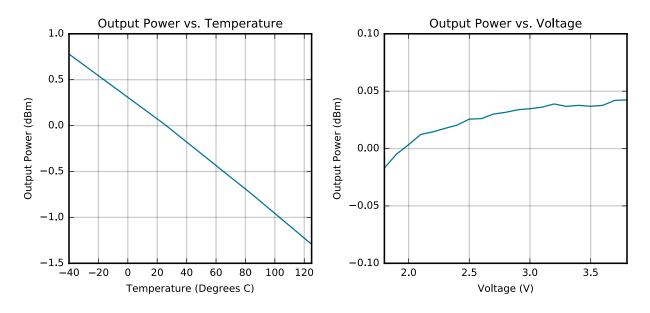



Figure 4.8. 2.4 GHz 0 dBm PA RF Transmitter Output Power

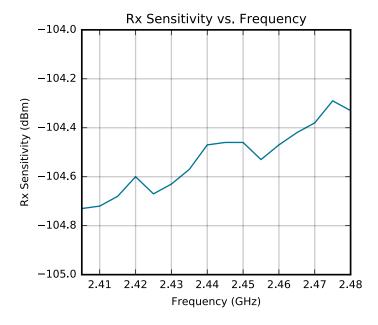



Figure 4.9. 2.4 GHz 802.15.4 RF Receiver Sensitivity

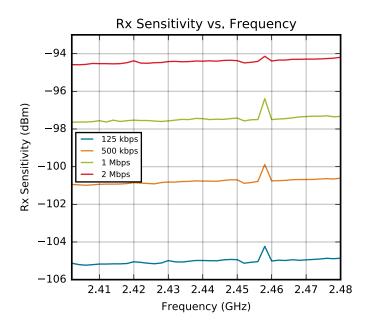



Figure 4.10. 2.4 GHz BLE RF Receiver Sensitivity

# 5. Typical Connection Diagrams

### 5.1 Power

Typical power supply connections are shown in the following figure.

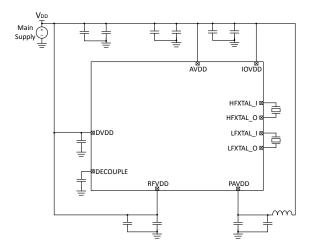



Figure 5.1. EFR32MG21B Typical Application Circuit: Direct Supply Configuration

## 5.2 RF Matching Networks

RF Matching Network connections are described in the following sub-sections. For more information on matching networks and recommendations, see AN930.2: EFR32 Series 2 2.4 GHz Matching Guide and AN928.2: EFR32 Series 2 Layout Design Guide. Application Notes can be accessed on the Silicon Labs website (www.silabs.com).

### 5.2.1 2.4 GHz 0 dBm Matching Network

The recommended RF matching network circuit diagram for 2.4GHz applications with a transmit power of 0 dBm or less is shown in Figure 5.2 Typical 0 dBm 2.4 GHz RF impedance-matching network circuit on page 71. Typical component values are shown in Table 5.1 2.4GHz 0 dBm Component Values on page 71. Please refer to the development board Bill of Materials for specific part recommendation including tolerance, component size, recommended manufacturer, and recommended part number.

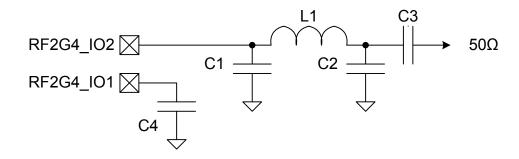



Figure 5.2. Typical 0 dBm 2.4 GHz RF impedance-matching network circuit

Table 5.1. 2.4GHz 0 dBm Component Values

| Designator | Value  |
|------------|--------|
| C1         | 1.7 pF |
| C2         | 0.9 pF |
| L1         | 2.0 nH |
| C3         | 2.7 pF |
| C4         | 0.5 pF |

### 5.2.2 2.4 GHz 10 dBm Matching Network

The recommended RF matching network circuit diagram for 2.4GHz applications with a transmit power of greater than 0 dBm and up to 10 dBm is shown in Figure 5.3 Typical 10 dBm 2.4 GHz RF impedance-matching network circuit on page 72. Typical component values are shown in Table 5.2 2.4GHz 10 dBm Component Values on page 72. Please refer to the development board Bill of Materials for specific part recommendation including tolerance, component size, recommended manufacturer, and recommended part number.

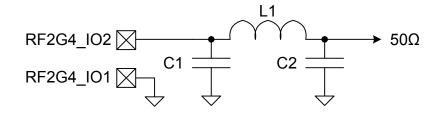



Figure 5.3. Typical 10 dBm 2.4 GHz RF impedance-matching network circuit

Table 5.2. 2.4GHz 10 dBm Component Values

| Designator | Value  |
|------------|--------|
| C1         | 1.9 pF |
| L1         | 2.1 nH |
| C2         | 0.9 pF |

## 5.2.3 2.4 GHz 20 dBm Matching Network

For part numbers which support the high-power 20 dBm PA, the recommended RF matching network circuit diagram for 2.4GHz applications with a transmit power of greater than 10 and up to 20 dBm is shown in Figure 5.4 Typical 20 dBm 2.4 GHz RF impedance-matching network circuit on page 72. Typical component values are shown in Table 5.3 2.4GHz 20 dBm Component Values on page 72. Please refer to the development board Bill of Materials for specific part recommendation including tolerance, component size, recommended manufacturer, and recommended part number.

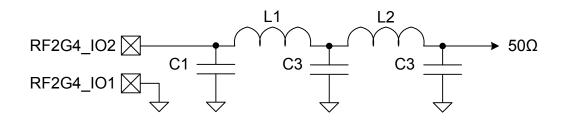



Figure 5.4. Typical 20 dBm 2.4 GHz RF impedance-matching network circuit

Table 5.3. 2.4GHz 20 dBm Component Values

| Designator | Value  |
|------------|--------|
| C1         | 2.3 pF |
| L1         | 2.3 nH |
| C2         | 0.8 pF |
| L2         | 1.1 nH |
| C3         | 0.3 pF |

## 5.3 Other Connections

Other components or connections may be required to meet the system-level requirements. Application Note AN0002: "Hardware Design Considerations" contains detailed information on these connections. Application Notes can be accessed on the Silicon Labs website (www.silabs.com/32bit-appnotes).

### 6. Pin Definitions

### 6.1 QFN32 2.4GHz Device Pinout

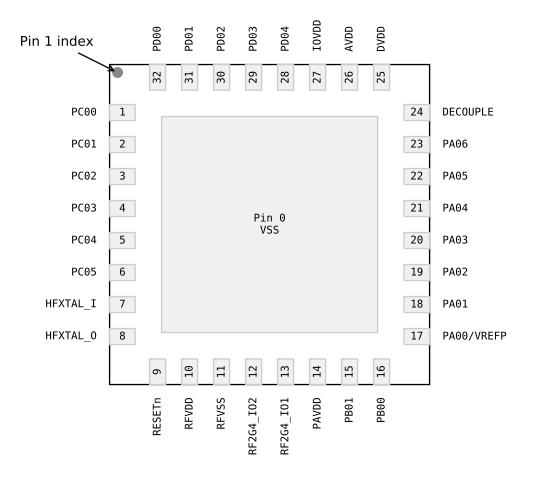



Figure 6.1. QFN32 2.4GHz Device Pinout

The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 6.2 Alternate Function Table, 6.3 Analog Peripheral Connectivity, and 6.4 Digital Peripheral Connectivity.

Table 6.1. QFN32 2.4GHz Device Pinout

| Pin Name | Pin(s) | Description                  | Pin Name | Pin(s) | Description                   |
|----------|--------|------------------------------|----------|--------|-------------------------------|
| PC00     | 1      | GPIO                         | PC01     | 2      | GPIO                          |
| PC02     | 3      | GPIO                         | PC03     | 4      | GPIO                          |
| PC04     | 5      | GPIO                         | PC05     | 6      | GPIO                          |
| HFXTAL_I | 7      | High Frequency Crystal Input | HFXTAL_O | 8      | High Frequency Crystal Output |
| RESETn   | 9      | Reset Pin                    | RFVDD    | 10     | Radio power supply            |

| Pin Name  | Pin(s) | Description              | Pin Name  | Pin(s) | Description                                                                                              |
|-----------|--------|--------------------------|-----------|--------|----------------------------------------------------------------------------------------------------------|
| RFVSS     | 11     | Radio Ground             | RF2G4_IO2 | 12     | 2.4 GHz RF input/output                                                                                  |
| RF2G4_IO1 | 13     | 2.4 GHz RF input/output  | PAVDD     | 14     | Power Amplifier (PA) power supply                                                                        |
| PB01      | 15     | GPIO                     | PB00      | 16     | GPIO                                                                                                     |
| PA00      | 17     | GPIO                     | PA01      | 18     | GPIO                                                                                                     |
| PA02      | 19     | GPIO                     | PA03      | 20     | GPIO                                                                                                     |
| PA04      | 21     | GPIO                     | PA05      | 22     | GPIO                                                                                                     |
| PA06      | 23     | GPIO                     | DECOUPLE  | 24     | Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin. |
| DVDD      | 25     | Digital power supply     | AVDD      | 26     | Analog power supply                                                                                      |
| IOVDD     | 27     | Digital IO power supply. | PD04      | 28     | GPIO                                                                                                     |
| PD03      | 29     | GPIO                     | PD02      | 30     | GPIO                                                                                                     |
| PD01      | 31     | GPIO                     | PD00      | 32     | GPIO                                                                                                     |

## 6.2 Alternate Function Table

A wide selection of alternate functionality is available for multiplexing to various pins. The following table shows what functions are available on each device pin.

**Table 6.2. GPIO Alternate Function Table** 

| GPIO | Alternate Functions |                |  |  |
|------|---------------------|----------------|--|--|
| PC00 | GPIO.EM4WU6         |                |  |  |
| PC05 | GPIO.EM4WU7         |                |  |  |
| PB01 | GPIO.EM4WU3         |                |  |  |
| PA00 |                     | IADC0.VREFP    |  |  |
| PA01 | GPIO.SWCLK          |                |  |  |
| PA02 | GPIO.SWDIO          |                |  |  |
|      | GPIO.SWV            |                |  |  |
| PA03 | GPIO.TDO            |                |  |  |
|      | GPIO.TRACEDATA0     |                |  |  |
| PA04 | GPIO.TDI            |                |  |  |
| PA04 | GPIO.TRACECLK       |                |  |  |
| PA05 | GPIO.EM4WU0         |                |  |  |
| PD02 | GPIO.EM4WU9         |                |  |  |
| PD01 |                     | LFXO.LFXTAL_I  |  |  |
| PDUI |                     | LFXO.LF_EXTCLK |  |  |
| PD00 |                     | LFXO.LFXTAL_O  |  |  |

## 6.3 Analog Peripheral Connectivity

Many analog resources are routable and can be connected to numerous GPIO's. The table below indicates which peripherals are avaliable on each GPIO port. When a differential connection is being used Positive inputs are restricted to the EVEN pins and Negative inputs are restricted to the ODD pins. When a single ended connection is being used positive input is avaliable on all pins. See the device Reference Manual for more details on the ABUS and analog peripherals.

Table 6.3. ABUS Routing Table

| Peripheral | Signal  | ı    | PA  | F    | РΒ  | F    | PC PC | F    | סי  |
|------------|---------|------|-----|------|-----|------|-------|------|-----|
|            |         | EVEN | ODD | EVEN | ODD | EVEN | ODD   | EVEN | ODD |
| ACMP0      | ANA_NEG | Yes  | Yes | Yes  | Yes | Yes  | Yes   | Yes  | Yes |
|            | ANA_POS | Yes  | Yes | Yes  | Yes | Yes  | Yes   | Yes  | Yes |
| ACMP1      | ANA_NEG | Yes  | Yes | Yes  | Yes | Yes  | Yes   | Yes  | Yes |
|            | ANA_POS | Yes  | Yes | Yes  | Yes | Yes  | Yes   | Yes  | Yes |
| IADC0      | ANA_NEG | Yes  | Yes | Yes  | Yes | Yes  | Yes   | Yes  | Yes |
|            | ANA_POS | Yes  | Yes | Yes  | Yes | Yes  | Yes   | Yes  | Yes |

# 6.4 Digital Peripheral Connectivity

Many digital resources are routable and can be connected to numerous GPIO's. The table below indicates which peripherals are avaliable on each GPIO port.

Table 6.4. DBUS Routing Table

| Peripheral.Resource |           | PC        | RT        |           |
|---------------------|-----------|-----------|-----------|-----------|
|                     | PA        | РВ        | PC        | PD        |
| ACMP0.DIGOUT        | Available | Available | Available | Available |
| ACMP1.DIGOUT        | Available | Available | Available | Available |
| CMU.CLKIN0          |           |           | Available | Available |
| CMU.CLKOUT0         |           |           | Available | Available |
| CMU.CLKOUT1         |           |           | Available | Available |
| CMU.CLKOUT2         | Available | Available |           |           |
| FRC.DCLK            |           |           | Available | Available |
| FRC.DFRAME          |           |           | Available | Available |
| FRC.DOUT            |           |           | Available | Available |
| I2C0.SCL            | Available | Available | Available | Available |
| I2C0.SDA            | Available | Available | Available | Available |
| I2C1.SCL            |           |           | Available | Available |
| I2C1.SDA            |           |           | Available | Available |
| LETIMER0.OUT0       | Available | Available |           |           |
| LETIMER0.OUT1       | Available | Available |           |           |
| MODEM.ANT0          | Available | Available | Available | Available |
| MODEM.ANT1          | Available | Available | Available | Available |
| MODEM.DCLK          | Available | Available |           |           |
| MODEM.DIN           | Available | Available |           |           |
| MODEM.DOUT          | Available | Available |           |           |
| PRS.ASYNCH0         | Available | Available |           |           |
| PRS.ASYNCH1         | Available | Available |           |           |
| PRS.ASYNCH2         | Available | Available |           |           |
| PRS.ASYNCH3         | Available | Available |           |           |
| PRS.ASYNCH4         | Available | Available |           |           |
| PRS.ASYNCH5         | Available | Available |           |           |
| PRS.ASYNCH6         |           |           | Available | Available |
| PRS.ASYNCH7         |           |           | Available | Available |
| PRS.ASYNCH8         |           |           | Available | Available |
| PRS.ASYNCH9         |           |           | Available | Available |
| PRS.ASYNCH10        |           |           | Available | Available |

| Peripheral.Resource |           | РО        | RT        |           |
|---------------------|-----------|-----------|-----------|-----------|
|                     | PA        | РВ        | PC        | PD        |
| PRS.ASYNCH11        |           |           | Available | Available |
| PRS.SYNCH0          | Available | Available | Available | Available |
| PRS.SYNCH1          | Available | Available | Available | Available |
| PRS.SYNCH2          | Available | Available | Available | Available |
| PRS.SYNCH3          | Available | Available | Available | Available |
| TIMER0.CC0          | Available | Available | Available | Available |
| TIMER0.CC1          | Available | Available | Available | Available |
| TIMER0.CC2          | Available | Available | Available | Available |
| TIMER0.CDTI0        | Available | Available | Available | Available |
| TIMER0.CDTI1        | Available | Available | Available | Available |
| TIMER0.CDTI2        | Available | Available | Available | Available |
| TIMER1.CC0          | Available | Available | Available | Available |
| TIMER1.CC1          | Available | Available | Available | Available |
| TIMER1.CC2          | Available | Available | Available | Available |
| TIMER1.CDTI0        | Available | Available | Available | Available |
| TIMER1.CDTI1        | Available | Available | Available | Available |
| TIMER1.CDTI2        | Available | Available | Available | Available |
| TIMER2.CC0          | Available | Available |           |           |
| TIMER2.CC1          | Available | Available |           |           |
| TIMER2.CC2          | Available | Available |           |           |
| TIMER2.CDTI0        | Available | Available |           |           |
| TIMER2.CDTI1        | Available | Available |           |           |
| TIMER2.CDTI2        | Available | Available |           |           |
| TIMER3.CC0          |           |           | Available | Available |
| TIMER3.CC1          |           |           | Available | Available |
| TIMER3.CC2          |           |           | Available | Available |
| TIMER3.CDTI0        |           |           | Available | Available |
| TIMER3.CDTI1        |           |           | Available | Available |
| TIMER3.CDTI2        |           |           | Available | Available |
| USART0.CLK          | Available | Available | Available | Available |
| USART0.CS           | Available | Available | Available | Available |
| USART0.CTS          | Available | Available | Available | Available |
| USART0.RTS          | Available | Available | Available | Available |
| USART0.RX           | Available | Available | Available | Available |
| USART0.TX           | Available | Available | Available | Available |
| USART1.CLK          | Available | Available |           |           |

| Peripheral.Resource |           | PORT      |           |           |  |  |
|---------------------|-----------|-----------|-----------|-----------|--|--|
|                     | PA        | РВ        | PC        | PD        |  |  |
| USART1.CS           | Available | Available |           |           |  |  |
| USART1.CTS          | Available | Available |           |           |  |  |
| USART1.RTS          | Available | Available |           |           |  |  |
| USART1.RX           | Available | Available |           |           |  |  |
| USART1.TX           | Available | Available |           |           |  |  |
| USART2.CLK          |           |           | Available | Available |  |  |
| USART2.CS           |           |           | Available | Available |  |  |
| USART2.CTS          |           |           | Available | Available |  |  |
| USART2.RTS          |           |           | Available | Available |  |  |
| USART2.RX           |           |           | Available | Available |  |  |
| USART2.TX           |           |           | Available | Available |  |  |

# 7. QFN32 Package Specifications

# 7.1 QFN32 Package Dimensions

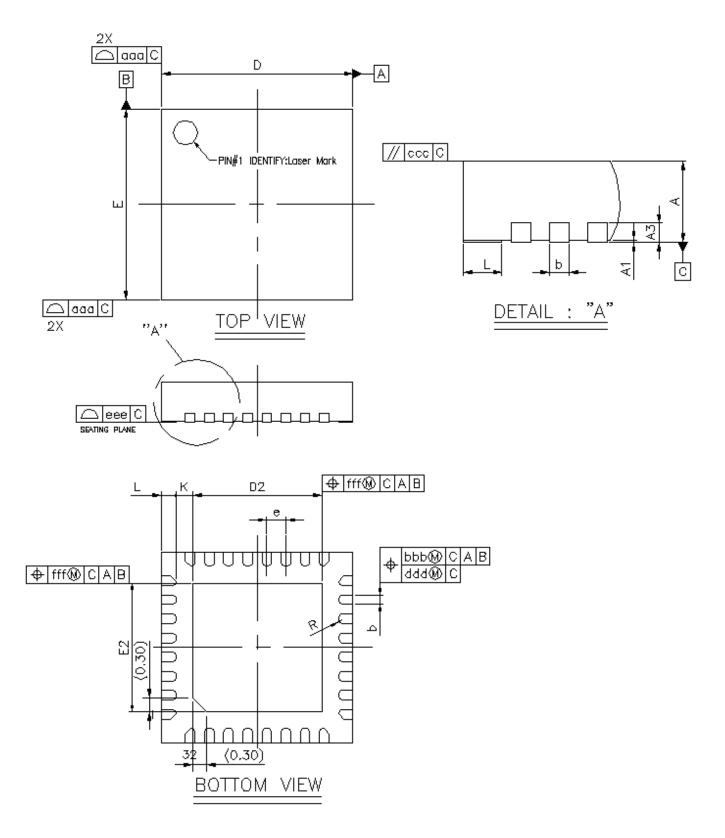



Figure 7.1. QFN32 Package Drawing

Table 7.1. QFN32 Package Dimensions

| Dimension | Min      | Тур      | Max   |  |  |  |
|-----------|----------|----------|-------|--|--|--|
| A         | 0.80     | 0.85     | 0.90  |  |  |  |
| A1        | 0.00     | 0.02     | 0.05  |  |  |  |
| A3        |          | 0.20 REF |       |  |  |  |
| b         | 0.15     | 0.20     | 0.25  |  |  |  |
| D         | 3.90     | 4.00     | 4.10  |  |  |  |
| Е         | 3.90     | 4.00     | 4.10  |  |  |  |
| D2        | 2.60     | 2.70     | 2.80  |  |  |  |
| E2        | 2.60     | 2.70     | 2.80  |  |  |  |
| е         | 0.40 BSC |          |       |  |  |  |
| L         | 0.20     | 0.30     | 0.40  |  |  |  |
| К         | 0.20     | _        | _     |  |  |  |
| R         | 0.075    | _        | 0.125 |  |  |  |
| aaa       |          | 0.10     |       |  |  |  |
| bbb       | 0.07     |          |       |  |  |  |
| ccc       | 0.10     |          |       |  |  |  |
| ddd       | 0.05     |          |       |  |  |  |
| eee       | 0.08     |          |       |  |  |  |
| fff       |          | 0.10     |       |  |  |  |

# Note:

- 1. All dimensions shown are in millimeters (mm) unless otherwise noted.
- 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
- 3. This drawing conforms to the JEDEC Solid State Outline MO-220, Variation VKKD-4.
- 4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

# 7.2 QFN32 PCB Land Pattern

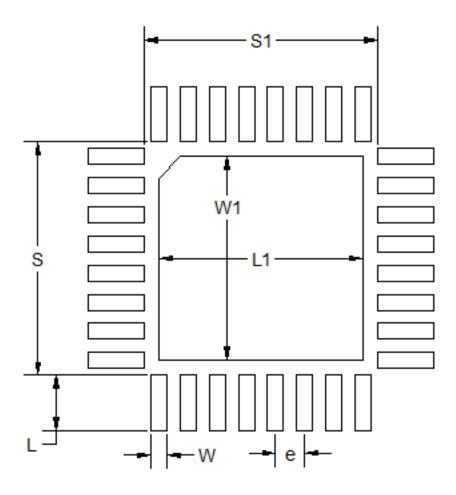



Figure 7.2. QFN32 PCB Land Pattern Drawing

Table 7.2. QFN32 PCB Land Pattern Dimensions

| Dimension | Тур  |
|-----------|------|
| L         | 0.76 |
| W         | 0.22 |
| е         | 0.40 |
| S         | 3.21 |
| S1        | 3.21 |
| L1        | 2.80 |
| W1        | 2.80 |

### Note:

- 1. All dimensions shown are in millimeters (mm) unless otherwise noted.
- 2. This Land Pattern Design is based on the IPC-7351 guidelines.
- 3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be  $60 \mu m$  minimum, all the way around the pad.
- 4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
- 5. The stencil thickness should be 0.101 mm (4 mils).
- 6. The ratio of stencil aperture to land pad size can be 1:1 for all perimeter pads.
- 7. A 2x2 array of 1.10 mm x 1.10 mm openings on a 1.30 mm pitch can be used for the center ground pad.
- 8. A No-Clean, Type-3 solder paste is recommended.
- 9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.
- 10. Above notes and stencil design are shared as recommendations only. A customer or user may find it necessary to use different parameters and fine tune their SMT process as required for their application and tooling.

### 7.3 QFN32 Package Marking



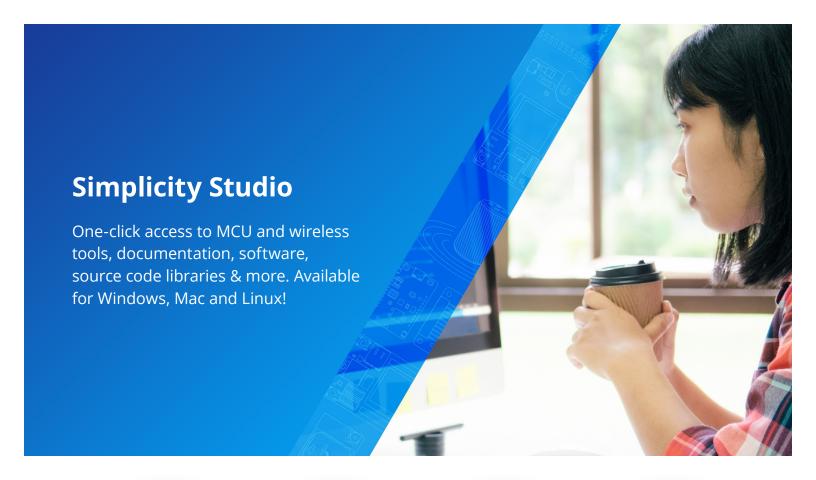
Figure 7.3. QFN32 Package Marking

The package marking consists of:

- · FFFF The product family codes.
  - 1. Family Code (B | M | F)
  - 2. G (Gecko)
  - 3. Series (2)
  - 4. Device Configuration (1, 2, 3, ...)
- PPPPP The product option codes.
  - 1-2. MCU Feature Codes
  - 3-4. Radio Feature Codes
  - 5. Flash (J = 1024k | I = 768k | H = 512k | W= 352k | G = 256k | F = 128k)
  - 6. Temperature grade (G = -40 to 85 °C | I = -40 to 125 °C)
- TTTTTT A trace or manufacturing code. The first letter is the device revision.
- YY The last 2 digits of the assembly year.
- WW The 2-digit workweek when the device was assembled.

# 8. Revision History

#### **Revision 1.0**


April, 2021

- · Changed number of 16-bit Timer/Counter modules to 3 in 1. Feature List.
- Added TIMER3 to Table 3.1 Configuration Summary on page 15.
- Added sections 4.1.17 Boot Timing, 4.1.18 Crypto Operation Timing for SE Manager API, and 4.1.19 Crypto Operation Average Current for SE Manager API.
- · Updated Secure Vault terminology throughout the document.

#### Revision 0.5

June, 2020

- · Initial Release.
- In the front page block diagram, updated the lowest energy mode for LETIMER.
- Updated 3.5.2 Low Energy Timer (LETIMER) lowest energy mode.
- · Fixed minor typos throughout the document.
- · Added Secure Vault supporting information:
  - Updated feature list in 3.7.2 Cryptographic Accelerator and in the Secure Vault section of 1. Feature List.
  - · Added 3.7.5 DPA Countermeasures.
  - · Added 3.7.6 Secure Key Management with PUF.
  - · Added 3.7.7 Anti-Tamper.
  - Added 3.7.8 Secure Attestation.
- Added reference to J-PAKE and PBKDF2 support to 3.7.2 Cryptographic Accelerator.
- Added references to matching guide and layout design guide appnotes in 5.2 RF Matching Networks.





**IoT Portfolio** www.silabs.com/IoT



**SW/HW** www.silabs.com/simplicity



**Quality** www.silabs.com/quality



**Support & Community** www.silabs.com/community

### Disclaimer

Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes without further notice to the product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Without prior notification, Silicon Labs may update product firmware during the manufacturing process for security or reliability reasons. Such changes will not alter the specifications or the performance of the product. Silicon Labs shall have no liability for the consequences of use of the information supplied in this document. This document does not imply or expressly grant any license to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any FDA Class Ill devices, applications for which FDA premarket approval is required or Life Support Systems without the specific written consent of Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. Silicon Labs disclaims all express and implied warranties and shall not be responsible or liable for any injuries or damages related to use of a Silicon Labs p

#### Trademark Information

Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world's most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®, Gecko®, Gecko OS, Gecko OS Studio, ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress®, Zentri, the Zentri logo and Zentri DMS, Z-Wave®, and others are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. Wi-Fi is a registered trademark of the Wi-Fi Alliance. All other products or brand names mentioned herein are trademarks of their respective holders.



Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA